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ABSTRACT

The primary goal of this paper is to validate the use of the anelastic approximation for fluids with a
complex equation of state such as moist air or seawater. The anelastic approximation is based on a
leading-order expansion of the equations of motion for a compressible fluid in terms of density. Its appli-
cation to atmospheric flows has been based on a dry framework that treats phase transitions as an external
energy source. However, cloudy air is more accurately described as a two-phase fluid in which condensed
water and water vapor are in thermodynamic equilibrium. Thermodynamic equilibrium reduces to three the
number of state variables necessary to describe the thermodynamic state of moist air, and leads to a
discontinuity in the partial derivatives of the equation of state at the saturation point. A version of the
anelastic approximation for a moist atmosphere is derived here by considering the atmospheric density as
a small perturbation from a moist-adiabatic reference profile, and using moist entropy and total water
content as prognostic variables, with buoyancy determined from the complete nonlinear equation of state.

The key finding of this paper is that this implementation of the anelastic approximation conserves energy.
The total energy is equal to the sum of the kinetic energy and the thermodynamic energy. The latter is found
to be equal to the sum of the enthalpy and geopotential energy of the parcel. Furthermore, the state
relationships between this thermodynamic energy, entropy, and other state variables are the same as those
for moist air after replacing the total pressure with the reference state pressure. This guarantees that, as long
as the pressure perturbation remains small, the thermodynamic behavior of a fluid under the anelastic
approximation is fully consistent with both the first and second laws of thermodynamics.

Two implications of this finding are also discussed. First, it is shown that the first and second laws of
thermodynamics constrain the vertically integrated buoyancy flux. This is equivalent to deriving the total
work performed in a compressible atmosphere from its entropy and energy budgets. Second, it is argued
that an anelastic model can be built with temperature or enthalpy as a prognostic variable instead of
entropy. The rate of change for this new state variable can be obtained from energy conservation, so that
such a model explicitly obeys the first law of thermodynamics. The entropy in this model is equal to the
entropy of the parcel evaluated at the reference pressure, and its evolution obeys the second law of
thermodynamics.

1. Introduction

Within the earth’s atmosphere, water can be found in
gaseous, liquid, and solid states. Water molecules un-
dergo multiple phase transitions as they are transported
by atmospheric flows. These phase transitions are as-
sociated with significant release or absorption of latent
heat, and play an important role in the atmospheric
circulation. For example, evaporation of water accounts
for approximately 80% of the energy exchange be-
tween the atmosphere and oceans (Peixoto and Oort

1992). Phase transitions are at the core of the complex
interplay between thermodynamics and fluid dynamics
that is an intrinsic aspect of many weather phenomena
ranging from convection to hurricanes and midlatitude
storms.

Moist air can be treated as an ideal mixture of dry air,
water vapor, and condensed water. The state of moist
air can be uniquely described by the combination of
entropy S, total pressure p, specific humidity q�, and
liquid water content ql. However, not all possible com-
binations of these four state variables can be realized
within the atmosphere. Indeed, air parcels within the
lower 100 km of the atmosphere are considered to be in
local thermodynamic equilibrium. This assumption im-
plies that, when water vapor and condensed water are
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both present, the partial pressure of the water vapor in
the parcel is equal to the saturation vapor pressure.
Consistently with Gibbs’s phase rule, the requirement
that the different water phases be in thermodynamic
equilibrium reduces by one the number of variables
necessary to describe the state of moist air. Here, we
introduce the total water content qT � q� � ql as the
mass of water in all phases per unit mass of moist air, so
that the state of a moist air parcel is uniquely deter-
mined by its entropy S, pressure p, and total water con-
tent qT. In particular, the partitioning of the total water
content qT between the water vapor q� and liquid water
ql can be obtained once the three state variables, S, p,
and qT, are known. For example, at constant pressure
and total water content, higher entropy corresponds to
higher temperature and water vapor content but lower
condensed water content. At sufficiently large entropy,
low pressure, or low total water content, all of the water
will be in the vapor phase, with no condensed water
present. Air parcels with only water vapor and no con-
densed phase are referred to as unsaturated parcels,
while parcels with both phases present are referred to
as saturated parcels.

A key feature of moist convection arises from the
fact that parcels behave differently depending on
whether they are saturated or not. This fact can be
illustrated by one of its commonly observed repercus-
sions in tropical meteorology. The lapse rate is defined
as minus the derivative of the temperature with height:
� � �(�T/�z). For a typical tropical sounding, it is
roughly 0.01 K m�1 near the surface but decreases
abruptly to a value on the order of 0.004 K m�1 above
the cloud base. This abrupt change in the lapse rate is a
reflection of the difference in behavior between unsat-
urated and saturated air parcels. The temperature pro-
file in regions of active convection in the tropics follows
closely that of a parcel raised adiabatically from the
surface. For such an adiabatic ascent, the temperature
T is a function of the entropy S, total water content qT,
and pressure p:

T � T�S, qT , p�.

