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ABSTRACT

This paper investigates the impacts of horizontal resolution on the statistical behavior of convection. An
idealized radiative–convective equilibrium is simulated for model resolutions ranging between 2 and 50 km.
The simulations are compared based upon the analysis of the mean state, the energy and water vapor
transport, and the probability distribution functions for various quantities. It is shown that, at a coarse
resolution, the model is unable to capture the mixing associated with shallow clouds. This results in a dry
bias in the lower troposphere, and in an excessive amount of water clouds. Despite this deficiency, the
coarse resolution simulations are able to reproduce reasonably well the statistical properties of deep
convective towers. This is particularly apparent in the cloud ice and vertical velocity distributions that
exhibit a very robust behavior.

A theoretical scaling for the vertical velocity as function of the grid resolution is derived based upon the
behavior of an idealized air bubble. It is shown that the vertical velocity of an ascending air parcel is
determined by its aspect ratio, with a wide, flat parcel rising at a much slower pace than a narrow one. This
theoretical scaling law exhibits a similar sensitivity to that of the numerical simulations. It is used to
renormalize the probability distribution functions for vertical velocity, which show a very good agreement
for resolutions up to 16 km. This new scaling law offers a way to improve direct simulations of deep
convection in coarse resolution models.

1. Introduction

Deep convection is a key element of the climate sys-
tem, not only because of its role in controlling the lapse
rate in the Tropics, but through its impact on the cloud
field and radiative fluxes. Hence, the representation of
convection is a crucial aspect of any climate model. In
traditional general circulation models (GCMs), the
horizontal resolution is of the order of 100 km. This
prevents these models from directly simulating pro-
cesses taking place at the convective scales. This limi-
tation has been addressed over the years through the
development of various cumulus parameterizations
(Manabe et al. 1965; Arakawa and Schubert 1974; Betts
and Miller 1986; Emanuel 1991; Arakawa 2004) whose
main functions are to determine the effects of convec-

tion on the temperature, humidity, and clouds within an
atmospheric column. However, these parameteriza-
tions cannot be derived from first principles, but rather
must rely on a set of semiempirical closure assumptions
about the behavior of convective systems. As such, the
necessary use of cumulus parameterizations in GCMs
remains one of the largest sources of uncertainty for
our understanding of the climate system.

One possible solution to this issue is to increase the
model’s resolution in order to explicitly represent the
scales at which convection takes place. This is the
approach taken by cloud system resolving models
(CSRMs) to study the behavior of convective systems
over limited areas. Satoh et al. (2005) have recently
conducted a 3.5-km resolution global simulation with
the Earth Simulator. Given the continuous increase in
computing resources, it should be possible to run rou-
tinely a global CSRM within the next decade. An in-
termediate approach is to replace the traditional cumu-
lus parameterization with a reduced CSRM calculation
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(Grabowski 2001; Randall et al. 2003). Both of these
approaches rely on the implicit assumption that the be-
havior of convection can be accurately captured by a
high-resolution model. However, as increasing model
resolution is computationally expensive, one would like
to determine the coarsest resolution possible that
would properly capture the necessary physical pro-
cesses.

The answer to such question depends critically on the
feature of convection that one tries to replicate. For
instance, Lorenz (1975) distinguishes between predic-
tion of the first kind, which focuses on a specific trajec-
tory of a dynamical system, and prediction of the sec-
ond kind, which determines the statistical properties of
the system attractor. As predictions of the first and
second kinds are different problems, the corresponding
resolution requirements might also be different.
Weather forecasting, where one predicts the evolution
of weather systems over a few days, is a prediction of
the first kind. The conventional wisdom is that, for
cloud system simulations and weather forecasting,
CSRMs with a horizontal resolution of 2 km or less can
capture the behavior of cloud systems (see, e.g., Redel-
sperger et al. 2000). Specific aspect of convection such
as entrainment and shallow clouds might require even
higher resolution. For example, Bryan et al. (2003) ar-
gue that resolution of 500 m or less might be required to
reproduce the propagation of a squall line.

In climate models, the objective is to capture the
impact of an ensemble of convective systems on the
temperature, humidity, and energy of the atmosphere.
This is inherently a prediction of the second kind, and
the resolution requirements for a CSRM in a climate
application might not be the same as those for a
weather forecasting model. A particular issue is wheth-
er the physical parameterizations of a CSRM must be
complemented by additional components (such as a
deep convective parameterization) at intermediary
resolution between the convective and mesoscale. Pre-
vious studies have offered different answers. Liu et al.
(2001) observe that 3D simulation with 15-km resolu-
tion could reproduce reasonably well results from a 2D
simulation with 2-km resolution, although they find
some sensitivity for organized convection. In contrast,
Jung and Arakawa (2004) find that, in 2D simulations,
significant correction terms needed to be included for
their coarse resolution (32 km) simulations to repro-
duce the results obtained with high resolution (2 km).
The key questions here are to determine how CSRM
simulations converge with resolution, and whether ad-
ditional parameterization would result in faster conver-
gence.

The primary objective of this paper is to determine

the resolution requirement for CSRM simulations for
climate applications by investigating the impacts of a
model resolution on the statistical behavior of convec-
tion. In the present paper, a CSRM is used to simulate
an idealized radiative–convective equilibrium with the
horizontal resolution varying from 2 to 50 km. The
model’s convergence is assessed by comparing the
coarse resolution simulations with the 2-km reference
case. This assessment focuses primarily on the statisti-
cal properties of the convective systems, by determin-
ing the sensitivity of the mean-state, convective trans-
port, and distribution functions for vertical velocity and
condensed water. The goal here is to evaluate the ca-
pability of coarse resolution simulations to capture vari-
ous aspects of moist convection.

