Problem Set 2 (due Mar. 2)

February 17, 2016

1. Suppose that $f: M \rightarrow \mathbb{R}$ is a smooth function and that $p \in M$ is a critical point of f. If $V, W \in T_{p} M$, let $\alpha:(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \rightarrow M$ be a smooth map such that $\alpha(0,0)=p, \frac{\partial \alpha}{\partial u_{1}}=V$, and $\frac{\partial \alpha}{\partial u_{2}}=W$. Define

$$
H(f)(V, W)=\frac{\partial^{2}}{\partial u_{1} \partial u_{2}} f\left(\alpha\left(u_{1}, u_{2}\right)\right) .
$$

Prove that $H(f)$ is a well-defined symmetric bilinear form. What if p is not a critical point of f ?
2. Let M be a connected, not necessarily complete, Riemannian manifold and let $p \in M$. Show that if $f, g: M \rightarrow M$ are isometries such that $f(p)=g(p)$ and $f_{*}=g_{*}$ at p, then $f=g$.
3. Suppose that M is a two-dimensional Riemannian manifold with curvature tensor R.
(a) Use the symmetries of the curvature tensor to show that if $p \in M, V, W \in T_{p} M$, then

$$
K=\frac{\langle R(V, W) W, V\rangle}{\|V\|^{2}\|W\|^{2}-2\langle V, W\rangle^{2}}
$$

is independent of V and W.
(b) Prove that if K is as above, then

$$
R(X, Y) Z=K(\langle Y, Z\rangle X-\langle X, Z\rangle Y)
$$

for all $X, Y, Z \in T_{p} M$.
4. Let $a<b$ and let $M \subset \mathbb{R}^{3}$ be the surface of revolution obtained by rotating the curve

$$
(x-b)^{2}+z^{2}=a^{2}, y=0
$$

around the z-axis (a torus with major radius b, minor radius a).
Show that the "equator" $\gamma(t)=((a+b) \cos t,(a+b) \sin t, 0)$ is a geodesic. When ϵ is small, describe the geodesics that intersect γ at angle ϵ.

