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ABSTRACT

In soundproof model equations for geophysical fluid dynamics, the momentum and mechanical energy

budgets decouple from the thermodynamics for adiabatic flows. In applying such models to nonadiabatic flows

of fluids with general equations of state, thermodynamic consistency of the soundproof approximations needs

to be ensured. Specifically, a physically meaningful total energy conservation law should arise as an integral

of adiabatic dynamics, while for diabatic flows the effective energy source terms should be related through

thermodynamic relationships to the rates of change of entropy and other pertinent internal degrees of

freedom. Complementing earlier work by one of the authors on the Lipps and Hemler-type anelastic

approximation, this paper discusses the thermodynamic consistency of an extension of Durran’s pseudo-

incompressible model to moist atmospheric motions allowing for a general equation of state.

1. Introduction

Geophysical flows involve a large range of motions

operating on multiple spatial and temporal scales, in-

cluding propagating waves of various types, buoyancy-

driven convective overturning, and geostrophic flow

constrained by rotation. All these flows can be repre-

sented based on the compressible Navier–Stokes equa-

tions. However, because the compressible Navier–Stokes

equations account for all types of fluid motions, they are

often not needed to study specific aspects of the circu-

lation. The details of sound wave propagation, in par-

ticular, are generally considered to be irrelevant for flows

on scales of, say, 100 km and less, and this motivates the

derivation and study of ‘‘soundproof’’ flow equations.

These capture the net effect of sound waves (i.e., the

rapid local equilibration of the thermodynamic pressure)

while suppressing the need to numerically represent

the propagation of sound waves.

Over the years, several mathematical approximations

of the compressible Navier–Stokes equations have been

developed with the specific goal of filtering out spe-

cific types of motions. The Boussinesq approximation

(Boussinesq 1903) is probably the best known of these.

It filters out sound waves by replacing the continuity

equation by an incompressibility condition. The anelastic

and pseudoincompressible approximations have further

expanded the mathematical framework to account for

large vertical variations of pressure and density and are

the basis for a wide range of numerical models (Ogura

and Phillips 1962; Dutton and Fichtl 1969; Lipps and

Hemler 1982, 1985; Durran 1989; Bannon 1995, 1996;

Prusa et al. 2008; Klein et al. 2010). See also Davies et al.

(2003), Klein et al. (2010), and Achatz et al. (2010) for

discussions of the regime of validity of soundproof ap-

proximations.

The Boussinesq and anelastic approximations rely on

partial linearizations of the pressure and gravity terms

in the momentum equation to filter out sound waves

based on the assumptions of a low Mach number. The

pseudoincompressible approximation does not invoke

such linearizations in the case of an ideal gas equation

of state and in the formulation using the Exner pressure

as proposed originally in Durran (1989, 2008). Yet, our
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thermodynamically consistent extension to general equa-

tions of state will require an appropriate linearization

[see (10) below]. In all the soundproof models, these

approximations raise the issue of how they impact en-

ergy conservation and the underlying thermodynamics.

Indeed, the fundamental laws of thermodynamics imply

a nonlinear relationship among variations of enthalpy,

pressure, and entropy. This problem is made worse when

studying moist convection, as condensation itself implies

a strong nonlinearity that results in a discontinuity in the

partial derivatives of the equation of state.

This issue has been recognized for some time. In their

original derivation of the anelastic approximation, Ogura

and Phillips (1962) note that their derivation could not

be extended to a moist atmosphere. The version obtained

by Lipps and Hemler (1982) does not conserve energy.

It is only recently that Pauluis (2008) showed that it

is possible to obtain a thermodynamically consistent

version of the anelastic approximation for a moist atmo-

sphere if one accepts a restriction to nearly moist adia-

batic background states. By thermodynamic consistency

here we mean that the approximation

(i) conserves energy, with an expression for the in-

ternal energy that is consistent with the nonlinear

equation of state;

(ii) maintains the same conversion between internal

and mechanical energy as found in a fully compress-

ible fluid for reversible adiabatic flows; and

(iii) ensures that diabatic processes have the same im-

pacts on the thermodynamic state variable as for the

compressible Navier–Stokes equations.