The numerical model and experimental design are
described in section 2 and in the appendix. The model
solves the equations of motion for a fully compressible
atmosphere, with a parameterization for cloud micro-
physics. For this paper, the radiative transfer calcula-
tions have been replaced by an idealized cooling pro-
file. As this prevents cloud–radiative feedbacks, the
sensitivity in our simulations is primarily due to the
internal dynamics of convective systems. Particular at-
tention in the model development has been given to the
advection scheme. After studying different options, the
piecewise parabolic method (PPM; Colella and Wood-
ward 1984) was selected. Apart from this specific choice
for the advection scheme, the model dynamics should
be representative of a wide range of compressible and
anelastic atmospheric models.

The results from the simulations are presented in sec-
tion 3. The behavior of convection is analyzed through
a set of long-term statistics: mean temperature and hu-
midity, convective heat and water transport, net latent
heat release, and probability distribution functions for
cloud water, cloud ice, and vertical velocity. It is shown
that the horizontal resolution has a strong impact on
the behavior of shallow convection, but that deep con-
vective towers are only slightly affected. In particular,
low-level humidity and cloud water are very sensitive to
the horizontal resolution, while the vertical velocity and
cloud ice exhibit a much more robust behavior, even for
resolutions up to 16 km.

Section 4 provides a theoretical analysis of the sen-
sitivity of the vertical velocity to horizontal resolution.
A scaling argument is derived to explain the low sen-
sitivity of the vertical velocity of deep convection to
horizontal resolution. It is found that the vertical ve-
locity of a 16-km simulation should be roughly half that
of a 2-km simulation. The scaling argument can also be
used to renormalize the vertical velocity probability dis-
tribution so that coarse resolution simulations can be
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used to predict the behavior of high-resolution simula-
tions. It is found that the low sensitivity of the vertical
velocity to the horizontal resolution is a characteristic
of the nonhydrostatic convection, and could potentially
be used to improve coarse resolution simulations. Sec-
tion 5 discusses further the implications of this study for
explicit simulations of deep convection in global mod-
els.

2. Model and experiment

a. Model

The model used here has been developed at Geo-
physical Fluid Dynamics Laboratory (GFDL) through
a collaboration between Steve Garner, Olivier Pauluis,
Chris Kerr, and Isidoro Orlanski. The numerical model
is composed of three main components: 1) a compress-
ible dynamical core, which solves the equation of mo-
tion for moist air, 2) a bulk microphysical parameter-
ization that determines the conversion rates of the dif-
ferent types of water, and the associated latent heat
release, and 3) a set of physical parameterizations
shared with the GFDL climate model (Anderson et al.
2004).

The prognostic variables of the dynamical core are
the three-dimensional velocity u, �, w, the potential
temperature �, specific humidity q�, five different spe-
cies of condensed water (cloud water, cloud ice, rain,
snow, and graupel), and the Exner function � �
(p/p0)(R/Cp), where p0 is an arbitrary reference pressure,
R is the gas constant, and Cp is the specific heat at
constant pressure of dry air. The density of moist air �
is not a prognostic variable, but is obtained from the
ideal gas law.

The numerical aspects of the model are detailed in
the appendix. The model uses a time-splitting tech-
nique, with a long time step for advection and physics,
and with a shorter time-step for the sound and gravity
waves. Advective tendencies are obtained by using the
PPM in all three directions for all variables (Colella and
Woodward 1984). The microphysical parameterization
of Lin et al. (1983), with subsequent modifications by
Lord et al. (1984), and Krueger et al. (1995) is used
here. It separates condensed water is separated into
five different species, cloud water, cloud ice, rainwater,
snow, and graupel, and is used to compute the trans-
formation rate between the different water types, as
well as the corresponding temperature change. While a
wide selection of additional physical parameterizations
is available through the GFDL Flexible Modeling Sys-
tem (FMS), this study is focused on numerical conver-
gence, and the simplest configuration is favored. The
physical parameterizations used here are limited to a

Monin–Obhukov similarity for the surface flux, and a
three-dimensional turbulent kinetic energy scheme. A
sponge layer at the upper boundary dampens vertically
propagating sound and gravity waves. No parameter-
ization for either shallow or deep convection has been
used.

b. Experimental design

The nonhydrostatic model is used to simulate an ide-
alized radiative–convective equilibrium. The atmo-
sphere is destabilized through a combination of surface
heating and tropospheric cooling. This initiates convec-
tion and, after some time, the system reaches a statis-
tical equilibrium where convective systems continu-
ously form, grow, and decay. The primary advantage of
the radiative–convective equilibrium lies in that it is the
simplest experimental setup to simulate active convec-
tion forced by an external influence—in this case the
differential heating. By limiting oneself to a horizon-
tally uniform domain, one greatly simplifies the prob-
lem, which can be then be studied on a relatively small
domain (a few hundred kilometers in both horizontal
directions are sufficient if one uses a doubly periodic
domain). The main drawback is that it is not possible to
account for the interaction between convection and the
planetary circulation.

The atmosphere is destabilized by a combination of
surface heat flux and tropospheric cooling. The surface
forcings are obtained by assuming that the lower
boundary is an ocean at a constant temperature of 301.5
K. The tropospheric cooling is determined from an ide-
alized cooling profile rather than an explicit radiative
transfer calculation. The cooling rate is given by

�tT | cool � �1.5 K day�1 for T � 207.5 K �1�

�
200 K � T

5 day
elsewhere. �2�

This produces a uniform cooling of 1.5 K day�1 within
most of the troposphere while maintaining the strato-
sphere at a uniform temperature of 200 K. The ideal-
ized cooling does not account for the interactions be-
tween cloud and radiation, which play an important
role both for the behavior of convective systems and for
the energy budget of the atmosphere. The choice in this
study is to favor simplicity, and to focus primarily on
the interaction between dynamics and thermodynam-
ics. An investigation of the sensitivity of the cloud ra-
diative feedbacks to horizontal resolution is left to a
future study.

