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ABSTRACT4

In this paper the convective mass transport is analyzed by sorting air parcels in terms of5

their entropy and an isentropic streamfunction for convective motions is introduced. By6

averaging the upward mass flux at constant value of the equivalent potential temperature,7

one can compute an isentropic mass transport which filters out reversible oscillatory motions8

such as gravity waves. This novel approach emphasizes the fact that the upward energy and9

entropy transports by convection are due to the combination of ascending air parcels with10

high energy and entropy and subsiding air parcels with lower energy and entropy. The use11

of conditional averaging is extended to other dynamic and thermodynamic variables such as12

vertical velocity, temperature or relative humidity to obtain a comprehensive description of13

convective motions. It is also shown how this approach can be used to determine the mean14

diabatic tendencies from the three dimensional dynamic and thermodynamic fields.15

A two-stream approximation that partitions the isentropic circulation into a mean up-16

draft and mean downdraft is also introduced. This offers a straightforward way to identify17

the mean properties of rising and subsiding air parcels. The results from the two-stream18

approximation are compared with two other definitions of the cloud mass flux. It is argued19

that the isentropic analysis offers a robust definition of the convective mass transport that20

is not tainted by either the choice of an arbitrary threshold for vertical velocity or con-21

densate content, and that separates the irreversible convective overturning from oscillations22

associated with gravity waves.23
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1. Introduction24

Atmospheric convection transports energy and water from the Earth’s surface to the25

free troposphere. The ascent of warm, moist air in saturated turbulent plumes is balanced26

by subsidence of dryer and colder air that takes place in the environment or in convective27

or mesoscale downdrafts. Convective systems however rarely occur as simple overturning28

motions; rather they are associated with a variety of turbulent motions over a wide range29

of scales. Any analysis of such flow is complex as individual air parcels undergo multiple30

dynamical and thermodynamical transformations. For example, one may want to separate of31

irreversible ascent and mixing of air parcels from the gravity waves. However, such separation32

is not straightforward as convective plumes originating from the boundary layer and gravity33

waves are often spatially and temporally collocated. The main purpose of this paper is to34

introduce a new technique to diagnose the convective overturning in numerical models.35

The proposed approach takes advantage of the quasi-conservation of entropy to isolate36

convective motions from oscillatory motions. In practice, this amounts to averaging various37

aspects of the flow in isentropic coordinates. Isentropic analyses have been widely used to38

study the large-scale atmospheric and oceanic circulation (Dutton 1976; Johnson 1989; Held39

and Schneider 1999; Pauluis et al. 2008, 2010), but have not yet been applied to study con-40

vective motions. As the entropy of an air parcel is conserved for reversible adiabatic motions,41

it is expected remain almost constant for time significantly longer than the convective drafts,42

even as air parcels may experience large changes in pressure or temperature. Therefore, by43

averaging the circulation on isentropic surfaces the same set of parcels may be followed, and44

thus a better approximation of the Lagrangian trajectories of the air parcels may be obtained.45

While this argument has traditionally been applied to separate the large-scale planetary cir-46

culation from synoptic scale eddies, it is shown here that it offers a straightforward way to47

separate irreversible overturning by convective motions from reversible oscillations by gravity48
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waves.49

Section 2 introduces the isentropic averaging for the convective mass transport and de-50

fines the convective streamfunction. An isentropic upward mass transport is obtained by51

sorting the upward mass transport at each level in terms of its equivalent potential tem-52

perature. This mass transport can then be integrated to obtain the stream function, which53

offers a simpler representation of the convective circulation. This methodology is used to54

analyze radiative convective equilibrium simulations with the System for Atmospheric Mod-55

eling (SAM, Khairoutdinov and Randall 2003). In Section 3, the isentropic averaging is56

generalized to assess the thermodynamic and dynamical properties of the air parcels. It can57

be used to define the probability of occurrence, mean vertical velocity, and mean thermo-58

dynamic properties such as water content and buoyancy of air parcels in terms of of heigh59

and equivalent potential temperature. Thus it is possible, for example, to isolate a popu-60

lation of intense, almost undiluted updrafts associated with peak vertical velocities of bout61