These requirements ensure not only that the approxi-

mation conserves the total energy, but also that the

conversion rate between internal and mechanical energy

is fully consistent with the thermodynamic constraints.

See also recent work by Tailleux (2011, manuscript sub-

mitted to J. Fluid Mech.) in this context.

The purpose of this article is to expand the results of

Pauluis (2008) to obtain a thermodynamically consistent

version of the pseudoincompressible approximation for

a moist atmosphere. Whereas the anelastic approxi-

mation’s primary simplifying assumption is that of a

time-independent spatial density distribution, the pseu-

doincompressible approximation relies instead on small

pressure variations (Durran 1989, 2008). As shown re-

cently by Klein et al. (2010) and Achatz et al. (2010)

through formal asymptotic arguments, the anelastic and

pseudoincompressible models share a broad regime of

validity involving low Mach number atmospheric flows

of an ideal gas with constant specific heat capacities.

Almgren et al. (2006) developed a set of low–Mach

number model equations for astrophysical applications

that reduces to Durran’s pseudoincompressible model

in the case of an ideal gas but is applicable to more gen-

eral fluids. This work did not address the issue of ther-

modynamic consistency, however, and this motivates

the present paper.

There are two main difficulties when dealing with the

thermodynamic relationship within the pseudoincom-

pressible equation. First, the derivation of the pseudo-

incompressible model has been historically tied to the

ideal gas law by introducing the Exner pressure and the

dry potential temperature as primary prognostic vari-

ables. The associated particular transformations do not

easily transfer to general equations of state, and this

renders adaption of the pressure-based modeling ap-

proach to an arbitrary fluid rather difficult. Second, in

contrast with the anelastic approximation, the pseudo-

incompressible approximation keeps a contribution from

the pressure perturbation in the buoyancy, which must be

accounted for in the conservation of total energy con-

servation. We manage to overcome these difficulties in

this paper.

Our key result is a thermodynamically consistent

pseudoincompressible model for fluids with general

equation of state that allows for quite general back-

ground stratifications. Its derivation closely maintains

the spirit of Durran’s original arguments in Durran (1989).

An important difference between our model on the

one hand and the pseudoincompressible equations of

Durran (1989) and Almgren et al. (2006) is that the ve-

locity divergence constraint cannot generally be cast

in the usual form $ � (by) 5 0 for a prescribed vertically

stratified b(z) but must rather be deduced from mass

continuity given the equation of state, background pres-

sure distribution, and advection equations for additional

scalars representing the internal degrees of freedom of

the fluid under consideration.

2. Pseudoincompressible approximation for fluids
with a general equation of state

The starting point for our developments is the com-

pressible Euler equations:

rt 1 $ � (ry) 5 0, (1a)

yt 1 y � $y 1
1

r
$p 5 2gk, (1b)

St 1 y � $S 5 _S, (1c)

qt 1 y � $q 5 _q. (1d)

Here (p, S, q) are the pressure, entropy, and an addi-

tional scalar that represents any pertinent additional
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internal degree of freedom characterizing the fluid mi-

crostate. For example, q could be the total water content

in a model for moist atmospheric flows. These quantities

will serve as our primary thermodynamic variables in

what follows. Furthermore, y is the velocity, g the ac-

celeration of gravity, and k the vertical unit vector.

Through an equation of state for the density

r 5 r(p, S, q), (2)

the mass balance (1a) yields effectively an evolution

equation for p.

On the right-hand sides of (1c) and (1d), _S corre-

sponds to the rate of change of entropy due to both

external diabatic heating and internal production by ir-

reversible processes and _q is an externally imposed rate

of change of the additional internal degree of freedom.

For moist atmospheric flow, _q would include the total

moisture fluxes due to precipitation.