Radiative–convective equilibrium is simulated on a
three-dimensional, double periodic domain. The simu-
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lations are repeated for resolution of 2, 4, 6, 8, 12, 16,
25, and 50 km. The 2-km simulation is used as a refer-
ence, and is performed on a 200 km 	 200 km horizon-
tal domain with 100 	 100 grid points. All other simu-
lations use a 50 	 50 horizontal grid. This implies that
the physical domain is the same for the 2- and 4-km
resolution cases, and becomes larger at coarser resolu-
tion. All the experiments here use the same vertical
grid—a 60-point stretched grid with resolution of 100 m
near the surface and 700 m at the top (25 km). The
model did not use any numerical diffusion, as these are
not required because of the monotonicity of the PPM
advection scheme.

3. Numerical results

The model is integrated for a period of 16 days, with
the analysis performed on the last 8 days of the simu-
lations. While 16 days is probably too short for the
model to reach radiative convective equilibrium, the
initial conditions were obtained from a two-month in-
tegration with a 4-km resolution, and were already
fairly close to the radiative–convective equilibrium
state, at least in the 4-km case. The residual trends after
16 days are fairly small.

The precipitation rate varies from 4.45 mm day�1 at
2-km resolution to 4.95 mm day�1 at 50-km resolution.
The latter is the only simulation that produced a pre-
cipitation rate greater than 4.7 mm day�1. In all cases,
the atmosphere is close to a moist adiabatic. The con-
vective available potential energy (CAPE) for a revers-
ible ascent varies from 660 J kg�1 at 12-km resolution
to 870 J kg�1 at 50-km resolution.

a. Mean state

Figure 1 shows the resolution dependence of the total
moist static energy, total dry static energy, and total
latent heat content. It indicates a systematic drying and
warming at coarser resolution. The vertical structure of
the drying is illustrated in Fig. 2, which shows the dif-
ference in horizontal mean specific humidity between
different simulations and the 2-km control run. While
simulations with 4- and 6-km resolution reproduce rea-
sonably well the water vapor distribution of the control
run, coarser resolution produces a very marked dry bias
in the lower troposphere. The strongest drying occurs
in the lower troposphere. In the first few hundred
meters, which corresponds roughly to the subcloud
layer, humidity exhibits the opposite tendency, with
coarse resolution producing a moister boundary layer.
The vertical structure of the temperature difference is
shown in Fig. 3. This temperature structure corresponds

closely to a moist adiabat that matches the changes in
the subcloud layer humidity. The biases in specific hu-
midity and temperature are by far the most drastic im-
pact of the horizontal resolution.

The humidity bias at coarse resolution can be inter-
preted as a result of a lack of mixing by shallow clouds.
In these simulations, convective downdrafts generate
cold pools that expand over areas much larger than the
individual clouds. The expansion of the cold pools re-
sults in a continuous stirring within the subcloud layer,

FIG. 2. Difference in horizontal mean specific humidity between
different simulations and the 2-km control run for 4- (dotted line),
8- (dashed line), 16- (solid line), and 50-km (dash–dotted line)
horizontal resolution.

FIG. 1. Bias in mean moist static energy (solid line), mean dry
static energy (dash–dotted line), and mean latent heat content
(dash line) as function of the model’s resolution. The bias here is
defined as the difference between the simulation and the refer-
ence 2-km simulation.

JULY 2006 P A U L U I S A N D G A R N E R 1913



and leads to the formation of a large number of shallow
clouds primarily at the advancing edge of the cold
pools. This mechanism is active at all resolutions, with
the coarse simulation actually exhibiting a larger cloud
cover at low levels (see section 3b). However, at the
coarse resolution, the shallow clouds do not overturn or
mix with environment. Instead, they dissipate by falling
back into the boundary layer. In contrast, the 2- and
4-km experiments show a large number of shallow con-
vective clouds that mix with their environment and hu-
midify the lower troposphere. It should be emphasized
that even a 2-km resolution is insufficient for an accu-
rate representation of shallow convection. Hence, it is
not surprising that changes in the horizontal resolution
have a very marked impact on the dynamical behavior
of simulated shallow clouds.

The temperature bias is also closely related to the
humidity bias. Figure 1 shows that the vertically inte-
grated moist static energy does not change as much as
the dry static energy and the latent heat individually,
particularly for resolutions finer than 20 km. The rate of
change of the vertically integrated moist static energy is
given by the difference between the total surface en-
ergy flux (i.e., sensible and latent heat fluxes) and the
interior cooling, excluding the small contribution due to
kinetic energy. As the simulations are near radiative–
convective equilibrium, these are almost balanced, and
there is little evolution of the moist static energy. Fur-
thermore, surface fluxes and cooling rate are only
weakly affected by the model resolution, the former
through changes in the lowest level enthalpy and wind
velocity, and the latter through changes in temperature.

As the energy sources and sinks are insensitive to the
model resolution, one expects the integrated static en-
ergy to be similarly insensitive to the model resolution.
If the total moist static energy were to be constant, a
dry bias at coarse resolution, corresponding to a reduc-
tion of the latent heat content, would have to be bal-
anced by an increase in the dry static energy, that is, an
increase in temperature. From a mechanistic point of
view, the reduction of the mixing by shallow convection
in the coarse resolution simulation leads to a moisten-
ing of the boundary layer. This increases the convective
precipitation, which in turn warms the troposphere.

The formulation of the cooling rate (1) is also par-
tially responsible for the magnitude of the tropospheric
warming in the steady state. Indeed, the cooling rate (1)
is independent of the temperature through most of the
atmosphere. The integrated cooling Qcool depends pri-
marily on the location of the 200-K isotherm, and its
sensitivity to the mean atmospheric temperature Tatm is
low: dQcool/dTatm 
 0.6 W m�2 K�1. This is about 6
times smaller than sensitivity of the infrared radiation
emitted by a blackbody at the same temperature as the
atmosphere. This also implies a very long relaxation
time for the temperature: � � CpM(dQcool/dTatm)�1 

200 days (M is the atmospheric mass per unit area),
which is much longer than the length of the experi-
ments. Another formulation for the idealized cooling,
such as a relaxation toward a specific temperature pro-
file, would likely have resulted in significantly lower
sensitivity for the tropospheric temperature.

