February 10, 2016

1. Show that the covariant derivative can be expressed in terms of parallel transport in the following sense.

Let $\gamma : [0,1] \to M$ be a smooth curve in M and let $p_t : T_{\gamma(0)}M \to T_{\gamma(t)}M$ be the parallel transport maps along γ . Show that if $X \in \mathbf{V}(\gamma)$, then

$$D_t X(0) = \frac{d}{dt} p_t^{-1}(X(t)).$$

(It may help to construct a frame of parallel vector fields on γ .)

2. In class, we used the fact that the curvature tensor can be expressed in terms of parallel transport. That is, we claimed that if $q \in M$ and if $\alpha : \mathbb{R}^2 \to M$ is a smooth map such that $\frac{\partial \alpha}{\partial u_1} = X$, $\frac{\partial \alpha}{\partial u_2} = Y$, then for all $Z \in T_q M$, we have

$$R(X,Y)Z = \lim_{s \to 0} \frac{Z - p_{\gamma_s}(Z)}{s^2},$$

where $\gamma_s: [0,4] \to M$ is the image under α of the boundary of an $s \times s$ square, i.e.,

$$\gamma_s(t) = \begin{cases} \alpha(st,0) & t \in [0,1] \\ \alpha(s,s(t-1)) & t \in [1,2] \\ \alpha(s(3-t),s) & t \in [2,3] \\ \alpha(0,s(4-t)) & t \in [3,4]. \end{cases}$$

Prove this fact.

(Hint: Construct a frame of vector fields $V_1, \ldots, V_m \in \mathbf{V}(\alpha)$ such that $\nabla_X V_i = 0$ and $\nabla_Y V_i(u_1, 0) = 0$. Any vector field W along γ_s can be expressed as a linear combination of the V_i — when is W parallel?)

- 3. Suppose M is a homogeneous Riemannian manifold, that is, that for any $x, y \in M$, there is an isometry of M that sends x to y. Show that M is geodesically complete.
- 4. Suppose that $f: M \to \mathbb{R}$ is a function such that $\| \operatorname{grad} f \| = 1$ everywhere. Prove that if γ is an integral curve of grad f (i.e., $\gamma'(t) = \operatorname{grad} f(\gamma(t))$), then γ is a geodesic.
- 5. Suppose that M is a compact Riemannian manifold.
 - (a) Prove that there is an $\epsilon > 0$ such that every closed curve of length $< \epsilon$ is null-homotopic.
 - (b) Suppose that $\gamma: S^1 \to M$ is a closed curve. Prove that there is a piecewise-smooth curve γ' that is homotopic to γ and such that $\ell(\gamma') \leq \ell(\gamma)$.
 - (c) If $\gamma : S^1 \to M$ is a closed curve, the free homotopy class of γ is the set of curves that are homotopic to γ . Show that this set has a minimal-length element and that this element is a closed geodesic.