The equations in (1) can be combined to describe the

balance of total energy

(rET)t 1 $ � (rHTy) 5 r(T _S 1 m _q), (3)

where the total specific energy and enthalpy are

ET 5 HT 2 p/r and HT 5 H 1
y2

2
1 gz, (4)

respectively. Note that the total energy and enthalpy

include mechanical energy (y2/2) 1 gz. Importantly,

changes in total energy are generally associated with

sources either of entropy or of any additional internal

degrees of freedom. The total energy changes are related

to these sources through the thermodynamic potentials,

temperature T for entropy, and the Gibbs free energy m

for any other internal degree of freedom. Equation (3)

ensures that the total energy is conserved for reversible

adiabatic flow (i.e., for vanishing _S and _q). For more

general problems, energy conservation requires that the

right-hand side of (3) can be expressed as a convergence

of an energy flux F—that is,

r(T _S 1 m _q) 5 2$ � F. (5)

The dependence of the specific enthalpy H on the

primary thermodynamic variables [i.e., H 5 H( p, S, q)]

defines the equation of state of the fluid. In fact, the

inverse density, temperature, and chemical potential

a [ 1/r, T, and m, respectively, satisfy the thermody-

namic differential relations

a 5
1

r
5

›H

›p
, T 5

›H

›S
, m 5

›H

›q
. (6)

The enthalpy equation of state also determines that for

density referred to in (2). For moist atmospheric flow,

m 5 my 2 md, where my and md denote the chemical

potentials for water vapor and dry air, respectively.

The central approximation in Durran’s pseudoincom-

pressible model (Durran 1989) is that deviations of

pressure from a given background hydrostatic distri-

bution are small. Along with the original derivation of

the model, Durran demonstrated that the equations

satisfy a total energy conservation law, where the pseu-

doincompressible total energy was defined as the sum

of internal, kinetic, and gravitational potential energy

with the pressure constrained to equal its background

hydrostatic value at the given vertical level. Durran’s

original derivation of total energy conservation was

based on an ideal gas equation of state with constant

specific heat capacities and to the adiabatic case, and

this allowed for a few simplifications. Here we gen-

eralize the model to account for general equations of

state and we demonstrate thermodynamic consistency

between entropy production, changes of internal degrees

of freedom of the fluid, and the total energy balance

given a suitable definition of ‘‘pseudo-incompressible

thermodynamic potentials.’’ Our derivation borrows its

key ideas from the analogous derivations for an anelastic

model by Pauluis (2008).

The pseudoincompressible model addresses flows as

deviations from a hydrostatic background state at rest

so that there is a background pressure distribution p(z)

satisfying

dp

dz
5 2rg, p(0) 5 p0, (7)

where r(z) is a suitable horizontally averaged density

distribution and g is the acceleration of gravity. In the

following no further assumptions are made regarding r

other than that it is positive. Of course, in any practical

application one will choose a background density that

matches, for example, any soundings relevant to the con-

sidered atmospheric flow situation.

Given this background state, our proposed extension

of the pseudoincompressible model for general equa-

tions of state involves the compressible Euler equations

in the form presented in (1) with the following modifi-

cations. First, we replace

r / r* [ r(p, S, q) (8)

in the mass balance; second, we introduce the pressure

perturbation

p / p 1 dp; (9)
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and third, we expand the inverse density multiplying the

pressure gradient in the momentum equation as

1

r
/

1

r*
2

1

r*2

›r*

›p
dp. (10)

Replacing the density by the ‘‘pseudodensity’’ (Durran

1989, 2008) amounts to using its leading-order approxi-

mation under the perturbation expansion for the pres-

sure in (9). The expansion in (10) ensures that we carry

consistently all terms in the momentum equation up to

first order in dp. In fact, the leading-order terms in the

momentum equation from (1b) are those constituting

the hydrostatic balance in (7). The actual acceleration,

(›t 1 y � $)y, therefore balances with the first- and

higher-order perturbations of the pressure gradient term.