40 ms−1 in numerical simulations. Section 4 shows application of the isentropic analysis to62

determine the mean diabatic tendency from the convective stream function. Furthermore,63

an empirical entrainment and an entrainment scale height can be determined as functions of64

equivalent potential temperature and height. Section 5 introduces a two-stream decomposi-65

tion of the convective motions based on the isentropic analysis. The convective circulation66

is partitioned between mean upward and mean downward flows of equal mass transport but67

different thermodynamic properties. These results are contrasted with two other definitions68

of the convective mass transport. It is shown here, that the isentropic analysis leads to sig-69

nificantly lower value of the convective mass transport particularly in the upper troposphere.70
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2. Isentropic streamfunction71

The isentropic averaging technique discussed below will be applied to analyze a simulation72

of radiative-convective equilibrium performed with the System for Atmospheric Modeling73

(SAM), a Cloud Resolving Model developed by Khairoutdinov and Randall (2003). The74

model was integrated on 216 km x 216 km x 28 km domain at 500 m horizontal resolution75

and stretched vertical grid with 64 gridpoints, with periodic boundary conditions in the76

horizontal directions. The lower boundary is an ocean surface at constant temperature of77

301 K, while a sponge layer is applied in the upper 8 km to prevent the reflection of gravity78

waves. The model uses a 5 species single-moment microphysics, an explicit radiative transfer,79

and was integrated for 100 days, with the last 60 days used for the time averaging.80

We introduce the time and horizontal mean isentropic value of a given variable f as:81

〈f〉 (z, θe0) =
1

PLxLy

∫ P

0

∫ Ly

0

∫ Lx

0

f(x, y, z, t)δ(θe0 − θe(x, y, z, t))dx dy dt. (1)

Here, ρ is the mass per unit volume, θe is the equivalent potential temperature, P is the82

time period over which the averaging is performed, and Lx and Ly are the horizontal extent83

of the domain. The integral in eqn. 1 involves a Dirac delta function δ(θe0 − θe(x, y, z, t)),84

which is approximated here by a function that is equal to 1/∆θe between θe − 0.5∆θe and85

θe + 0.5∆θe, and 0 elsewhere. In practice, this amount to sorting the air parcels in terms of86

the equivalent potential temperature and to summing the quantity f at each level in finite θe87

bins. The mean isentropic value, as defined here, is therefore a function of height, time and88

equivalent potential temperature. In addition, for simplicity of notation, the dependency on89

(z, θe) will be not be explicitly indicated from now on, but it should be understood that all90

the mean isentropic values 〈·〉 are function of both z and θe.91

The isentropic mean distribution of 〈ρw〉 in the radiative-convective equilibrium sim-92

ulation is shown in Figure 1a. The solid black line shows the horizontal mean profile of93

equivalent potential temperature θe(z). The quantity 〈ρw〉 is referred to as the isentropic94
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upward mass flux distribution, in units of (kg m−2 s−1K −1), corresponding to an upward95

mass flux per unit of equivalent potential temperature. The quantity 〈ρw〉 δθe corresponds to96

the net upward mass flux of air parcels at level z with an equivalent potential temperature97

between θe and θe + δθe. The mass flux distribution can be used to define an isentropic98

streamfunction as:99

Ψ(z, θe) =

∫ θe

−∞
〈ρw〉 (z, θ′e)dθ′e. (2)

The isentropic streamfunction is shown in Figure 1b. The streamfunction is negative through100

most of the atmosphere, corresponding to an upward entropy transport. The absolute mini-101

mum of the streamfunction is located near the surface and is associated with mixing within102

the sub-cloud layer. The magnitude of the streamfunction decreases sharply above 1km.103

Ascending air parcels originating from the lowest atmospheric layer have high values of θe,104

up to 355 K. The equivalent potential temperature drops rapidly with height indicating105

entrainment of dryer air in the updrafts. Above 4–5 km the streamlines become almost106

vertical, indicating that the role of entrainment is limited above the freezing level, and that107

air parcels approximately conserve their equivalent potential temperature as they rise. As108

adiabatic freezing or sublimation can lead to an increase in the equivalent potential temper-109

ature, the apparent conservation of θe along the streamlines above the freezing level might110

actually be the results of the compensation between freezing and entrainment. Most of the111

detrainment occurs below 11km. The streamfunction changes sign at about 12 km, indicating112

presence of convective overshoots associated with the net weak downward entropy transport113

as low entropy air rises and mixes with higher entropy air from above before subsiding.114