Below the cloud base, the lapse rate corresponds to the
adiabatic expansion of an unsaturated parcel with

�u � ���T

�z�S,qT

� �g��T

�p�S,qT

�
g

Cp
, �1�

with 	 the mass of air per unit volume, g the gravita-
tional acceleration, and Cp the heat capacity at constant
pressure. The second equality arises from the hydro-
static balance: (�p/�z) � �	g. Above the cloud base,
the lapse rate corresponds to the adiabatic expansion of

the same parcel that is now saturated. Emanuel (1994)
and others have computed the lapse rate for a saturated
ascent:

�m � ���T

�z�S,qT



g

Cp

1 �
L�qT

RdT

1 �
L�

2qT�1 � qT ���

CpR�T
2

, �2�

where L� is the latent heat of vaporization; Rd and R�

are the ideal gas constants of dry air and water vapor,
respectively; and � � (Rd/R�) is their ratio. The approxi-
mation lies in neglecting the contribution of the con-
densed water and replacing the mixing ratio by the spe-
cific humidity. The saturated lapse rate is always lower
than the unsaturated lapse rate because the cooling due
to the parcel’s expansion is partially compensated for
by the latent heat release due to condensation. Obser-
vations in the tropics reflect the fact that, for a parcel
raised adiabatically, the lapse rate is given by the un-
saturated value �u below the cloud base, and abruptly
drops to its saturated value �m above it.

The abrupt change in the adiabatic lapse rate is one
example of the fact that multiphase fluids often exhibit
a discontinuity in the partial derivative in the state law
at saturation. Consider a generic state function F(S, p,
q�, ql) with q� the specific humidity and ql the liquid
water content. The state property F is a smooth func-
tion and can be determined for any combination of S, p,
q�, and ql. However, as discussed above, not all of these
combinations can be realized due to the requirement
that moist air be in local thermodynamic equilibrium.
For an unsaturated air parcel, only water vapor is
present, q� � qT and ql � 0. Partial derivatives must be
taken assuming that dql � 0 and dq� � dqT; for ex-
ample,

��F

�p�S,qT,unsaturated
� ��F

�p�S,q��qT,ql�0
.

In contrast, for a saturated parcel with both water vapor
and liquid water present, the thermodynamic equilib-
rium between the two phases is expressed by requiring
the chemical potential of both water vapor �� and liq-
uid water �l to be equal: �� � �l. In this case, partial
derivatives are taken assuming both dq� � dql � dqT

and d�� � d�l; for example,

��F

�p�S,qT,saturated
� ��F

�p�S,q��ql�qT,����l�0
.

Local thermodynamic equilibrium leads to different
constraints on saturated and unsaturated parcels. Par-
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tial derivatives are taken along different directions in
four-dimensional space (S, q�, ql, p) depending on
whether the air is saturated or unsaturated. As a result,
the partial derivatives of the state equation are discon-
tinuous at the saturation point.

The Boussinesq approximation (Oberbeck 1879;
Boussinesq 1903; Spiegel and Veronis 1960; Mihaljan
1962) offers a practical simplification of the Navier–
Stokes equations for a compressible fluid by replacing
the continuity equation with a nondivergence con-
straint on the mass flux. This not only simplifies the
analytic treatment of the equations, but also filters out
fast-propagating sound waves. The use of the Bouss-
inesq approximation to study atmospheric motion is
limited by the fact that it requires the vertical extent of
the domain to be small in comparison to the density-
scale height. This problem is addressed in the anelastic
approximation by allowing for a height-dependent ref-
erence density profile (Batchelor 1953; Ogura and Phil-
lips 1962; Dutton and Fitchl 1969; Lipps and Hemler
1982; Durran 1989; Vallis 2006). The original deriva-
tions of the Boussinesq and anelastic approximations
require the atmosphere to be close to a dry isentropic
reference state in hydrostatic balance, and an equation
of state based on the ideal gas law, with density pro-
portional to the potential temperature.

The primary motivation of this work is to ensure that
the use of the anelastic approximation is fully consistent
even for a fluid exhibiting a highly nonlinear thermo-
dynamic state law such as moist air. Section 2 discusses
an implementation anelastic approximation for a moist
atmosphere. It assumes that the atmospheric density
distribution is a small perturbation around a hydrostatic
reference profile with constant entropy and total water
content. The impacts of density and pressure on the
momentum equation are linearized, so that density
fluctuations enter the momentum equations only as a
vertical buoyancy acceleration. A central feature of this
version of the anelastic approximation is that it keeps
the full nonlinear dependency of the buoyancy on the
entropy and total water content.

The central result presented in section 3 can be seen
as an extension of Ingersoll’s (2005) work on nonlinear
equations of state. It is shown that the anelastic ap-
proximation conserves the sum of the kinetic and ther-
modynamic energy. The thermodynamic energy here is
equal to the difference between the enthalpy of the
parcel estimated at the reference pressure and the en-
thalpy of the reference state at the same level. The
temperature and chemical potential are given by the
temperature and chemical potential of a moist air par-
cel with the same entropy and total water content but

they are estimated at the reference pressure. Further-
more, the thermodynamic relations between these vari-
ous quantities under the anelastic approximation are
the same as these for moist air except that the pressure
has been replaced by the reference state pressure. As
the anelastic approximation discussed here uses en-
tropy as a prognostic variable, this results implies that
this anelastic model simultaneously obey the first and
second laws of thermodynamics.