While the mean state exhibits some sensitivity to the
horizontal resolution, the tropospheric lapse rate is still
close to a moist adiabat even at the coarsest resolution.
This indicates that coarse convection remains very ef-
fective at controlling the tropospheric temperature. In-
deed, as seen in section 3c, the vertical velocity in the
50-km resolution runs remains of the order of 2–3
m s�1, so that the corresponding convective overturn-
ing time of 1–2 h remains much shorter than the radia-
tive cooling time. The primary limitation of a coarse
simulation lies in its inability to represent the shallow
clouds necessary to moisten the lower troposphere.

b. Convective energy transport

In radiative–convective equilibrium, the total energy
transport by convection must balance the radiative
cooling in the troposphere. As the imposed cooling pro-
file has very little sensitivity to the model resolution, so
does the total energy transport by convection. How-
ever, it is possible for the model resolution to affect the
microphysical processes, and modify how the energy
transport is partitioned between sensible and latent
heat. Such change of the partitioning between sensible

FIG. 3. Difference in horizontal mean temperature between dif-
ferent simulations and the 2-km control run for 4- (dotted line), 8-
(dashed line), 16- (solid line), and 50-km (dash–dotted line) hori-
zontal resolution.
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and latent heat transport would imply a significant
change in the behavior of convection. Pauluis and Held
(2002a) show that the kinetic energy generated by con-
vective motions is strongly reduced by irreversible en-
tropy production due to diffusion of water vapor and
irreversible phase changes. Furthermore, they show
that impact of these moist processes on the generation
of kinetic energy in the atmosphere is proportional to
the latent heat transport. They define the effective tem-
perature of latent heat release Tlat as

Qlat

Tlat
� � �L�

C � E

T
, �3�

where Qlat � � �L�(C � E) is the total latent heat
release, C and E are the condensation and reevapora-
tion rate, respectively, and L� is the latent heat of va-
porization. Pauluis and Held (2002b) show that the re-
duction of the kinetic energy production by the moist
processes is approximately given by

T�Sirr 
 0.75Qlat

Tsurf � Tlat

T
, �4�

with Sirr the entropy production by diffusion of water
vapor and irreversible phase changes, Tsurf the surface
temperature, and T an average atmospheric tempera-
ture. In the simulations discussed in Pauluis and Held
(2002a), moist processes account for two thirds of the
entropy production in moist convection, which trans-
lates in a reduction of the kinetic energy generation of
roughly 10 W m�2. A change in the partitioning of the
convective energy transport between latent and sen-
sible heat would imply a change in the entropy produc-
tion by moist processes (4) and henceforth the amount
of kinetic energy generated by convective motions.

Figure 4 shows the horizontally averaged net conden-
sation rate, which is not significantly affected by the
model resolution. This ensures that through (3) and (4)
that the total entropy production due to moist pro-
cesses is not significantly affected by the change in reso-
lution. This is further confirmed by Fig. 5, which shows
the buoyancy flux in the model. The kinetic energy
generation can be approximated by the integral of the
buoyancy flux (see, e.g., the appendix of Emanuel and
Bister 1996), and is remarkably insensitive to the mod-
el’s resolution, with the net kinetic energy generation
varying from 1.7 to 1.8 W m�2. Altogether, this indi-
cates that the thermodynamic behavior of deep convec-
tion is not significantly altered by changes in the model
resolution.

c. Statistical characteristics of convection

One of the primary motivations for direct simulation
of convection is to obtain a better statistical description

of convective systems. Specifically, it is important to
examine whether the coarse resolution can reproduce
the probability distribution functions (PDFs) obtained
at higher resolution. The PDFs presented here focus on
the cloud water, cloud ice, and vertical velocity as in-
dicators of the behavior of convective systems. Given
the importance of cloud radiative feedbacks in the cli-
mate systems, the ability of a model to reproduce the
properties of clouds is of particular interest here. In
addition, as vertical velocity is one of the primary fac-
tors controlling the microphysical processes taking
place within a given cloud, understanding how the reso-

FIG. 5. Total buoyancy flux as function of height. Results shown
for model resolution of 2 (cross line), 4 (dotted line), 8 (dashed
line), 16 (solid line), and 50 km (dash–dotted line).

FIG. 4. Net source of water vapor due to microphysical trans-
formation. Results shown for model resolution of 2 (cross), 4
(dotted line), 8 (dashed line), 16 (solid line), and 50 km (dash–
dotted line).
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lution affects vertical velocity can offer insight on how
to improve the representation of the cloud field in
coarse resolution runs.

The PDFs for cloud water and ice are presented in
Figs. 6 and 7 for different model resolutions. It is ap-
parent that, at the coarsest resolution of 50 km, the
model does not reproduce the PDFs from the reference
case. For intermediate resolutions between 8 and 16
km, the model is able to capture several features of the
cloud ice distribution, including the magnitude of the
peak at 0.6 g kg�1, and the tail of the distribution at
large qi associated with strong convective updrafts.
There is a small bias at intermediary value of the cloud
ice content 0.3 � qi � 0.5 g kg�1 that could be associ-
ated with the behavior of decaying cirrus clouds. The
cloud water distribution exhibits a much more marked
bias, particularly in the range of 0 � qc � 0.5 g kg�1.
Figure 8 shows the variation of the cloud fraction with
height (the cloud fraction is defined here as the prob-
ability for the condensate mixing ratio to be larger than
0.05 g kg�1). Overall, the cloud ice fraction at high
altitude can be reproduced within 25% margin with
resolutions in the 8–16-km range, but low-level cloud
water is more sensitive. The differences in cloud water
PDFs are consistent with a longer decay time scale for
shallow clouds at coarse resolution, and are most likely
a consequence of the poor behavior of shallow convec-
tion, as discussed earlier in section 3a.