Keeping all terms up to first order in the pressure per-

turbation dp, we find the pseudo-incompressible model

rt* 1 $ � (r*y) 5 0, (11a)

yt 1 y � $y 1
1

r*
$dp 5 2gk 2

1

r*
2

1

r*2

›r*

›p
dp

� �
dp

dz
k,

(11b)

St 1 y � $S 5 _S, (11c)

qt 1 y � $q 5 _q. (11d)

The particular form of the right-hand side of (11b) will

be convenient in subsequent calculations, but notice that

it may be recast in the form of an effective buoyancy

term:

2gk 2
1

r*
2

1

r*2

›r*

›p
dp

� �
dp

dz
k

5 gk
r 2 r*

r*
2

r

r*2

›r*

›p
dp

� �
. (12)

The key difference between this system and the

compressible system from (1) is that the pressure com-

ponents p and dp are not determined by the mass bal-

ance through the equation of state. Rather, p is defined

by the background hydrostatic balance in (7), whereas

dp is a perturbation pressure that adjusts to guarantee

compliance of the velocity field with a divergence con-

straint. To reveal this constraint, we carry out the dif-

ferentiations in (11a), insert (8), (11c), and (11d), and

find

$ � y 5 2
›lnr*

›p
w

dp

dz
2

›lnr*

›S
_S 2

›lnr*

›q
_q. (13)

In the appendix we demonstrate that dp satisfies a second-

order elliptic pressure equation for externally prescribed

diabatic source terms, _S and _q, by taking the time de-

rivative of (13) and comparing it with the divergence of

the momentum equation in (11b). The effective equa-

tion for the perturbation pressure may be considerably

more complex than that for more general forms of the

diabatic source terms. A detailed discussion of this is-

sue is beyond the scope of this paper, but it needs to be

worked out prior to computational implementations of

the model equations.

We are now ready to check the consequences of the

pseudoincompressible approximation for an associated

total energy budget. Letting

H* 5 H(p, S, q), a* 5
1

r*
5

›H*

›p
,

T* 5
›H*

›S
, m* 5

›H*

›q
, (14)

we find

(›t 1 y � $)H* 5
1

r*
w

dp

dz
1 T* _S 1 m* _q. (15)

After multiplication by p*, using the pseudoincompres-

sible mass balance from (11a), and considering that

r*H* 5 r*E* 1 p with time-independent p, one finds

(r*E*)t 1 $ � (r*H*y) 5 w
dp

dz
1 r*(T* _S 1 m* _q).

(16)

Next we derive an equation for the kinetic energy by

multiplying (11b) by y and collecting terms:

r*(›t 1 y � $)
y2

2
1 y � $dp

5 2w
dp

dz
2 r*gw 1 dp

1

r*

›r*

›p
w

dp

dz
. (17)

Using the fact that (›t 1 y � $)z [ w, employing again

the pseudoincompressible mass balance from (11a) to

recast terms in conservation form, and letting y � $dp 5

$ � (dpy) 2 dp$ � y, we have�
r*

y2

2
1 gz

� ��
t

1 $ �
�

r*
y2

2
1 gz

� �
y

�
1 $ � (dpy)

5 2w
dp

dz
1 dp $ � y 1

›lnr*

›p
w

dp

dz

� �
. (18)

With the divergence constraint in (13) and the thermo-

dynamic derivatives in (6) we re-express the last bracket

in (18) as
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$ � y 1
›lnr*

›p
w

dp

dz
5 r*

›T*

›p
_S 1

›m*

›p
_q

� �
. (19)

Then, combining (18) and (19) with the internal energy

equation in (16) we obtain our main result:

(r*ET*)t 1 $ � [(r*HT* 1 dp)y] 5 r*(T** _S 1 m** _q),

(20)

where

HT
* 5 H* 1

y2

2
1 gz and ET* 5 HT

* 2 p/r*,

(21)

and

T** 5 T* 1 dp
›T*

›p
and m** 5 m* 1 dp

›m*

›p
(22)

are thermodynamic potentials accurate up to and in-

cluding first order in dp. From a physical point of view,

the additional corrections to the temperature and Gibbs

free energy associated with the dynamic pressure pertur-

bation account for the small changes in these thermody-

namics potentials that result from adiabatic fluctuations

of the pressure field. For example, if the dynamical pres-

sure perturbation is positive, it implies that the parcel is

slightly more compressed than the background reference

state, and thus has a slightly higher temperature.