In the upper troposphere, the equivalent potential temperature of subsiding air decreases115

as the parcels move downward because of radiative cooling. The bulk of the downward motion116

is centered around the mean atmospheric state (see Figure 1). At a height of approximately117

4.5 km, there is a sharp drop in the θe of the downward flow, associated with the melting118

of precipitation (melting of ice reduces the θe in the air parcel). The minimum θe value119
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of about 320 K occurs at this level and is associated with an increase in the downward120

mass flux. Below the freezing level, the equivalent potential temperature of subsiding air121

parcels gradually increases as they approach the surface. While radiative cooling is still122

active in these regions, the increase of θe is directly tied to the mixing between subsiding123

environmental air and detraining cloudy air with a higher value of θe.124

3. Isentropic averaging of convective motions125

The isentropic averaging (1) is not limited to upward motion. The same formalism can be126

applied to any variable of interest to obtain a more detailed analysis of the typical properties127

of the air parcels involved in convective motions. The probability density function for a128

parcel with equivalent potential temperature θe at level z can be estimated as129

PDF (z, θe) =
〈ρ〉 (z, θe, t)

ρ(z)
(3)

where ρ(z) is the horizontal mean density. The logarithm of the frequency of occurrence is130

shown on the left panel of Figure 2. The maximum probability is centered around the mean131

profile in the mid troposphere, corresponding to subsiding air parcels already noted in Figure132

1. Interestingly, the upper end of the frequency distribution follows closely a line of constant133

value of θe, which indicates that undiluted air parcels from the boundary layer can be found134

through the entire troposphere, although they are very scarce (with a probability density less135

10−4 K−1) and do not contribute significantly to the total upward mass transport. Similarly,136

the presence of low θe air parcels that extends from the mid tropospheric θe minimum at137

5 km down to the top of the mixed layer can be observed. The presence of a fair number of138

parcels with θe of 330K or less, which is significantly less than the mean profile minimum139

value of about 331K, should also be pointed out. Near the surface, the low tail of the140

equivalent potential temperature distribution is limited to relatively high value of θe. The141
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probability of finding a parcel with θe less than 338 K in the boundary layer is approximately142

0.0004, while the mean profile reaches the same potential temperature at a height of 1000m.143

This indicates that the downdrafts that reach the surface originate mostly from within the144

planetary boundary layer the boundary layer, and not from the mid-tropospheric minimum145

of θe.146

The mean mass flux 〈ρw〉 and the mean isentropic density 〈ρ〉 can be combined to define147

the mean vertical velocity for a parcel at a given value of θe at level z:148

w̃(z, θe) =
〈ρw〉 (z, θe)
〈ρ〉 (z, θe)

(4)

The mean vertical velocity, shown on the right-hand (Figure 2b), exhibits a significant asym-149

metry between fast upward ascent at high θe and very slow subsidence at value of θe corre-150

sponding to the horizontal mean value, and is in good agreement with the conceptual model151

of Bjerkness (1938). The high values of w̃ (up to 40 m s−1) observed in the upper tropo-152

sphere at high θe correspond to a very strong, rare, weakly diluted or undiluted updrafts.153

The abrupt decrease of high w̃ at 12km does not necessarily means that these strong up-154

drafts are blocked at that level. Rather, due to the density averaging in the definition of w̃155

(equation 4), the value of w̃ decreases near the mean profile as fast rising parcels have the156

same potential temperature as a much larger number of slow moving parcels in the environ-157

ment. Analysis of higher moments of the distribution could be used to further investigate158

the overshoot of these strong updrafts above their level of neutral buoyancy. Interestingly,159

while the isentropic analysis did detect strong updraft associated with high value of θe, there160

is little indication of strong downward motion at low value of θe that would correspond to161

strong convective downdrafts.162

The averaging procedure used to define the mean vertical velocity of air parcel at a given163

height and equivalent potential temperature can be applied to any variable. We define the164

7



mass weighted isentropic average for f as165

f̃(z, θe) =
< ρf >

< ρ >
. (5)

This formulation allows us to define the thermodynamic properties of the air parcels as they166

rise or descent in the atmosphere. Figure 3 shows the mean value of the temperature T̃167

