Instructions: Do the assigned reading and practice problems on your own. Then submit complete written solutions to the five graded problems during the discussion on 10/22/2015. No late homeworks will be accepted.

Reading: Sections 3.2, 3.3

Practice Problems:

3.2: 3, 9, 17, 19, 23, 25, 27, 29
3.3: 1, 3, 5, 13, 15, 21, 27, 29

Graded Homework problems:

1.) Show that the following functions have the number of roots specified
 a.) Show \(f(x) = \sin(x) - \cos(x) - 3x \) has exactly 1 root.
 b.) Show \(f(x) = x^5 + 2x^3 + 4x - 10 \) has exactly 1 root.
 c.) Show \(f(x) = x^4 + 6x^2 - 5 \) has exactly 2 roots.

2.) Section 3.2 Problem 34

3.) Let \(f'(x) = c \) for some constant \(c \) for all \(x \) on an interval \((a, b)\). Use the Mean Value Theorem to prove that \(f(x) = cx + d \) on the interval \((a, b)\).

4.) Let
 \[f(x) = x^3 - 3a^2x + a^3 \]
 where \(a \) is some positive constant.
 a.) Find \(f(0), f(-2a), f(a), f(2a) \). Then argue that the function has 3 roots.
 b.) Find the intervals where \(f(x) \) is increasing and the intervals where \(f(x) \) is decreasing. Your answer will depend on \(a \). (Hint: Treat \(a \) as a constant when you differentiate. For instance, the derivative of \(-3a^2x\) is \(-3a^2\).)
 c.) Find the intervals where \(f(x) \) is concave up and where it is concave down.
 d.) Sketch a qualitatively accurate picture of the graph.
5.) a.) Let $a > 0$ and define

$$f(x) = \frac{a + x}{2\sqrt{ax}}, \ x > 0$$

Find the interval(s) for $x > 0$ where $f(x)$ is increasing and where $f(x)$ is decreasing. Your answer will be in terms of a.

b.) Where does the minimum occur, and what is its value? How do you know this is an absolute (and not just a local) minimum for $x > 0$?

c.) Use your answers from (a) and (b) to prove that if a and b are both positive then $\sqrt{ab} \leq \frac{a+b}{2}$.