These corrected potentials are also the ones that should

be used in the physical parameterizations used to com-

pute the tendencies _S and _q to ensure thermodynamic

consistency. More specifically, let us assume that energy

conservation is established in the form of (5), with a

decomposition of the heat flux into contribution due to

sensible heat and latent fluxes FT and hyFq:

F 5 FT 1 h
y
Fq. (23)

Here hy is the specific enthalpy of the water vapor. The

diabatic source terms _q and _S must be defined as

r* _q 5 2$ � Fq and r* _S 5 2$ � FS 1 _Sirr. (24)

Here, the entropy flux given by

FS 5 s
y
Fq 1

FT

T**
, (25)

with sy being the specific entropy of water vapor. For

consistency, we consider here that the specific enthalpy

of water vapor can be related to its entropy and free

energy by hy 5 m** 1 T*sy. This allows us to write the

irreversible entropy production as

_Sirr 5 FT � $
1

T**

� �
2

1

T**
Fq � (s

y
$T** 1 $m**).

(26)

The first term on the left-hand side of (26) corresponds

to the internal entropy production due to diffusion of

sensible heat along a temperature gradient, and the

second term corresponds to the internal entropy pro-

duction due to diffusion of water vapor. Note that if one

treats water vapor as an ideal gas, this term can be re-

written as (21/T)Fq � (sy$T 1 $m) 5 2RyFq � $ lne, with

Ry being the specific gas constant and e the partial pres-

sure of water vapor. According to the second law of

thermodynamics, the internal entropy production must

always be positive, _S
irr

$ 0, which sets a key constraint

on the physical parameterization for Fq and FT. Other

processes, such as radiation or frictional dissipation,

can be treated similarly by following the classic ap-

proach for a compressible fluid but using the value of

T** and m** for the corresponding thermodynamic

potentials.

We have seen that a thermodynamically consistent

representation of temperature as the thermodynamic

potential in a pseudoincompressible model may be ach-

ieved by linearization of the temperature equation of

state with respect to the pressure variable, namely

Tpsinc 5 T** 5 T(p, S, q) 1 dp
›T

›p
(p, S, q). (27)

In particular, taking into account just the leading-order

term T* 5 T(p, S, q) will lead to thermodynamic or en-

ergetic inconsistencies.

It is well known that deviations of the pressure from

a hydrostatic background distribution p(z) in small to

mesoscale atmospheric flows scale with some positive

power of the flow Mach number [i.e., dp ; Ma with 0 ,

a # 2; see Klein et al. (2010) for a detailed recent dis-

cussion]. Thus, for realistic values M , 0.1, first, the lin-

earization in (27) will be a quite accurate approximation

to the real temperature; and second, with jdp/pj � 1 the

approximated temperature T** will generally remain pos-

itive and thus represent a meaningful thermodynamic

potential. In turn, the pseudoincompressible approxi-

mation loses its validity when the perturbation term in

(27) is no longer small compared with the leading ap-

proximation [i.e., when j(›T/›p)(dp/T*)j/ 1].

Interestingly, the thermodynamically consistent tem-

perature approximation T** is obtained by combining

the result of a leading-order evolution equation for T*,
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which can be derived straightforwardly from (11), with

the result of the determining, in many cases elliptic,

equation for dp (see the appendix).