(a), specific humidity q̃ (b), condensed water content q̃l + q̃i (c) and buoyancy B̃ (d). The168

temperature decreases with height until its minimum near the tropopause at about 16 km.169

The coldest temperature can be associated with overshoots from the deep convective towers170

at around 15 km. There is a weak inflection line visible in the temperature distribution in171

the angle made by the isotherms (Figure 3a). A similar inflection line is also present in the172

humidity distribution for the same value of z and θe. The inflection marks the separation173

between unsaturated parcels to the left of the line and saturated parcels to the right. In174

fact, as discussed in Stevens (2005); Pauluis et al. (2008), the saturation of air parcels is175

characterized by a discontinuity in the equation of state. This means, for example, that the176

partial derivative177 (
∂T

∂θe

)
p,qT

has a different value depending on whether a parcel is saturated or not. This is confirmed by178

the distribution of q̃l+q̃i (Figure 3c), which shows that the inflection lines in the distributions179

of T̃ and q̃ indeed correspond to appearance of condensate. 1
180

1The quantities T̃ and q̃v are obtained by averaging over both saturated and unsaturated parcels. There-

fore, they need not to exhibit a strict discontinuity in their partial derivative. The fact that one is apparent

in Figure 3 indicates that saturated and unsaturated air parcels can be fairly well separated by their value

of θe at a given level.
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4. Diabatic tendency181

For a system in statistical equilibrium, the continuity equation can be written as182

∂

∂z
〈ρw〉+

∂

∂θe

〈
ρθ̇e

〉
= 0. (6)

The second term on the left-hand side corresponds to mass weighted average of the diabatic183

tendency θ̇e. Equation 6 combined with the definition 2 makes it possible to express the184

diabatic tendency in terms of the vertical derivative of the stream function:185

〈
ρθ̇e

〉
= −∂Ψ

∂z
. (7)

The mass weighted diabatic heating
〈
ρθ̇e

〉
is shown in Figure 4. Large heating rates are186

found near the surface corresponding to the surface latent and sensible heat fluxes. In the187

lower troposphere, a dipole of positive tendency at lower θe and negative tendency at higher188

θe is a result of diffusion of water vapor from moist updrafts to the dryer environment. The189

upper troposphere is dominated by the negative tendencies associated with radiative cooling.190

Parcels along the θe profile (solid black line) experience a net cooling due to radiation in the191

upper troposphere, but by a net heating in the lower troposphere as unsaturated air parcels192

in the environment gain more energy from diffusion of water vapor than they lose from the193

emission of infrared radiation.194

Alternatively, the isentropic mean diabatic tendency can also be expressed as195

˜̇θe =

〈
ρθ̇e

〉
〈ρ〉

,

and is shown in Figure 4b. Large negative values of the diabatic tendency (on the order196

of 1000 K day−1, are associated with the diffusion of water vapor out of cloudy air parcels.197

This contrasts with a much slower rate of increase in θe associated with the moistening of198

dry air, as the water vapor flux is diffused into a much larger mass of environmental air.199
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The equivalent potential temperature in updrafts increases between 4 and 8 km due to the200

freezing of liquid water and condensation of water vapor on ice crystals.201

The distribution of diabatic heating can be used in a simple model to determine the202

entrainment rate in ascending air parcels. Neglecting the effects of radiative cooling, allows203

to approximate the potential temperature tendency in the updrafts by:204

dθe
dt

=
θe − θe
τe

, (8)

where τe corresponds to the time it takes to entrain environmental air into an updraft. This205

time-scale can be estimated based on the isentropic analysis as:206

τe(z, θe) =
θe − θe

˜̇θe
. (9)

The product of the entrainment time-scale and the vertical velocity can then be expressed207

in terms of an entrainment scale-height λe,208

λe(z, θe) =
w̃(θe − θe)

˜̇θe
. (10)