Sections 4 and 5 address some implications of this
result. For example, analysis of the entropy and energy
budgets such as that in Pauluis and Held (2002) can
provide an estimate of the work produced by the atmo-
sphere. In section 4, it is shown that, under the anelastic
approximation, the same considerations yield a con-
straint on the vertically integrated buoyancy flux. This
is illustrated here with a simple example that compares
a direct calculation of the buoyancy flux with the pre-
dictions from the thermodynamic constraints. Section 5
discusses the possibility of using enthalpy or tempera-
ture as a prognostic variable instead of entropy, with
the evolution equation obtained from the thermody-
namic energy equation. The entropy in this model
would be given by the entropy of the parcel evaluated
at the reference state pressure. Such a model, while
explicitly obeying the first law of thermodynamics,
would also implicitly obey the second law.

2. The anelastic approximation

We are interested here in deriving the anelastic ap-
proximation for a fluid in which the specific volume
(S, qT, p) is an arbitrary function of three state vari-
ables: here, the entropy S, total water content qT and
pressure p. As discussed in the introduction, moist air
can be treated as an ideal mixture of dry air, water
vapor, and condensed water, with the water phases in
thermodynamic equilibrium.1 This later requirement
implies that the partitioning of the total water between
its gas and condensed phases can be uniquely deter-
mined from the three state variables S, p, and qT, con-
sistently with Gibb’s phase rule. The state law for moist

1 Precipitation is made of large water droplets and ice crystals
that are not in thermodynamic equilibrium with the surrounding
air. Condensed water in the anelastic model discussed here is
limited to small cloud droplets and crystals for which the thermo-
dynamic equilibrium assumption is appropriate. A very rough
treatment of rain and snow within this framework is to altogether
remove the condensed water when it starts falling. A more com-
prehensive approach requires the addition of at least one state
variable for precipitating water, but does not introduce any par-
ticular difficulty as far as the anelastic approximation is con-
cerned.
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air exhibits a strong nonlinear behavior in that its par-
tial derivatives are discontinuous at the saturation
point. In this section, we derive a version of the anelas-
tic approximation that maintains the nonlinear depen-
dency of the specific volume on both the entropy and
total water content.

In the anelastic approximation, the atmospheric state
is considered to be a small perturbation from an atmo-
spheric reference state. Here, the original approach to
the anelastic approximation (Ogura and Phillips 1962)
is followed by requiring a reference state with uniform
entropy S0 and total water content qT 0. The entropy
here includes contributions from the water vapor and
condensed water. The reference state pressure p0(z) is
in hydrostatic balance:

�0

�p0

�z
� �g, �3�

with 0(z) � [S0, qT0, p0(z)] the specific volume in the
reference state. The total pressure is then given by p(x,
y, z, t) � p0(z) � �p(x, y, z, t), and the specific volume
is expanded as

��S, qT , p� � �0�z� � 	��S, qT , p0�

� ���

�p�S,qT

	p � 0�	p2�. �4�

The contributions of the pressure and specific volume
terms in the momentum equations are linearized:

Du
Dt

� ���p � gk

� ��0�	p � gk�0
�1	��S, qT, p0�

� gk�0
�1���

�p�S,qT

	p � 0�	�2, 	p2�. �5�

Note that in (5), the dependency of the specific volume
on pressure has been linearized but the full nonlinear
dependency of the specific volume on the two other
states variables, S and qT, has been kept. This has some
specific advantages over versions based on a fully lin-
earized equation of state. First, while the pressure and
specific volume perturbations must be small for the ex-
pansion of the momentum equation to remain accurate,
a nonlinear equation of state allows for large fluctua-
tions of the entropy or the total water content as long as
their combined impacts on the specific volume is small.
Second, this makes it possible to handle discontinuous
partial derivatives and other complex aspects of the
equation of state. Finally, we will establish in section 3
that preserving the nonlinearity dependency of the spe-

cific volume on entropy and the total water content also
preserves some key thermodynamics relationships.

To obtain an energy-conserving form for the anelas-
tic approximation, it is necessary to approximate the
partial derivative of the specific volume with respect to
the pressure by that of the reference state:

���

�p�S,qT

�S, qT , p0� � ���

�p�S,qT

�S0, qT 0, p0�. �6�

In this case, the two terms involving the pressure per-
turbation can be combined into a single-gradient term:

��0�	p � gk�0
�1���

�p�S,qT

	p � ��0�	p � gk���0

�z �
� ��0�	p � 	p��0

� ����0	p�. �7�

It must be stressed here that for a moist atmosphere,
the partial derivatives are discontinuous between satu-
rated and unsaturated regions. The difference between
the saturated and unsaturated values depends on the
specific humidity, and can be up to 30% of the unsat-
urated value for earth-like conditions. The error intro-
duced by the assumption (6) is of the same magnitude
as the error resulting from the inclusion of the refer-
ence state potential temperature in the pressure gradi-
ent term in Lipps and Hemler (1982). Physically, this
corresponds to neglecting the difference in sound speed
between the saturated and unsaturated environments.
The recombination (7) of the two pressure terms into a
single gradient term cannot be motivated on dimen-
sional grounds alone and should, thus, be viewed as an
heuristic treatment. It is nevertheless a key step in en-
suring an energy-conserving version of the anelastic ap-
proximation.