3. Conclusions

A thermodynamically consistent pseudoincompressible

model according to the three criteria listed in the in-

troduction has been achieved: As regards the first cri-

terion, the internal energy E
T
* is directly related to the

internal energy of the original compressible system in

that it is obtained by replacing p with p in the equation

of state—that is, ET
*(z, S, q) [ ET [ p(z), S, q]. As regards

the second criterion, the conversion between internal

and mechanical energies in the case of an adiabatic sys-

tem is mediated by the term pressure term ay � $p. In the

pseudoincompressible case, the pressure field is the sum

of the reference pressure and the dynamical pressure

perturbation, and the specific volume a includes the

leading- and first-order expansion of the density to

the pressure perturbation (9). As regards the third

criterion, a diabatic process associated with a net

heating is related to the change of entropy and water

content by dQ 5 T _S 1 m _q in the compressible system. In

the pseudoincompressible framework, a similar re-

lationship applies, with dQ 5 T** _S 1 m** _q in (20), in

which the temperature and Gibbs free energy each in-

clude a term depending on the pressure perturbation

corresponding to first-order accurate approximations to

the proper thermodynamic potentials. In doing so, one

consistently accounts for how the dynamic pressure af-

fects locally the temperature and Gibbs free energy, and

for how this changes the relationship among variations

in energy, entropy, and water content. While the dis-

cussion here was mostly concerned with the dynamics of

a moist atmosphere, the framework proposed here is

applicable to any equation of state and can thus be ap-

plied to a wide range of fluids.

Pauluis (2008) derives a total energy budget analo-

gous to our (20) for the anelastic system. He argues that

this equation may be discretized directly and in con-

servation form instead of the entropy transport equation

so as to guarantee total energy conservation. The situa-

tion is somewhat more subtle here as the effective ther-

modynamic potentials T** and m** involve the (elliptic)

pressure perturbation dp. If one follows the line of de-

velopment in Klein (2009), however, one may consider

the total energy equation as providing the divergence

constraint while the mass conservation equation ef-

fectively describes entropy transport. Then, in a semi-

implicit discretization, the terms involving dp on the

right-hand side of (20) will naturally appear as additional

diagonal entries in the elliptic pressure equation. We leave

the detailed development of a related numerical method

for future work.
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APPENDIX

The Elliptic Pressure Equation

In section 2, in the context of (11), we have claimed

the pressure perturbation field dp to satisfy a second-

order elliptic equation as a result of the divergence

constraint in (13) for externally prescribed source terms
_S, _q. Here we provide a derivation of this equation.

Taking the time derivative of the divergence con-

straint in (13) we find

›

›t
($ �y) 5 (y �$S 2 _S)

›2r*

›S2
_S 1

›2r*

›S›q
_q 1

›2r*

›S›p
w

dp

dz

� �

1 (y �$q 2 _q)
›2r*

›q›S
_S 1

›2r*

›q2
_q 1

›2r*

›q›p
w

dp

dz

� �

2
›lnr*

›p

dp

dz

›w

›t
2

›lnr*

›S

› _S

›t
2

›lnr*

›q

› _q

›t
.

(A1)

In the last line on the right-hand side we use the vertical

component of the momentum equation in (11b) to re-

place

›w

›t
5 2y � $w 2

1

r*

›dr

›z
2 g 2

1

r*
1 2

›lnr*

›p
dp

� �
dp

dz
.

(A2)

We obtain another expression for ($ � y)t by taking the

divergence of (11b), namely

›

›t
($ � y) 5 2$ � (y � $y) 2 $ � 1

r*
$dp

� �

2
›

›z

�
1

r*
1 2

›lnr*

dp
dp

� �
dp

dz

�
. (A3)

Comparison of (A1) with (A2) on the one hand and

(A3) on the other yields
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$ � 1

r*
$dp

� �
2

›

›z

�
1

r*

›lnr*

›p

� �
dp

dz

�
dp 5 2$ � (y � $y) 2

›

›z

1

r*

dp

dz

� �
1

�
1

r*

›lnr*

›p

� �
dp

dz

�
›dp

›z

2 (y � $S 2 _S)
›2r*

›S2
_S 1

›2r*

›S›q
_q 1

›2r*

›S›p
w

dp

dz

� �

2 (y � $q 2 _q)
›2r*

›q›S
_S 1

›2r*

›q2
_q 1

›2r*

›q›p
w

dp
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. (A4)