The amount of cloud ice is closely tied to the behav-
ior of deep convective updrafts. One of the most re-
markable features of the simulations is that coarse reso-
lution runs do a very good job of reproducing the PDF

for vertical velocity, as shown in Figs. 9 and 10. These
PDFs have been constructed by sampling the vertical
velocity at each level between 4 and 8 km, weighted by
the mass of air in the grid box. The most significant
difference occurs in the tail of the PDFs which exhibit
a resolution-sensitive cutoff. Even for a resolution as
coarse as 16 km, the vertical velocity remains about half
as strong as the vertical velocity in the higher resolution
simulations. This surprisingly robust behavior is ana-
lyzed in greater detail in section 4 of this paper.

The weak sensitivity of the vertical velocity to hori-
zontal resolution is welcome news. The microphysical
properties of clouds are strongly related to the vertical
velocity experienced during their ascent, as it directly
affects the conversion rates. The robust behavior of the
vertical velocity also implies that the coarse resolution
simulations should be able to reproduce the micro-
physical properties of deep convection reasonably well.
It is not surprising that the PDFs for vertical velocity
and cloud ice both exhibit good behavior for resolution
up to 16 km.

4. Vertical velocity and horizontal resolution

In the numerical simulations, the aspect ratio of the
convective clouds is primarily determined by the hori-
zontal resolution. In particular, the coarse simulations
force the model to produce very flat clouds. A scaling
argument is derived here to determine the effect of the
aspect ratio on the vertical velocity of an ascending
bubble. The scaling law for the idealized bubble is then
used to renormalize the PDFs for vertical velocity in
the numerical simulations.

FIG. 6. PDF for cloud water for resolution of 2 (cross), 4 (dotted
line), 8 (dashed line), 16 (solid line), and 50 km (dash–dotted
line).

FIG. 7. PDF for cloud ice for resolution of 2 (cross), 4 (dotted
line), 8 (dashed line), 16 (solid line), and 50 km (dash–dotted
line).
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Consider an idealized bubble rising in an environ-
ment at rest. If the bubble is less dense than its envi-
ronment, it will accelerate upward. The buoyancy is
equal to the force per unit of mass that would have to
be applied in order to prevent the bubble to rise. How-

ever, the buoyancy is not necessarily equal to the ver-
tical acceleration. Indeed, for the bubble to rise, the air
above and below it must be displaced. This occurs
through the intermediary of a nonhydrostatic pressure
field that generates motions away from the bubble and
reduces the effective vertical acceleration. Davies-
Jones (2003) discusses the relationship between buoy-

FIG. 9. PDF for the vertical velocity averaged between 4- and
8-km height, for resolution of 2 (cross), 4 (dotted line), 8 (dashed
line), 16 (solid line), and 50 km (dash–dotted line).

FIG. 10. Third moment of the vertical velocity in the simulation
(solid line). It is compared with the nonhydrostatic scaling (19).

FIG. 8. Cloud fraction for cloud (left) water and (right) ice. Cloud fraction is defined as the
probability for the cloud water or ice concentration to exceed 0.05 g kg�1. Results shown for
resolution of 2 (cross), 4 (dotted line), 8 (dashed line), 16 (solid line), and 50 km (dash–dotted
line).
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ancy and acceleration in an anelastic fluid and finds that
acceleration and buoyancy are related through a sec-
ond-order partial differential equation. Here, rather
than deriving an exact three-dimensional solution, a
discretized version of the equations of motion is used.
The problem reduces then to a second order ordinary
differential equation that is used to derive the scale
dependency for vertical acceleration and velocity.

Following the Davies-Jones (2003) formulation, the
equations of motion for an anelastic fluid are

�
d

dt
V � ��pnh � �Hph �5�

� · ��V� � 0. �6�

Here, V is the three-dimensional velocity field, d/dt � �t

� V · � denotes the Lagrangian derivative, �H �
(�x, �y, 0) is the horizontal gradient, �(z) is the reference
density, p � pnh � ph is the pressure, pnh is the local
nonhydrostatic component of the pressure filed, and ph

� ��
z �g dz is the local hydrostatic component. Note

that in this decomposition, the vertical acceleration due
to the hydrostatic pressure field balances exactly the
gravitational acceleration (including buoyancy). The
vertical momentum equation thus reduces to �(d/dt)w
� ��zpnh.

The atmosphere is separated into a cylindrical col-
umn where the bubble is located and its environment.
When the density of the bubble differs from that of the
environment, the bubble is subject to a vertical accel-
eration. The net vertical acceleration depends on both
the buoyancy of the bubble and on the geometry of the
problem. The primary goal of this exercise is to deter-
mine how the bubble’s diameter L affects the effective
acceleration. Rather than considering the full system
(5)–(6), the equations of motion for the air in the col-
umn can be discretized

���tw � w�zw� � ��zpnh �7�

���tU � w�zU� �
Ph � pnh � Pe

L
�8�

�L2

4
�z��w� � �L�U � 0. �9�

The discretization assumes that w is the average veloc-
ity through a section of the column, U is the radial
velocity on the later boundary of the column, Ph � pnh

is the total pressure at the center of the column, and Pe

is the pressure in the environment, far away from the
column. The pressure in the bubble’s column contain-
ing the bubble is the sum of a nonhydrostatic pressure
perturbation pnh and the hydrostatic pressure Ph(z)
given by

Ph�z� � �
z

�

g��z�� dz�, �10�

so that the gravitational acceleration cancels the verti-
cal gradient of the hydrostatic pressure field in (7). For
this problem, it is assumed that the environment is in
hydrostatic balance. The pressure Pe(z) in the environ-
ment is given by

Pe�z� � �
z

�

g�e�z�� dz�. �11�

Neglecting the nonhydrostatic pressure field outside
the bubble column is equivalent to treating the envi-
ronment as an infinite mass reservoir.