The anelastic momentum equation can thus be writ-
ten as

Du
Dt

� ����0	p� � kB, �8�

where the buoyancy B is given by

B�S, qT , p0�z�� � B�S, qT , z�

� g
��S, qT , p0�z�� � �0�z�

�0�z�
. �9�

The linearization of the momentum equation is based
on the Taylor expansion of the specific volume  and
pressure terms p, and is only accurate for small fluctua-
tions in these quantities.

In the anelastic approximation, the continuity equa-
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tion is replaced by the requirement that the reference
state mass flux be nondivergent:

� · ��0u� � 0. �10�

For an adiabatic flow, the terms neglected in the con-
tinuity equation can be shown to scale as the square of
the Mach number Mach � (U/cs), with U a velocity
scale for the flow and cs the speed of the sound. Hence,
only flows with low Mach numbers (Mach K 1) can be
accurately represented under the anelastic approxima-
tion. This requirement is separate from the previous
requirement that the density fluctuations be small.

In addition to the momentum and continuity equa-
tions, one requires two prognostic equations for the
entropy and the water content:

DS

Dt
� Ṡ and �11�

DqT

Dt
� q̇T . �12�

While the exact form of the entropy Eq. (11) has been
deliberately left open, it is assumed here that it should
be determined by the second law of thermodynamics.
The validity of the anelastic approximation requires
that the rate of change of both entropy and the total
water content must induce a small rate of change in the
density (in comparison to the change implied by the
advective tendency in the continuity equation). The
anelastic system thus includes the three-dimensional
momentum Eq. (8), a state law for buoyancy (9), the
reduced continuity Eq. (10), and the thermodynamic
equations for entropy (11) and total water (12).

The kinetic energy equation is obtained by multiply-
ing the momentum equation by 	0u:

���0

|u |2

2 �
�t

� � · ��0

|u |2

2
u� � �� · �u	p� � �0Bw.

�13�

The equation differs from the kinetic energy for a com-
pressible fluid in that it uses the density of the reference
state rather than the actual density of the fluid, and in
that the net production of kinetic energy is given by the
buoyancy flux 	0Bw.

3. Thermodynamic energy in the anelastic
approximation

Given the form of the kinetic energy equation in the
anelastic approximation (13), one would like to obtain

a formulation for the thermodynamic energy that en-
sures conservation of the sum of the kinetic and ther-
modynamic energy. As the pressure term �� · (u�p) is
the divergence of the flux, it integrates to zero over a
closed domain and does not affect the energy conser-
vation. The objective here is to find a function of en-
tropy and total water content (and possibly height and
pressure) whose tendency cancels out the buoyancy
term when added to the kinetic energy equation. Fol-
lowing Ingersoll (2005) and Vallis (2006, chapter 2.5),
we define the thermodynamic energy as

E�S, qT , z� � 
0�S, qT� � �
z0

z

B�S, qT , z�� dz�.

�14�

Here, the function �0 can be any arbitrary function of
the entropy and humidity.

The Lagrangian derivative of E is obtained by differ-
entiating (14):

DE

Dt
� �Bw � T Ṡ � M q̇T , �15�

where T and M are the partial derivatives of the ther-
modynamic energy, respectively, to the entropy and to-
tal water content:

T �S, qT , z� � ��E

�S��qT,z�

�
�
0

�S
� �

z0

z �B

�S
dz� and

�16�

M�S, qT , z� � � �E

�qT
�

�S,z�

�
�
0

�qT
� �

z0

z �B

�qT
dz�. �17�

Multiplying the thermodynamic energy Eq. (15) by 	0

and adding the kinetic energy equations, yields the fol-
lowing equation for the conservation of the perturba-
tion energy:

���0� |u |2

2
� E��

�t
� � · ��0� |u |2

2
� E�u�

� �� · �u	p� � �0T Ṡ � �0 M q̇T . �18�

Equation (14) defines the thermodynamic energy E up
to an additive function of entropy and water content,
and the same holds for its derivatives T and M. How-
ever, their dependency on height is uniquely deter-
mined by the state equation for buoyancy. The integrals
in (16) and (17) can be further simplified by taking
advantage of the Maxwell relationships:
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���

�S�p,qT

�S, qT , p� �
�2H

�S�p
�S, qT , p�

� ��T

�p�S,qT

�S, qT , p� and �19�

� ��

�qT
�

p,S
�S, qT , p� �

�2H

�qT�p
�S, qT , p�

� ����� � �d�

�p �
S,qT

�S, qT , p�. �20�

Here, �� and �d are the chemical potentials for water
vapor and dry air. The Maxwell relationships are ob-
tained by comparing the second-order derivatives of
enthalpy H(S, qT , p). These relationships make it pos-
sible to rewrite the partial derivative of the buoyancy
with respect to entropy:

� �B

�qT
�

qT ,z
�S, qT , z� �

g

�0
���

�S�qT , p
�S, qT , p0�z��

�
g

�0
��T

�p�S,qT

�S, qT , p0�z��

� ���T

�z�S,qT

�S, qT , z�

� ��S, qT , z�, �21�

where � � �(�T/�z)S,qT
(S, qT , z) is the adiabatic lapse

rate, which is a function of the entropy S, the total
water content qT, and height z. Similarly, the partial
derivative the of buoyancy, respectively, to the total
water mixing ratio is

� �B

�qT
�

S, p
�S, qT , z� �

g

�0
� ��

�qT
�

qT , p
�S, qT , p0�z��

�
g

�0
����� � �d�

�p �
S,qT

�S, qT , p0�z��

� ������ � �d�

�z �
S,qT

�S, qT , z�.

