Instructions: Do the assigned reading and practice problems on your own. Then submit complete written solutions to the five graded problems during the discussion on 10/15/2015. No late homeworks will be accepted.

Reading: Sections 2.8 (Through example 2), 3.1

Practice Problems:

2.8: 3, 11, 13, 15
3.1: 7, 11, 13, 35, 37, 39, 41, 43, 45, 57

Graded Homework problems:

1.) Find the linear approximation at \(a = 0 \) and use it to estimate the requested value

 a.) \(f(x) = (1 + x)^{1/2} \). Estimate \(\sqrt{0.98} \)

 b.) \(f(x) = (x + 81)^{1/4} \). Estimate \((85)^{1/4} \)

 c.) \(f(x) = \frac{(1 - x)^2}{1 + (1 + x)^2} \). Estimate \(\frac{0.99^2}{1+1.01^2} \)

2.) Suppose we wish to estimate \(\sqrt{9.1} \) using a linear approximation of the form \(f(x) = \sqrt{mx + b} \) with \(m \neq 0 \). We would like to know if there is a “best” choice of \(m \) and \(b \) to give the best approximation.

 a.) Which value of \(x \) should you linearize around? (Your answer should depend on \(m \) and \(b \))

 b.) Find the linear approximation around the value in (a). Simplify the answer as much as possible.

 c.) Use your answer from (b) to estimate \(\sqrt{9.1} \). What impact does your choice of \(m \) and \(b \) have on the answer?

3.) Find the absolute minimum and maximum of \(f(x) = \sin(x) - \cos(x) \) on the interval \([0, 2\pi]\).

 a.) Explain why the absolute minimum and maximum of \(f(x) \) would be the same on the interval \((-\infty, \infty)\). What property of sine and cosine are you using?

 b.) Conclude that \(|\sin(x) - \cos(x)| \leq \sqrt{2} \)
4.) Let a rectangle have its lower left corner at the origin and its upper right corner at \((x, 12 - x^2)\) for some value of \(x\) between 1 and 3.

a.) Write a formula for the area of the rectangle as a function of \(x\).

b.) Find the largest and smallest possible area of the rectangle for \(1 \leq x \leq 3\).

5.) Find the absolute minimum and maximum of

\[
f(x) = \frac{1}{1 + |x|} + \frac{1}{1 + |x - 2|}
\]

on the interval \([-1, 3]\). (Hint: Break the interval \([-1, 3]\) into three appropriately chosen smaller intervals and find the absolute min/max on each of these intervals).