
NOTES ON QUANTITATIVE RECTIFIABILITY AND DIFFERENTIABILITY

ROBERT YOUNG

Differentiability measures how well a function can be approximated by affine
functions. Rectifiability likewise measures how well a set can be approximated
by planes. But both of these notions operate at infinitesimal scales; they deal
with the properties of limits. In these notes, we will study quantitative versions
of these notions that operate at local scales; scales that are small but bounded
away from zero. How well can a function or a set be approximated by affine
functions or sets at local scales? How often can an function or set fail to be ap-
proximated by an affine function or set? How can we use questions like these to
study the geometry and analysis of sets and functions?

Tentative outline:

• Coarse differentiation of curves
• From curves to spaces: Rademacher’s theorem
• Pansu’s theorem and embeddings
• Rectifiability and the Jones Traveling Salesman Problem
• Uniform rectifiability
• Surfaces in Rn

1. COARSE DIFFERENTIATION OF CURVES

Let’s start with the simplest case: What can we say about the local or infini-
tesimal structure of maps f : R→ X ?

Clearly, we need some conditions on f and X . For example, we take f to be
Lipschitz, absolutely continuous, or bounded variation, and we can take X to be
a Hilbert space, a Banach space, or a metric space.

From analysis, we know that

Theorem 1.1. If f : R→ R is absolutely continuous map, then f is differentiable
almost everywhere. That is, for almost every x ∈R, there is an f ′(x) ∈ X such that

lim
h→0

f (x +h)− f (x)

h
= f ′(x).

In particular, if f is Lipschitz, f is differentiable almost everywhere. But this
is an infinitesimal result – what about local? What’s the largest segment we can
expect to find where f is ε–close to affine?

Let’s start with a coarse differentiation theorem due to Eskin, Fisher, and Whyte.
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Definition 1.2. Let X be a metric space and let f : R→ X . Let I = [a,b] be an
interval of length L, let ε= 1

n for some n ∈N. We say that f is ε–efficient on I if

n−1∑
i=0

dX ( f (a + (i +1)
L

n
), f (a + i

L

n
))| ≤ dX ( f (b), f (a))+εL.

If X =R, this is also known as ε–monotone – the inequality implies that graph
can’t backtrack by more than about ε

Then the following lemma is simple:

Lemma 1.3. Let f : [0,1] → X be 1–Lipschitz (bounded variation also works) and

let ε> 0. There is an interval I ⊂ [0,1] of length L > ε 1
ε such that f is ε–efficient on

I .

Proof. Let

`k =
ε−k∑
i=0

d( f (iεk ), f ((i +1)εk )|.

By the Lipschitz property, `k ≤ 1. If there is no ε–efficient interval, then `k+1 >
`k + ε and, by induction, `k ≥ εk. This is a contradiction when k > ε−1, so f is
ε–efficient on some interval of length at most εε

−1
. �

This illustrates a basic principle: If we can break down some finite geometric
quantity (in this case, length) into contributions from many different intervals,
then there must be intervals that contribute less than ε. We can then prove the-
orems by showing that those intervals are geometrically or analytically nice in
some way.

Ideally, the quantity should be coercive: intervals on which the quantity is zero
should lie in some nice class, and intervals on which the quantity is ε should be
close to that class. In a general metric space, we don’t have that; it’s easy to
construct metric spaces that have ε–efficient curves that are far from 0–efficient
(length-minimizing) curves. But if X is more specific, things are easier.

For example, a Lipschitz function to Rk is coarsely differentiable. For ε > 0,
we say that f is ε–coarsely differentiable on I if there is an affine function such
that | f (t )−λ(t )| ≤ ε`(I ) for every t ∈ I .

Proposition 1.4. Let f : [0,1] → R be 1–Lipschitz, ε > 0. There is an interval I ⊂
[0,1] such that f is ε–coarsely differentiable on I .

Proof. Consider the graph g : [0,1] → R2, g (t ) = (t , f (t )). This is Lipschitz, so for
any δ > 0, there is an interval I on which g is δ–efficient. By the Pythagorean
Theorem, g (I ) is in the ∼ p

δ`(I )–neighborhood of a line segment L ∈ R2, say
L = {(t ,λ(t )}, where λ(t ) = mt +b. Since f was 1–Lipschitz, we can take |m| ≤ 1.
Then d((x, y),L) ≈ |y −λ(x)|, so for t ∈ I , we have

| f (t )−λ(t )| ≈ d((t , f (t )),L).
p
δ`(I ).

�
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It follows directly that the same is true for maps to Rk .
In fact, intervals like this are abundant: the notions of ε–efficient, ε–coarse

differentiable are scale-invariant, so both of these results apply to a Lipschitz
function on any interval. So any subinterval of [0,1] contains a smaller interval
(not too small) on which f is ε–efficient or ε–coarse differentiable. And we can
do better:

Definition 1.5. Let D ⊂ R×R+. Let Dr = {x | (x,r ) ∈ D}. We say that D is a
(C -)Carleson set if there is a C > 0 such that for every interval I ⊂ R of length
L,

(1)
∫ L

0
|Dr ∩ I | dr

r
=

∫ logL

−∞
|De t ∩ I |dt ≤C L,

where |Dr ∩ I | is the Lebesgue measure of Dr ∩ I .