�22�

The vertical dependencies of T and M are directly re-
lated to the variations of the temperature and chemical
potential:

T �S, qT , z� �
�
0

�S
� T �S, qT , p0�z��

� T �S, qT , p0�z0�� and �23�

M�S, qT , z� � �
�
0

�qT
� �� �S, qT , p0�z��

� �d �S, qT , p0�z�� � �� �S, qT , p0�z0��

� �d �S, qT , p0�z0��. �24�

If one chooses the function �0 to be given by,


0�S, qt� � H�S, qT , p0�z0�� � H�S0, qT 0, p0�z0��,

�25�

then its partial derivatives are

�
0

�S
� ��H

�S �qT , p
� T �S, qT , p0�z�� �26a�

�
0

�qT
� � �H

�qT
�

S,p
� ��� � �d��S, qT , p0�z��.

�26b�

Using these expressions in (23) and (24) results in the
functions T and M being, respectively, equal to the tem-
perature of the parcel at the reference pressure and to
the difference between the chemical potential of the
water vapor and dry air both evaluated at the reference
pressure:

T �S, qT , z� � T �S, qT , p0�z�� and �27�

M�S, qT , z� � �� �S, qT , p0�z�� � �d �S, qT , p0�z��.

�28�

The differential relationship (15) can now be written as

dE � TdS � Bdz � ��� � �d�dqT , �29�

where the temperature T and the chemical potential ��

and �d are evaluated at the reference state pressure
p0(z). This can be compared with the thermodynamic
relationship between enthalpy, entropy, and water con-
tent for moist air:

dH � TdS � �dp � ��� � �d�dqT . �30�

The thermodynamic energy in the anelastic approxima-
tion E at a given height has the same dependency on
entropy and total water content as the enthalpy H at
the reference state pressure p0(z). By construction, the
thermodynamic energy of the reference is E(S0, qT, z) �
0. Hence, the thermodynamic energy is equal to the
enthalpy perturbation defined as the enthalpy differ-
ence between the parcel and the reference state:

E�S, qT , z� � H�S, qT , p0�z�� � H�S0, qT 0, p0�z��.

�31�

As the reference state has a constant entropy and
total water content, the vertical derivative of the refer-
ence state enthalpy is

�H�S0, qT 0, p0�z��

�z
� �0�z�

�p0

�z
� �g. �32�

The total static energy H � gz of the reference state is
thus constant, and the thermodynamic energy (31) can
then be written as

2724 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65



E�S, qT , z� � H�S, qT , p0�z�� � gz � C, �33�

where C � �H[S0, qT 0, p0(z0)] � gz0 can be treated as
an arbitrary integration constant. The thermodynamic
energy in the anelastic approximation can thus be in-
terpreted either as the perturbation enthalpy or as the
moist static energy (enthalpy plus geopotential energy).

The contribution of the change in height to the ther-
modynamic energy in (29) can be better understood
after rewriting it in terms of the change in the reference
pressure:

�Bdz � �g
� � �0

�0
dz � �dp0 � gdz. �34�

The first term on the right-hand side is equal to the
change in enthalpy due to variations in the reference
pressure; while the second term is equal to the change
of the geopotential energy (which is also equal to the
change of the enthalpy in the reference state). The dif-
ferential relationship for the thermodynamic energy
(29) is thus consistent with both interpretations of E
either as the perturbation enthalpy or as the moist static
energy of the parcel.

The energy conservation and the corresponding for-
mulation for the thermodynamic energy are valid even
for large fluctuations of the entropy and water content.
Deriving (31) and (33) does not require us to make any
approximation in the equation of state and, therefore,
holds for complex fluid. The key difference between
the compressible Navier–Stokes equations and the
anelastic approximations lies in the fact that the latter
uses the reference state pressure rather than the actual
parcel’s pressure when determining the different ther-
modynamic variables. For example, the temperature
under the anelastic approximation corresponds to the
temperature of an air parcel after it has been moved
adiabatically to its reference pressure. If �T is the dif-
ference between these two temperatures, the relative
temperature error scales as

	T

T
�

	p

p0



U2

cs
2 � Mach2, �35�

where U is the velocity scale, cs is the speed of sound,
and Mach � (u/cs) is the Mach number. Hence, the
temperature in the anelastic approximation is close to
the actual temperature as long as the Mach number
remains low. A similar scaling also applies for the error
in the chemical potential and other thermodynamic
variables. As a low Mach number is a necessary condi-
tion for the validity of the anelastic approximation, the
thermodynamic consistency is guaranteed in the gen-
eral conditions of use of the anelastic approximation.