After cancellation of matching terms and collection of all terms involving dp on the left-hand side we obtain the

Helmholtz-type elliptic equation:
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dp

dz
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� �

2
›

›z

1

r*

dp

dz

� �
. (A5)

This equation may be simplified somewhat by introducing

dp

dz
5 2rg,

›lnr*

›p
5

1

r*c*2
, c*

2 5 gh*. (A6)

We find
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� �
1 2

r

r*

� �
1 h*

›

›z

r

r*
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(A7)

The right-hand side of this equation involves the flow

state variables r*, y; the background state pressure and

density p, r; the diabatic source terms _S, _q; and gradients

of these quantities. There are time derivatives only of
_S, _q but not of p*, y, or p, r. Thus, if _S and _q are known

prescribed functions of space and time, then (A7) is

a second-order elliptic pressure perturbation equation

whose source term is determined given the current flow

state and these source term functions.

Note that the perturbation pressure equation may

become more complex when molecular or turbulent

diffusion are included and when _S and _q depend ex-

plicitly on the flow variables and their derivatives, es-

pecially on the pressure perturbation. Thus it is known,

MARCH 2012 K L E I N A N D P A U L U I S 967



for instance, that determination of the perturbation

pressure field for the incompressible Navier–Stokes equa-

tions requires the solution of several separate Poisson

equations for some auxiliary quantities and an additional

nonstandard elliptic equation that captures boundary

effects (see, e.g., Waters et al. 2004). A detailed discus-

sion of this issue is beyond the scope of the present paper.
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Boussinesq, J., 1903: Théorie des Analytique de la Chaleur. Vol. 2.

Gauthier-Villars, 645 pp.

Davies, T., A. Staniforth, N. Wood, and J. Thuburn, 2003: Val-

idity of anelastic and other equation sets as inferred from

normal-mode analysis. Quart. J. Roy. Meteor. Soc., 129, 2761–

2775.

Durran, D. R., 1989: Improving the anelastic approximation.

J. Atmos. Sci., 46, 1453–1461.

——, 2008: A physically motivated approach for filtering acoustic

waves from the equations governing compressible stratified

flow. J. Fluid Mech., 601, 365–379.

Dutton, J. A., and G. H. Fichtl, 1969: Approximate equations of

motion for gases and liquids. J. Atmos. Sci., 26, 241–254.

Klein, R., 2009: Asymptotics, structure, and integration of sound-

proof atmospheric flow equations. Theor. Comput. Fluid Dyn.,

23, 161–195.

——, U. Achatz, D. Bresch, O. M. Knio, and P. K. Smolarkiewicz,

2010: Regime of validity of sound-proof atmospheric flow

models. J. Atmos. Sci., 67, 3226–3237.

Lipps, F., and R. Hemler, 1982: A scale analysis of deep moist

convection and some related numerical calculations. J. Atmos.

Sci., 29, 2192–2210.

——, and ——, 1985: Another look at the scale analysis of deep

moist convection. J. Atmos. Sci., 42, 1960–1964.

Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow

convection in the atmosphere. J. Atmos. Sci., 19, 173–179.

Pauluis, O., 2008: Thermodynamic consistency of the anelastic

approximation for a moist atmosphere. J. Atmos. Sci., 65,

2719–2729.

Prusa, J., P. Smolarkiewicz, and A. Wyszogrodzki, 2008: EULAG,

a computational model for multiscale flows. Comput. Fluids,

37, 1193–1207.

Waters, L. K., G. J. Fix, and C. L. Cox, 2004: The method of

Glowinski and Pironneau for the unsteady Stokes problem.

Comput. Math. Appl., 48, 1191–1211.

968 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69