The nonhydrostatic pressure can be obtained by mul-
tiplying (8) by 4/L and adding the vertical derivative of
(7). The continuity equation [Eq. (9)] implies that the
sum of the derivative vanishes, which yields

�zzpnh �
4

L2 pnh �
4

L2 �ph � pe�

� �z���z

w2

2
� w�zz��w��. �12�

When the terms on the right-hand side of the equation
are known, the nonhydrostatic pressure field is the so-
lution of an ordinary differential equation. As the dif-
ferential operator is linear, the nonhydrostatic pressure
can be decomposed into a contribution balancing the
nonlinear advection terms, and a contribution balanc-
ing the hydrostatic pressure term. The latter is obtained
by taking the vertical derivative of (12), which yields

�zz��zpnh� �
4

L2 �zpnh � �g
4

L2 �� � �e�. �13�

The vertical acceleration in the column is given by

�
1

�
�zpnh�z� � �

0

�

G�z, z��g
�e � �

�
dz�, �14�

where G(z, z�) is the Green function of the differential
Eq. (13):

G�z, z�� �
L

2
sinh�2z

L � exp��
2z�

L � for z 	 z�

�
L

2
sinh�2z�

L � exp��
2z

L � for z � z�. �15�

The integrand in Eq. (14) is given by the product of
the Green function and the buoyancy b � g(�e � � /�)
of the air in the column. In a nonhydrostatic fluid,
the vertical acceleration is a weighted average of the
buoyancy in the air column. As an air bubble rises, it
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generates a secondary circulation above and below it-
self. This circulation is produced by the nonhydrostatic
pressure field, which redistributes the vertical buoyancy
acceleration to a larger portion of the atmosphere in
order to ensure the mass conservation. The form of the
Green function (15) indicates that the buoyancy accel-
eration is diluted through a depth equal to the diameter
of the bubble, which also corresponds to a secondary
circulation of aspect ratio 1.

Consider a bubble of buoyancy B, diameter L, and
thickness Z, which has risen from the surface up to a
height H above the ground. Three cases are considered
now: a narrow bubble, a flat bubble high in the atmo-
sphere, and a flat bubble near the surface.

1) For a narrow bubble, the Green function converges
toward a Dirac function as L/Z → 0. The vertical
acceleration is equal to the buoyancy. In this case,
the total kinetic energy imparted to the parcel dur-
ing its ascent is BH, and its vertical velocity is there-
fore

w0 
 �2BH�1
2. �16�

2) For a flat bubble, with L � Z, away from the lower
boundary, in the sense that H � 2L, the Green func-
tion (15) can be approximated by

G�z, z�� 

L

4
exp��

2 |z� � z |
L �. �17�

The acceleration is approximately equal to the
buoyancy averaged over a thickness equal to the
horizontal extent of the bubble:

�zpnh 

B

1 �
L

�Z

, �18�

assuming an exponential distribution of buoyancy. If
this bubble has risen from the surface to the height
H, its kinetic energy will be given by the total work
done by the nonhydrostatic pressure on the bubble:

w 
 � 2BH

1 �
L

�Z
�1
2


 �1 �
L

�Z��1
2

w0. �19�

Figure 11 shows the third-order moment of the
vertical velocity in the simulations as a function of
the grid resolution. It shows a very good agreement
with the anelastic scaling (19). The value of Z here
is 6 km. It is worth noting that even for an aspect
ratio one bubble, the nonhydrostatic effects result in
a vertical velocity that is 40% smaller than that of an
infinitely narrow bubble.

3) For a flat bubble, with L � Z, near the ground,
with H � L/2, the lower boundary acts to reduce the
vertical acceleration even further, and the Green
function (15) can be approximated by

G�z, z�� 
 z exp��
2z�

L � for z 	 z�


 z� exp��
2z

L � for z 	 z�. �20�

Near the ground, the acceleration of a bubble scales as

�zpnh 

4B�ZH

L2 . �21�

The vertical velocity can be approximated by

w 
 2
��ZH�1
2

L
w0. �22�

Physically, the work done during the ascent of a
shallow bubble is used to generate the horizontal
kinetic energy of the convergent flow under the
bubble, with little generation of vertical kinetic en-
ergy.

Even when the nonhydrostatic pressure redistributes
the vertical acceleration to a larger portion of the fluid,
the total work performed by a rising bubble remains
equal to the buoyancy flux. In particular, it is indepen-
dent of the horizontal extent of the bubble. The differ-
ence in the resulting vertical velocities are due to the
fact that the fraction of this total work used to acceler-
ate the bubble is a function of the geometry of the

FIG. 11. PDF for the vertical velocity renormalized to the 2-km
case, using Eq. (24). Results shown for resolution of 2 (cross), 4
(dotted line), 8 (dashed line), 16 (solid line), and 50 km (dash–
dotted line).
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problem. The rest of the work is used to sustain the
circulation in the surrounding air, and generate vertical
and horizontal motions outside the ascending bubble.

In the numerical simulations, the ratio of the genera-
tion of vertical kinetic energy to horizontal kinetic en-
ergy agrees with a scaling as

� w�zp

� u�xp � ��yp



L0

L
,

with equipartition occurring for L � L0 
 6 km. This
indicates that the ratio of vertical kinetic energy gen-
eration to horizontal kinetic energy generation is equal
to the ratio of the kinetic energy generation within an
ascending bubble to the kinetic energy generation in
the environment. This can be explained by the fact that,
as the atmosphere is stratified, any environmental air
that has been lifted at the same time as the bubble rises
will fall back to its original level. Through this process,
the vertical kinetic energy is converted into the avail-
able potential energy and radiated away. The net pro-
duction of vertical kinetic energy is equal to the amount
required to balance the kinetic energy dissipation in
convective air that irreversibly ascends.