The equivalence between perturbation energy E and

the moist static energy only occurs for the very specific
choice of �0(S, qT) � H[S, qT, p0(z)] in (14). Different
choices for �0 can be perfectly justified and would yield
alternative forms of the perturbation energy that would
differ from the enthalpy by a function of entropy and
total water. These multiple forms of the perturbation
energy can be thought of as capturing the thermody-
namic behavior of other “fluids” for which the buoy-
ancy would have the same dependency to the state vari-
ables S and qT within the atmospheric domain, but with
different state relationships outside the range of states
considered in the atmospheric domain. The nonunique-
ness of the perturbation energy is thus a reflection of
the wide range of hypothetical fluids that would have
the same behavior under the anelastic approximation.

4. Thermodynamic constraints on the buoyancy
flux

In the previous section, it has been established that
total energy is conserved under the anelastic approxi-
mation, with the thermodynamic energy given by the
moist static energy evaluated at the reference state
pressure p0(z). In this section, we show that the ther-
modynamics constrain the buoyancy flux in a manner
similar to the way the entropy budget constrains the
work performed in the atmosphere.

Comparing kinetic energy Eq. (13) and thermody-
namic energy Eq. (15) indicates that the conversion
rate between thermodynamic energy and kinetic energy
is given by the buoyancy flux, with the total generation
of the kinetic energy W given by the domain integral of
the buoyancy flux:

W � ���0wB� dx dy dz. �36�

For an atmosphere in statistical equilibrium, the work
W can be determined if the sources and sinks of entropy
and water are known. Multiplying (15) by 	0 and inte-
grating over the entire domain yields

W � �
zl

zu

�0�T Ṡ � M q̇T� dx dy dz, �37�

after taking advantage of the fact that the integral of
	0(DE /DT) over the atmospheric domain vanishes in
statistical equilibrium. Equation (37) makes it possible
to directly estimate the production of kinetic energy
from the knowledge of the entropy and water sources.
A similar expression can be obtained for a compressible
atmosphere, and differs from (37) in that the actual
density replaces the reference density and that the tem-
perature and chemical potential are estimated at the
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actual pressure. Hence, understanding how the produc-
tion of kinetic energy is constrained by the thermody-
namics under the anelastic approximation should trans-
late directly to a fully compressible case.

For example, one can consider a moist analog to
Rayleigh–Bénard convection forced by an energy
source flux Qin at the lower boundary at temperature
Tin and an energy sink Qout at the upper boundary at
temperature Tout. There is no source or sink of water
here. The main difference from the traditional Ray-
leigh–Bénard problem is that a portion of the atmo-
spheric domain is saturated. To keep the discussion as
simple as possible, it is also assumed that the work W is
not dissipated but rather extracted from the system,
which is equivalent to omitting the frictional heating
and the corresponding irreversible entropy production.
In this case, the only entropy sources and sinks in the
system are the external energy sources and sinks. For
the system to be in statistical equilibrium, the total en-
tropy remains constant over time, which requires that
(Qin/Tin) � (Qout /Tout) � 0. The work performed by the
atmosphere is obtained by using (37):

���0wB� dx dy dz � W �
Tin � Tout

Tin
Qin. �38�

This corresponds to the work performed by a Carnot
cycle acting between the temperatures Tin and Tout. The
same expression applies for the work performed by a
compressible atmosphere.

This expression can be compared to a direct compu-
tation of the buoyancy flux. The matching entropy
source and sink at the top and bottom must be com-
pensated for by a constant upward entropy flux and not
the net water flux:

�0w�S� �
Qin

Tin
and �39�

�0w�q�T � 0, �40�

where the overbar indicates a horizontal average and
the prime denotes a departure from the horizontal
mean. If the entropy is close to the reference value, one
can take advantage of the fact that the derivative of the
buoyancy with respect to the entropy is given by the
lapse rate (21):

�0w�B� 
 ��0w�S� � ���T

�z�S�S0,qT�qT0

Qin

Tin
.

�41�

Integrating the buoyancy flux over the depth of the
domain yields the same expression as the work ob-
tained from the thermodynamic constraint (38).

In deriving (41), the adiabatic lapse rate is approxi-
mated by that of the reference state. Given the fact that
the lapse rate is discontinuous when a parcel goes
through saturation, this is only accurate for levels at
which the atmosphere is either entirely unsaturated or
entirely saturated. This would be the case through most
of the atmosphere for a stratus-topped boundary layer,
but (41) cannot be applied to a problem such as cumu-
lus convection where saturated and unsaturated air par-
cels coexist within a thick atmospheric layer. Neverthe-
less, the relation between the vertically integrated
buoyancy flux and thermodynamic forcing (37) holds
even in the case where the fluctuations of the entropy
and total water content are large.

Equation (41) also indicates that the buoyancy flux in
moist convection can be discontinuous. Indeed, below
the cloud base where all air parcels are unsaturated, the
buoyancy flux is equal to the entropy flux multiplied by
the dry-adiabatic lapse rate; while above the cloud base,
it is given by the moist-adiabatic lapse rate. The buoy-
ancy flux exhibits a jump at the cloud base even when
the flux of the entropy and water vapor are smooth.
This is a consequence of the discontinuity in the partial
derivatives of the state equation for moist air—in this
case, the adiabatic lapse rate—as a parcel goes through
saturation.