The entrainment rate and scale-height for the radiative-convective equilibrium simulations209

are shown in Figure 4c and 4d.210

Kuang and Bretherton (2006) similarly use equation (8) to assess the effect of entrain-211

ment. However, in their approach, one must first assume a given value of the entrainment212

rate to determine the value of the equivalent potential temperature following an air parcel213

at various height. In contrast, here we use the results from the isentropic analysis to deter-214

mine the mean rate of change of the equivalent potential temperature, which is then used215

to determine effective entrainment rate associated with various parcels. From a geometric216

point of view, the quantity217

w̃
˜̇θe

=
< ρw >

< ρθ̇e >
=

∂Ψ
∂θe

∂Ψ
∂z

.

is the slope of a streamline determined form the isentropic analysis in Figure 1b. The218

entrainment scale height is obtained by normalizing this slope by the distance to the mean219
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profile θe(z). When the streamlines are almost vertical, the entrainment scale height is large,220

and there is little or no entrainment. Conversely, when the streamlines are close to horizontal,221

the entrainment scale height is small, corresponding to strongly entraining plumes. It should222

also be stressed that equation 8 does not account for the effect of freezing, which can lead223

to an increase in the equivalent potential temperature, and the definition of the entrainment224

time-scale and scale-height should not be applied below the freezing point of water.225

These diagnostics for the entrainment shown in Figure 4c and 4d reveal a very large226

amount of mixing within the sub-cloud layer, which is associated with a large number of227

the shallow overturning eddies that do not rise above 1km. The mixing height there can228

be on the order of 500m or less, which corresponds to the model resolution. In contrast, in229

the free troposphere, the distribution of mixing scale height varies from relative short, one230

km or less for parcels founds near the mean profile to value of several kilometers at large231

value of θe typical of the sub-cloud layer. This indicates that updrafts with high values of232

θe indeed correspond to almost undiluted air parcels but are quite scarce, while the bulk of233

the ascending air is associated with weaker but more strongly entraining updrafts.234

5. Mass flux and entrainment from two-stream approx-235

imation236

The isentropic analysis discussed in previous section offers an efficient way to characterize

the thermodynamic properties of convective updrafts and downdrafts. A two stream approx-

imation is introduced here to synthesize this information more succinctly. The convective

overturning is divided into a mean updraft and a mean downdraft based on the convective
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stream function. First, we define the upward and downward mass transports M+ and M−:

M+(z) =

∫ ∞
−∞

< ρw > H(< ρw >)dθe (11)

M−(z) =

∫ ∞
−∞

< ρw > H(− < ρw >)dθe, (12)

where H is a Heaviside step function. Note that if the net mass transport vanishes, mass237

transports in the mean updraft and downdraft cancel each other out in the absence of mean238

vertical motion: M+ + M− = 0. Therefore, the updraft mass transport is given by the239

amplitude of the streamfunction, i.e.240

M+(z) = max
θe

(Ψ)−min
θe

(Ψ). (13)

It is common to analyze the convective circulation in terms of the upward mass transport

in cloudy air columns Mcld and in convective cores Mcor, which are defined respectively as:

Mcld(z) =
1

PLxLy

∫ P

o

∫ Ly

0

∫ Lx

0

w(x, y, z, t)H(qc − ε)dx dy dt (14a)

Mcor(z) =
1

PLxLy

∫ P

o

∫ Ly

0

∫ Lx

0

w(x, y, z, t)H(qc − ε)H(w − 1)dx dy dt, (14b)

where qc is a mass mixing ratio of cloud water, ε = 10−10 (g kg−1) is a small threshold used241

for determining the presence of cloud water, and cores are defined with a threshold on242

vertical velocity: |w| ≥ 1 m s−1. The vertical profile for the mass flux M+ from the two-243

stream approximation is contrasted with Mcld and Mcor in Figure (5)a. The mass flux M+
244

associated with the shallow unsaturated overturning is the largest in the sub-cloud layer.245

The cloud base acts as a lid that reduces the net convective mass flux by more than one half.246

Above the cloud base, the mass flux gradually weakens all the way to a level of approximately247