Many large-scale models make use of the hydrostatic
approximation to simplify the vertical momentum
equation. As a result, the work required for accelerat-
ing a parcel in the vertical direction is neglected. All
mechanical energy produced during a parcel’s ascent is
used to generate horizontal kinetic energy, indepen-
dent of the resolution. As the horizontal velocity is in-
dependent of the grid resolution, the vertical velocity is
inversely proportional to the grid resolution for a hy-
drostatic model:

whyd 

H

L
w0. �23�

At resolutions much larger than the depth of the tro-
posphere, the parcel always feels the influence of the
lower boundary, and the appropriate nonhydrostatic
scaling (22) predicts the same dependency on the hori-
zontal resolution as the hydrostatic scaling (23). How-
ever, for resolutions finer that the depth of the tropo-
sphere, the effects of the lower boundary are less sig-
nificant, and the nonhydrostatic scaling (19) applies. In
this case, the nonhydrostatic scaling is much less sensi-
tive to changes in the horizontal resolution than the
equivalent hydrostatic scaling. For a horizontal resolu-
tion equal to or smaller than the depth of the tropo-
pause, the hydrostatic approximation leads to a signifi-
cant, and unrealistic, increase of the vertical velocity.

These arguments can be used to rescale the probabil-
ity distribution function. If f(w, r0) is the value of the
PDF for vertical velocity w at resolution r0, then the
rescaling of the PDF fR to a resolution r1 is given by

fR�w, r1� � �r1, r0�f ��r1, r0��1w, r0�. �24�

Here, �(r1, r0) is the ratio of the typical velocity be-
tween resolution r0 and r1, derived from (19):

�r1,r0� � �1 �
r0

�Z

1 �
r1

�Z
�

1
2

. �25�

This rescaling is applied to the PDFs obtained in sec-
tion 3. The only unknown is Z, which should be in-
terpreted as the vertical extent of a typical updraft. A
value of Z � 6 km has been used, which corresponds
to the resolution at which the production of kinetic
energy is equally divided between the vertical and hori-
zontal component in the simulations. The PDFs res-
caled to the 2-km resolution are shown in Fig. 12. There
is a very close match between the rescaled PDFs. Only
the 25- and 50-km cases differ significantly, which is not
surprising given that at such coarse resolution, the as-
cending parcel should feel the effect of the lower
boundary, so that the scaling (22) would become more
appropriate.

The scaling laws discussed in this section are based
on two central assumptions about the behavior of a
convective tower. First, it requires that the buoyancy of
an ascending air parcel is unaffected by the horizontal

FIG. 12. PDF for moist entropy at 6-km vertical velocity renor-
malized to the 2-km case, for resolution of 2 (cross), 4 (dotted
line), 8 (dashed line), 16 (solid line), and 50 km (dash–dotted
line).
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resolution in the simulation. This implies that the ther-
modynamic and microphysical properties of the up-
drafts remain similar through the various experiments.
This is verified by analyzing the PDF for entropy shown
in Fig. 13. While there is a slight widening of the PDF
at coarse resolution, this change is quite small in com-
parison to the difference between the updraft and their
environment. This would not have been the case if, for
example, entrainment in the updraft was strongly af-
fected by the grid size. Second, it assumes that the size
of the updraft is determined by the grid resolution. In
particular, this implies that the scaling should not hold
for very high-resolution simulations of convection, in
which the horizontal extent of the updraft would be
determined by the internal turbulence.

5. Conclusions

In this paper, the impact of horizontal resolution on
the behavior of simulated convection has been investi-
gated. Simulations of an idealized radiative–convective
equilibrium were performed for resolutions varying be-
tween 2 to 50 km. The simulations were run for 16 days,
and the analysis focuses primarily on the long-term sta-
tistical behavior of the simulated convection. This setup
is designed to evaluate whether a coarse nonhydrostatic
model could be used adequately to simulate the behav-
ior of moist convection in climate models.

On the negative side, it was found that the shallow
convection in the model is very sensitive to the hori-
zontal resolution. This sensitivity is most apparent in
the distribution of cloud water at low levels, and in the

lower tropospheric humidity. Coarse resolution models
cannot represent the overturning in shallow convection.
Rather, they produce a significant amount of flat strati-
form clouds that do not mix with the environment. As
a consequence, there is very little mixing between the
boundary layer and the troposphere. This also leads a
dry bias in the lower troposphere at coarse resolution.
Improving the representation of shallow clouds is the
main benefit of an increased resolution.

On the positive side, the behavior of deep convective
tower is much more robust. The vertical velocity
showed a limited sensitivity to horizontal resolution.
For example, the third moment of vertical velocity in
the 16-km resolution simulations is only one-half of that
obtained with a 2-km resolution. This low sensitivity of
the vertical velocity is also associated with good behav-
ior for cirrus clouds. Indeed, the PDFs for cloud ice
show only small sensitivity for resolutions up to 16 km.
Overall, these results indicate a robust behavior of deep
convective towers, including their outflow, over a wide
range of resolutions.

A theoretical scaling has been derived to explain the
low but nonnegligible sensitivity of the vertical velocity
to horizontal resolution. The analysis of the vertical
acceleration of an idealized bubble indicates that the
nonhydrostatic pressure fields acts to spread the buoy-
ancy acceleration of a flat bubble to a much deeper
portion of the air column. This leads to a dissolution of
the vertical acceleration, and a weaker vertical velocity.
The scaling obtained shows that the vertical velocity
varies approximately as (1 � L/Z)�1/2, for a bubble
away from the lower boundary, with Z/L the aspect
ratio of the bubble. In terms of the numerical simula-
tion, this scaling implies that the vertical velocity varies
at most as one over the square root of the horizontal
grid space for the range of resolutions considered in this
study.