An alternative proof of the discontinuity of the buoy-
ancy flux can also be obtained from the expression of
the buoyancy flux in terms of the temperature, water
vapor, and total water fluxes:

�0wB 
 �0g�wT �

T0
�

R�

Rd
wq�� � w�q�T�, �42�

where q� is the specific humidity, R� is the ideal con-
stant for the water vapor, and Rd is the ideal gas con-
stant for dry air. Such an expression for the buoyancy
flux can be obtained directly from the definition of the
buoyancy (9) and the ideal gas law. Similarly, the en-
tropy flux can be approximated by

�0w�S� 
 �0�Cp

w�T �

T0
� L�

w�q��
T0

�. �43�

In expression (42), a discontinuity in the buoyancy
flux arises from the different state relationships for
temperature, entropy, specific humidity, and total wa-
ter content between the saturated and unsaturated re-
gions of the atmosphere. For a level where all parcels
are unsaturated, the specific humidity is equal to the
total water content. Hence, in the absence of an upward
water flux, the entropy flux is given by

�0w�S� 
 �0Cp

w�T �

T0
, �44�
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with Cp the heat capacity of the moist air at constant
pressure. Comparing this expression with (42) shows
that the buoyancy flux here is equal to the entropy flux
multiplied by the dry-adiabatic lapse rate �d � (g/Cp).

In contrast, in the saturated regions, the specific hu-
midity fluctuations are related to the temperature fluc-
tuation through the Clausius–Clapeyron relationship.
For small-amplitude perturbations, this yields

q�� 

L�

R�T0
2 qs0T �, �45�

with L� the latent heat of the vaporization and qs0 the
saturation specific humidity in the reference state. For
a saturated atmospheric layer, the entropy flux be-
comes

�0w�S� 
 �0�Cp �
L�

2qs0

R�T0
2� w�T �

T0
, �46�

while the buoyancy flux is

�0w�B� 
 �0g�1 �
L�qs0

RdT0
� w�T �

T0
. �47�

The ratio between these two quantities is indeed the
moist-adiabatic lapse rate (2).

5. Thermodynamic energy as a prognostic variable

The anelastic framework discussed in the previous
sections uses entropy and total water content as prog-
nostic variables to describe the thermodynamic prop-
erties of moist air. Other thermodynamic state vari-
ables such as temperature, enthalpy, chemical poten-
tial, or specific humidity can be obtained using state
relationships for moist air. Relying on moist entropy as
a prognostic variable is not a new proposition. Ogura
and Phillips (1962) mention their unsuccessful attempt
to base their derivation of the anelastic approximation
based on moist entropy. Ingersoll (2005) also uses the
entropy of salty water as a prognostic variable for the
anelastic approximation. Nevertheless, many authors
(Ogura and Phillips 1962; Lipps and Hemler 1982; Dur-
ran 1989; Bannon 1996) have derived the anelastic
approximations for different combinations of thermo-
dynamic variables, most commonly temperature or
potential temperature. Here, it is shown that the ther-
modynamic energy Eq. (15) can be used to obtain an
alternative prognostic equation for these other prog-
nostic variables.

Equation (15) provides a prognostic equation for the
perturbation energy E . For the choice of T � T and
M � �� � �d , the last two terms on the right-hand side

of (15) can be combined into TṠ � (�� � �d)q̇T � Q.
Here, Q is the external heating rate, which includes
contributions from radiative heating, frictional heating,
and molecular diffusion but not latent heat release.
Equation (15) thus yields a prognostic equation for the
thermodynamic energy:

�0

DE

Dt
� �0Bw � Q. �48�

Given the definition of the thermodynamic energy (33),
its rate of change is given by

DE

Dt
� Cp

DT

Dt
� �0

� 1L�C � wg, �49�

where C is the rate at which the water vapor condenses
(evaporation corresponding to a negative value for C).
The thermodynamic energy equation then becomes

�0Cp

DT

Dt
� �0�

Dp0

Dt
� Q � L�C, �50�

after using 	0w(g � B) � 	0g(/0)w � �	0(Dp0 /Dt).
Equation (50) corresponds to the first law of thermo-
dynamics in which the pressure has been replaced by
the reference state pressure p0(z).

Equation (50) has been derived from the tendency
equations for entropy and total water. Any two of these
three equations are sufficient to determine the thermo-
dynamic evolution of the fluid. On the one hand, we
can use entropy and total water as prognostic variables
as in section 2 and 3, with the anelastic system conserv-
ing energy and the first law of thermodynamic is being
implicitly obeyed. On the other hand, we can also use
temperature and total water content as prognostic vari-
ables, with the temperature tendency obtained from
Eq. (50). In this case, energy conservation is explicitly
enforced. In addition, the system would have an im-
plicit entropy equation that is consistent with the sec-
ond law of thermodynamics. The entropy in the anelas-
tic approximation would be defined as the entropy of
parcel of moist air at the same temperature and water
content, but estimated at the reference state pressure:
S � S[T, qT, p0(z)].