14km.248

A major difference between the mass fluxes in clouds, convective cores, and that obtained249

from the isentropic analysis lies in the presence of a secondary maximum in the upward mass250

fluxes Mcor and Mcld in the upper troposphere (at about 12km), while the isentropic mass251
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flux shows a monotonic decrease of the mass transport in this region. The difference is252

likely due to the way that the different computation of the mass transport handle oscillatory253

motions associated with gravity waves. The conditional averaging on vertical velocity used254

in the definition of the core mass flux is such that any sufficiently strong gravity wave255

propagating through an anvil clouds will result in a net contribution to Mcor. Similarly,256

if a saturated air parcel overshoots its level of neutral buoyancy and then falls down after257

having lost its condensed water through either re-evaporation or precipitation, it will lead258

to a net contribution to Mcld. In contrast, such oscillatory motions are not associated with259

any net upward isentropic transport 2. The presence of the upper tropospheric maximum in260

both Mcld and Mcor but not in M+ is a result of a rapid vertical oscillations, on time-scales261

corresponding either to the Brunt-Vaisala frequency, or the time-scale of cloud ice conversion262

into falling snow, neither of which is not directly tied with a net energy or entropy transport.263

Additional information on the nature of the overturning circulation can be extracted by

determining the various thermodynamic properties of the flow. For a given variable f , we

define its value in the mean updraft f+ and in the mean downdraft f− as

f+(z) =
1

M+

∫ ∞
−∞

< ρwf > H(< ρw >)dθ′e, (15a)

f−(z) =
1

M−

∫ ∞
−∞

< ρwf > H(− < ρw >)dθ′e. (15b)

The transport of a quantity f by the mean updraft F+
f and by the mean downdraft F−f can

then be written as:

F+
f = M+(f+(z)− f(z)) (16a)

F−f = M−(f−(z)− f(z)) (16b)

Note that in this definition, it is assumed that the upward or downward mass fluxes are264

compensated by a equal but opposite flux occurring at the horizontal mean value f .265

2The vertical velocity field of a gravity wave is out of phase with the equivalent potential temperature

perturbation.
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We first apply these definition to the moist static energy:266

Hm = CpT + gZ + Lvq − Lfqi, (17)

with Cp being heat capacity at constant pressure, T is air temperature, Lv and Lf are,267

respectively, the latent heat of vaporization and fusion, and q and qi are mass mixing ratios268

of water vapor and ice content respectively. The mean updraft H+
m, the mean downdraft269

H−m, and its horizontal mean value Hm are shown in Figure 5b.270

While below 10 km, the mean updraft has a higher moist static energy than the mean271

downdraft, corresponding to an upward energy transport, above 10 km, the moist static272

energy of the rising air H+
m is less than that of the subsiding air H−m. Convection transports273

energy downwards in this region, acting as a reverse heat engine and consuming kinetic274

energy to transport dense, cold air upward and light, warm air downward. This can be275

verified by looking at the mean updraft B+ and mean downdraft B− buoyancies, as shown276

in Figure 5c. The buoyancy in the mean updraft is larger than the buoyancy in the mean277

downdraft between the surface and 10 km, which corresponds to a net generation of kinetic278

energy by the convective motions. The opposite happens above 14 km, where energy is being279

consumed. The definition of moist static energy (equation 17) includes latent heat of fusion,280

thus the presence of falling snow and ice causes a net upward energy flux, which may balance281

in part the downward convective energy transport in the upper troposphere.282

The moist static energy in the mean downdraft is always very close to the horizontal283

mean, which is consistent with the fact that the mean downdraft is in large part associated284

with subsiding air in the unsaturated environment. However, a closer examination indicates285

that the moist static energy in the mean downdraft is slightly higher than the horizontal286

mean value everywhere except near the surface. This can be explained by the fact that a287

mixture between environmental and cloudy air of the same density is more dense than either288

air masses but has a higher moist static energy than the environment (Emanuel 1994). Thus289
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one would expect such mixture to experience stronger downward motion, resulting in H−m290

to be slightly larger than the horizontal mean moist static energy. While the effect here291

is small (with H−m −Hm < 0.5 kJ kg−1), such behavior indicates that the convective energy292

transport cannot be accurately represented by a simple gaussian distribution around a mean293

atmospheric state.294

The two-stream approximation can be used to determine the bulk entrainment and de-

trainment rate associated with the mean updraft. It is assumed that the mass flux in the

mean updraft increases or decreases with height depending on the balance between entrain-

ment and detrainment. At the same time the moist static energy in the updraft is diluted by

the entrainment of environmental air. This means that the mass flux M+ and moist static

energy H+
m in the mean updraft are governed by the following equations:

dM+

dz
= (E −D)M+ (18)

d(M+H+
m)

dz
= EM+Hm −DM+H+

m + LfPice, (19)

where E andD are the fractional entrainment and detrainment rates (per meter) respectively,

Lf is the latent heat of fusion, and Pice is the rate at which ice is removed by precipitation.