A very promising result lies in the possibility of using
the theoretical scaling arguments to rescale the vertical
velocity in coarse resolution simulations. It was shown
that the PDF of the high-resolution simulation could be
obtained by renormalizing the PDFs of coarser simula-
tion. Hence, the scaling law proposed here could po-
tentially be used to improve the behavior of deep con-
vection simulated with models of horizontal resolutions
in the range of 5 to 20 km

APPENDIX

Numerical Model Description

The prognostic variables are the three-dimensional
velocity, V � (u, �, w), the potential temperature �, the
specific humidity q�, five species of condensed water

FIG. 13. Cumulative probability spectrum for the vertical veloc-
ity during the GATE experiment from numerical simulations with
the Zetac model (solid line), and observations (cross) from
LeMone and Zipser (1980).
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(cloud water, cloud ice, rain, graupel, and snow), and the
Exner function, � � (p/p0)R/Cp, where p0 is a constant
reference pressure. The dynamical equations in Carte-
sian coordinates with no topography or rotation are

d

dt
u � �Cp���1 � qc�

�1�x� � Du, �A1�

d

dt
� � �Cp���1 � qc�

�1�y� � D� , �A2�

d

dt
w � ��Cp���z� � g��1 � qc�

�1 � Dw , �A3�

d

dt
� �

Q

Cp�
� D� , �A4�

d

dt
q� � E � Dq , �A5�

d

dt
� � �

R�

C�

��� · V � E� �
R�

C���

d

dt
�� . �A6�

Here D is the tendency due to subgrid-scale diffusion,
qc is the total condensate, Q is the diabatic forcing (in-
cluding latent heat release), E is the net conversion of
condensed water into water vapor, g is the gravitational
acceleration, and �� � �(1 � 0.608q�) is the virtual
potential temperature. The Lagrangian derivative is
d/dt � �/�t � V · �. The tendency for the Exner func-
tion (A6) is derived from the continuity equation

d

dt
� � ���� · V � E�,

together with the ideal gas law

�C� 
R �
���

p0
.

The tendency for the Exner function can be manipu-
lated into an equivalent flux form:

��

�t
� ��1���

� · ��V

��
� ��

�1
d

dt
���, �A7�

or

��

�t
� ��1���

� · �V
�

� ��
�1

���

�t �, �A8�

with � � C� /R.
The microphysical parameterization is that of Lin et

al. (1983), as modified by Lord et al. (1984) and Krue-
ger et al. (1995). The diffusion term is obtained from a
three-dimensional turbulent kinetic energy scheme
similar to that of Klemp and Wilhelmson (1978), and
the surface fluxes are obtained from a Monin–Obukhov
implementation described in Anderson et al. (2004).
The surface roughness calculation incorporates a diag-

nosis of wave heights according to the method of Bel-
jaars (1995).

The numerical solution is obtained using leapfrog
time stepping and centered space derivatives on a C
grid. Advective tendencies are computed according to
the PPM in all three directions for all variables (Colella
and Woodward 1984). For the Exner function forecast,
PPM is applied to the combined flux term as it appears
in (A7).

Following Klemp and Wilhelmson (1978), we in-
crease the computational efficiency of the dynamical
core by evaluating a linearized form of the source terms
on a fast time step. A height-dependent reference state,
denoted by an overbar, is chosen so that the following
linear tendencies due to acoustic gravity waves can be
evaluated on the fast step:

�u

�t
� �Cp���1 � qc�

�1
��

�x
, �A9�

��

�t
� �Cp���1 � qc�

�1
��

�y
, �A10�

�w

�t
� �g

�� � ��

��

� Cp��

�

�x
�� � ����1 � qc�

�1,

�A11�

��

�t
� ���1�1��� · ���V�, �A12�

���

�t
� �V · ���. �A13�

Here �(z) is in hydrostatic balance with the reference
profile of virtual potential temperature ��; thus (�/�z)�
� �(g/Cp�c). The linearization of the Exner Eq. (A12)
is based on (A7). The Lagrangian tendency of �� is
added on the slow time step. What remains on the right-
hand side of (A1)–(A5) and (A7) after these terms are
subtracted is frozen during the fast cycle. The moisture
variables q� and qc are also frozen. As a result, the
original slow time step is not constrained by internal
wave propagation.

The terms on the rhs of (A9)–(A13) are subtracted at
the slow time and evaluated at the fast time. Thus, for
example, the full equation for virtual potential tem-
perature, combining (A4), (A5), and (A13), is

���

�t
� �Vs · ��� � �Vf � Vs� · ��� � Q� , �A14�

where subscripts s and f refer to slow and fast, and
Q� � Q(1 � 0.608q�) � 0.608�E (evaluated on the slow
time). This departs from the original method of Klemp
and Wilhelmson (1978) not only by including the grav-
ity wave terms in the fast time step but also by retaining
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the full advection in the slow tendency. This takes bet-
ter advantage of sophisticated algorithms for advection
such as PPM.

The fast time step is constrained by acoustic gravity
waves. To relax this constraint without significantly di-
minishing the accuracy of the solution, the vertical
propagation is treated semi-implicitly, as in Klemp and
Wilhelmson. Vertical sound wave propagation is due to
the vertical derivatives in (A11) and (A12). The vertical
advection of buoyancy, on the rhs of (A13), is included
in the semi-implicit part of the calculation in order to
remove the constraint due to vertical gravity wave
propagation.

The model has been evaluated against several com-
putational and observational test cases, including Glob-
al Atmospheric Research Program Atlantic Tropical
Experiment (GATE; e.g., Donner et al. 1999), Tropical
Ocean Global Atmosphere Program–Coupled Ocean–
Atmosphere Response Experiment (TOGA COARE;
e.g., Redelsperger et al. 2000), and Atmospheric Radia-
tion Measurement (ARM; e.g., Xu et al. 2002). The
results from Zetac have been compared to found to
perform similarly to other CSRMs used in the GEWEX
Cloud Systems Study (GCSS; L. J. Donner 2005, per-
sonal communication). Figure 13 shows a comparison
between observed (from LeMone and Zipser 1980) and
modeled cumulative probability distributions of in-
cloud vertical velocity for the GATE observing period
of 30 August to 16 September 1974. The result demon-
strates the ability of the dynamical model and micro-
physical parameterization to capture this important
measure of tropical convection.
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