Despite the fact that Eq. (50) might have been de-
rived directly from first principles, several authors, in-
cluding Ogura and Phillips (1962) and Lipps and Hem-
ler (1982), have used incorrect formulations for the first
law of thermodynamic. For instance, Lipps and Hemler
(1982) use the following equation for potential tem-
perature:

�0Cpd

D�

Dt
�

Q � L�C


. �51�
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They define the potential temperature as � � ��1T,
where � � (p/pref)

(Rd/Cpd) is the Exner function using the
specific heat Cpd and gas constant Rd for dry air. The
quantity pref is an arbitrary pressure. While Eq. (51) is
perfectly appropriate for a dry atmosphere, it fails to
account for the effect of water vapor on both the heat
capacity and gas constant, and as such is inconsistent
with the first law of thermodynamics.

In the anelastic approximation, the pressure is re-
placed by the reference state pressure, so that the tem-
perature is T � (p0 /pref)

(Rd/Cpd)� � �0�. In the case of
Lipps and Hemler (1982), the potential temperature
tendency is

D�

Dt
�

1
0

DT

Dt
�

Rd�

Cpdp0

Dp0

Dt
. �52�

Using this expression in the potential temperature, Eq.
(51) yields

�0Cpd

DT

Dt
� �0

RdT

p0

Dp0

Dt
� Q � L�C. �53�

This equation differs from the thermodynamic energy
Eq. (48) in two respects. First, it uses the heat capacity
of dry air Cpd rather than that of moist air Cp. Second,
the term multiplying the rate of change of pressure
(RdT/p0) � (p0, T, qT � 0) is equal to the specific
volume of a dry air parcel. This omits the impacts of
water on the density of moist air. Lipps and Hemler
(1982) indeed observe that their formulation of the
anelastic approximation does not conserve energy. This
fact however should be attributed to their use of an
incorrect form of the potential temperature equation
for a moist atmosphere, and is not indicative of an in-
trinsic limitation of the anelastic approximation. In-
deed, an anelastic model based on Eq. (50) and the full
nonlinear equation of state for buoyancy not only con-
serves energy but also obeys the second law of thermo-
dynamics.

6. Conclusions

This paper has investigated the use of a complex
equation of state in conjunction with the anelastic ap-
proximation. The version of the anelastic approxima-
tion discussed here differs slightly from the previous
work of Ogura and Phillips (1962), Dutton and Fitchl
(1969), Lipps and Hemler (1982), and Durran (1989) in
that it uses moist entropy and total water content as
prognostic variables and has a reference state with con-
stant entropy and total water content. Buoyancy is com-
puted with the full nonlinear equation of state for the
specific volume. This anelastic approximation remains

accurate even for large fluctuations of the entropy and
total water as long as the perturbations in the specific
volume and total pressure remain small. While this pa-
per has mainly focused on the behavior of a moist at-
mosphere, the results reported here are valid for a wide
range of fluids with complex equations of state. In par-
ticular, the use of the anelastic approximation is justi-
fied for studying deep convection in a moist atmo-
sphere in which the equation of state is highly nonlinear
due to the discontinuity of its partial derivatives at satu-
ration, or in the ocean, in which case the nonlinearity
results from thermobaric effects.

The key finding here is that the anelastic approxima-
tion conserves energy, with the thermodynamic energy
given by the difference between the enthalpy of the
parcel at the reference pressure and the enthalpy of the
reference state at the same level. Furthermore, the
thermodynamic relationships between the thermody-
namic energy, entropy, and total water content for an
anelastic fluid are the same as for a fully compressible
fluid, with the exception that the reference state pres-
sure must be used instead of the total pressure. The
thermodynamic consistency of the anelastic approxima-
tion holds as long as the Mach number of the flow is
small. This result indicates that, even for complex flu-
ids, anelastic models can be constructed so that they
simultaneously obey the first and second laws of ther-
modynamics.

The thermodynamic energy equation can also serve
as an alternative prognostic equation without affecting
the thermodynamic consistency. In an anelastic model,
temperature or enthalpy can replace moist entropy as a
prognostic variable, with the evolution equation de-
rived from the thermodynamic energy equation. Such a
model would explicitly follow the first law of thermo-
dynamics, while implicitly obeying the second law of
thermodynamics, with the entropy given by the moist
entropy of the parcel at the reference state pressure.

These findings ensure that anelastic models offer an
appropriate framework within which to study the ther-
modynamic behavior of the atmosphere. In a compress-
ible atmosphere, the work produced by the circulation
can be determined from the energy and entropy bud-
gets (Pauluis and Held 2002). Here, the same approach
has been applied to an anelastic model to determine the
buoyancy flux from the thermodynamic constraints im-
posed by the first and second laws of thermodynamics.
In numerical models, ensuring mass and energy conser-
vation is usually straightforward under the anelastic ap-
proximation, but presents several difficult challenges
under the compressible Navier–Stokes equations.
Hence, while there has been a strong push toward the
development and use of fully compressible atmospheric

2728 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65



codes, anelastic models still offer a very attractive plat-
form, particularly for studying the maintenance of the
atmospheric circulation over long time scales.
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