If the vertical profiles of M+ and H+
m are known, the above equations can be solved for

entrainment and detrainment rates:

E =
dH+

m

dz

Hm −H+
m

− LfPice

M+
(20)

D = E − 1

M+

dM+

dz
(21)

Note that equation 20 may yield negative value for the entrainment rate if the moist static en-295

ergy in the mean updraft increases with height, which can happen in the upper troposphere.296

This is a limitation of the simplified model (equations 18 and 19) which considers a single297

rising plume to account for all convective motions. As can be seen in Figure 1, the detrain-298

ment in the upper troposphere is associated preferentially with air parcels that have lower299
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values of θe than the mean updraft (and hence a lower moist static energy). Nevertheless,300

the results from this simple model appear reasonable in the lower 8-10km of the atmosphere301

and are shown in Figure 5d. The detrainment rate peaks at the cloud base, decreases with302

height, and is always higher than the entrainment rate, consistent with the mean updraft303

mass flux decreasing with height. The entrainment rate varies from 6x10−4 m−1 right above304

the cloud base about 2x10−4 m−1 at 8km. This indicates that while there is a vigorous305

entrainment in the lower troposphere, the updrafts become gradually less entraining as they306

rise.307

6. Discussion308

In this paper, a new method of analysis for convective motions in high resolution sim-309

ulations has been proposed. This approach relies on conditional averaging of the various310

properties of air parcels in terms of both the height and the equivalent potential tempera-311

ture. This averaging procedure reduces a four dimensional datasets into a two-dimensional312

distribution, and offers a practical way to analyze convective overturning. A conditional313

averaging based on equivalent potential temperature has the advantage of preserving the314

separation between the ascent of warm, moist air and subsidence of colder, dryer air that is315

a fundamental aspect of moist convection. Furthermore, as equivalent potential temperature316

is an adiabatic invariant of the flow, and the conditional averaging can be viewed as filtering317

out fast oscillatory motions such as gravity waves.318

The conditional averaging has been first used here to extract a vertical mass flux, and319

to compute an isentropic stream function. Analysis of the streamfunction identifies the320

convective overturning as a combination of ascents of high energy air parcels and descent321

of air with much lower energy, shows the role of entrainment in reducing the equivalent322

potential temperature of the rising air parcels in the lower troposphere, and indicates the323
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presence of convective overshoot in the tropopause region. There is a strong asymmetry324

between updrafts and downdrafts, with the former occupying a small area but occurring at325

fairly large vertical velocity, and the latter which are associated with slow subsidence over the326

large portion domain (Houze 1993). Very strong updrafts, with vertical velocities reaching327

30 m s−1 corresponding to a rare occurrence of almost undiluted air parcels ascending from328

the boundary layer, were also observed. The scarcity of undulate updraft is in agreement with329

the recent findings of Romps and Kuang (2010). Other important properties of rising and330

subsiding parcels, such as temperature, humidity and buoyancy, can also be systematically331

recovered with the isentropic averaging approach.332

Diabatic tendencies can be computed using the average value for the rate of change of333

the equivalent potential temperature from the continuity equation expressed in the z − θe334

coordinates. This makes it possible to retrieve diabatic tendencies from complex numerical335

simulations without the need for complex diagnostics within a model. When applied to the336

radiative-convective equilibrium simulations, our analysis shows that entrainment reduces337

the equivalent potential temperature in the updrafts (especially in the lower troposphere),338

while detrainment increases the equivalent potential temperature in subsiding air parcels.339

Near the freezing level a slight increase in the equivalent potential temperature of the updrafts340

was also found. This effect can be explained by the freezing of condensed water. Empirical341

entrainment rate can also be determined as a function of both height and the equivalent342

potential temperature. This analysis confirm the presence of significant entrainment in the343

lower troposphere, while the rare occurrence of updrafts with high values of θe correspond344

to air parcels that have experienced little to no entrainment.345

While one of the main motivations for the isentropic averaging is to obtain a statisti-346

cal description of convective motions by separating air parcels in terms of their equivalent347

potential temperature, it is also possible to further synthesize the information in terms of348

a two-stream approximation. This method defines a mean updraft and a mean downdraft349
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based on the isentropic stream function. In doing so, one can describe a convective mass350

transport as well as the mean updrafts and downdrafts properties. Results from the two-351

stream approximation have been compared with standard definitions of the mass transport352

inside clouds and inside convective cores. It is shown that the isentropic analysis leads to353

systematically lower values for the mass transport due to the fact that the isentropic analysis354

filters out gravity waves (as along as these correspond to reversible oscillations of air parcels355

around their level neutral buoyancy), while other averaging techniques tend to include all356

the vertical motions.357

The technique proposed here can be regarded as an equivalent of the analysis of the merid-358

ional circulation in isentropic coordinates (Dutton 1976; Johnson 1989; Held and Schneider359

1999; Pauluis et al. 2008, 2010) applied to the vertical transport by convection. As con-360

vective motions act to continuously stretch and fold isentropic surfaces, their geometry is361

very complex in the convection. The use of the isentropic averaging can be viewed as a use-362

ful mathematical tool to disentangle this complex geometry. The isentropic averaging also363

serves as a quasi-Lagrangian coordinate system that filters out fast reversible oscillations and364

captures the core convective processes associated with high entropy updrafts balanced by365

slow subsidence of of low entropy air. The approach presented here is well suited for analysis366

of simulated convection. In addition to reduction of complex four dimensional datasets into367

more manageable two dimensional distributions, the isentropic analysis offers the possibility368

of recovering the diabatic tendencies without requiring detailed knowledge of the numer-369

ical models. This can be advantageous as one tries to diagnose the convective transport370

in increasingly complex numerical models in which the diabatic tendencies result from an371

array of physical parameterizations, including turbulent closure, microphysics, and radiative372

transfer. In addition, while direct computation of the isentropic stream function requires a373

significant amount of data, it might be possible to approximate it accurately on the basis374

of some statistical approximation, similarly as it can be done using the Statistical Trans-375
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formed Eulerian-Mean circulation to reconstruct the global isentropic circulation (Pauluis376

et al. 2011). Hence, the isentropic stream function could potentially be used as an interme-377

diary diagnostic for comparison between high resolution cloud resolving models and single378

column models.379

Finally, a potential application of the isentropic averaging lies in the reconstruction of380

the transformations that various air parcels undergo as they are being transported within381

the convective systems. In fact, the isentropic averaging can recover not only the convective382

mass transport, but also the various thermodynamic properties. It is thus possible to use383

this information to at least approximate the thermodynamic evolution of air parcels. We384

plan to investigate such technique in an upcoming paper.385
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Fig. 1. Left panel: Upward mass flux distribution 〈ρw〉 in the radiative-convective equi-
librium. Right panel: Isentropic stream function Ψ(z, θe). The solid line shows the mean
profile of equivalent potential temperature θe(z).
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Fig. 2. Left panel: Logarithm of the probability density function for air parcels f =
〈ρ〉 /ρ(z). Right panel: First moment of the vertical velocity w1 = 〈ρw〉 / 〈ρ〉.
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Fig. 3. Upper left panel: First moment of temperature distribution T1. Upper right panel:
First moment of the water vapor distribution q1. Lower left panel: First moment of the con-
densed water distribution ql1. Lower right panel: first moment of the buoyancy distribution
B1. See text for definitions.
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Fig. 4. Upper left panel: Mass weighted diabatic heating
〈
ρθ̇e

〉
. Upper right panel: diabatic

heating tendency ˜̇θe. Lower left panel: Entrainement time-scale from eq. 10. Lower right
panel: entrainment scale height from eq. 9
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Fig. 5. Results from the two-stream diagnostic for the convection. Upper left panel: upward
convective mass flux M+ from the two stream approximation (solid red line), cloud mass
flux ((solid blue line) and mass flux within the convective core (solid black line). Upper right
panel: moist static energy in the updraft H+

m, in the downdraft H−m and horizontal mean
value MSE. Lower left panel: buoyancy in the updraft B+ and in the downdraft B−. Lower
right panel: Entrainment and detrainment rate based on equations (20-21).
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