Thus, for example, for almost every point x, the set of t > 0 such that (x,e−t ) ∈
S has finite measure, and on average, it has measure at most C . Roughly, “most”
x’s and “most” t ’s are not in S.

Some quick examples and properties that are easy to check:

(1) For 0 < a < b, the set R× [a,b] is Carleson
(2) For any p ∈ R, the set T = {(x,r ) | |x −p| < r } is Carleson. That is, there

can be points such that (x,e−t ) ∈ T for many different t , but there can’t
be too many: I ×R+ is not Carleson.

(3) The union of finitely many Carleson sets is Carleson.

Basic principle: if you find a good coercive quantity, it should be small away
from a Carleson set.

Theorem 1.6. Let f : R→ X be 1–Lipschitz, ε> 0 and let Sε ⊂R×R+ be the set

Sε = {(x,r ) | f is not ε–efficient on [x − r

2
, x + r

2
]}.

Then Sε is Carleson.

Proof. By symmetry, it suffices to check the Carleson condition for the interval
[0,1].

As before, let

`k =
ε−k∑
i=0

d( f (iεk ), f ((i +1)εk )|.
Then

`k+1 ≥ `k +εk+1
∑

i
1Sε((i + 1

2
)εk ,εk ),

so we have a sort of coarse Carleson condition:
∞∑

k=0

∑
i
εk+11Sε((i + 1

2
)εk ,εk ) ≤ 1.

The same thing holds under translation:
∞∑

k=0

∑
i
εk+11Sε(t + (i + 1

2
)εk ,εk ) ≤ 1,
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and if we integrate with respect to t ,∫ 1

−1

∞∑
k=0

∑
i
εk+11Sε(t + (i + 1

2
)εk ,εk )

=
∞∑

k=0

∑
i

∫ 1

−1
εk+11Sε(t + (i + 1

2
)εk ,εk ) ≤ 2.

Let Sε,r = {x | (x,r ) ∈ Sε}. Then for any x0 ∈ [0,1],∫ 1

−1
1Sε(t +x0,εk )dt = |Sε,εk ∩ [x0 −1, x0 +1]| ≥ |Sε,εk ∩ [0,1]|.

Then

2 ≥
∞∑

k=0

∑
i
εk+1|Sε,εk ∩ [0,1]|

≥
∞∑

k=0
ε|Sε,εk ∩ [0,1]|.

And the same thing holds under rescaling: for any r > 0,

∞∑
k=0

ε|Sε,r εk ∩ [0,r ]| ≤ 2ε−1r

Therefore, ∫ 1

0
|Sε,r ∩ [0,1]| dr

r
=

∞∑
k=1

∫ εk−1

εk
|Sε,r ∩ [0,1]| dr

r

≤
∫ ε−1

1

∞∑
k=0

|Sε,r εk ∩ [0,r ]| dr

r

≤
∫ ε−1

1
2ε−1r

dr

r

≤ 2ε−2r.

�

Likewise, if X = R, then we can replace ε–efficient with ε–coarsely differen-
tiable:

Corollary 1.7. Let f : R→ R be 1–Lipschitz, ε> 0 and let Dε ⊂ [0,1]× (0,1] be the
set

Dε = {(x,r ) | f is not ε–coarsely differentiable on [x − r

2
, x + r

2
]}.

Then Dε is Carleson.

We will take this a little further later on, but this is enough to start with. (Note,
for instance, that this isn’t quite enough to imply Rademacher’s theorem: this
implies that for almost every x, there is an affine λ and a sequence of radii rk

such that
‖ f −λ‖L∞([x−rk ,x+rk ])

rk
→ 0, but λ need not be unique.)
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2. FROM CURVES TO SURFACES

Let f : Rk → R be a Lipschitz function. Again, Rademacher’s theorem implies
that f is differentiable almost everywhere. What about coarse differentiability?

We can generalize the notion of a Carleson set:

Definition 2.1. Let D ⊂ Rk ×R+. Let Dr = {x | (x,r ) ∈ D}. We say that D is a
(C –)Carleson set if there is a C > 0 such that for every ball B ⊂R of radius r ,

(2)
∫ L

0
|Dr ∩B | dr

r
≤C |B |.

It follows from our work on curves that:

Corollary 2.2. Let v ∈Rk be a unit vector. Let

Dε,v = {(x,r ) | f is not ε–coarsely differentiable on the line segment [x − r

2
v, x + r

2
v].

Then Dε,v is Carleson.

So the density of the slices of Dε,v is going down. Let B1 be the unit ball. For
any δ> 0, there is an r > 0 and a ball Br (x) of radius r with x ∈ B1 such that∣∣Br (x)∩ (Dε,v )4r

∣∣
|Br (x)| ≤ δ.

That is, f is ε–coarsely differentiable on the line segment [u−2r v,u+2r v] for all
but a δ–fraction of u ∈ Br (x).

But, by the Lipschitz condition, if δ is small enough, then f is 2ε–coarsely
differentiable on every line segment [x −2r v, x +2r v], x ∈ Br (x). In fact,

Corollary 2.3. Let v1, vn ∈ Rk be unit vectors and let ε > 0. Then there is a ball
B of radius r such that f is ε–coarsely differentiable on every line segment [p −
2r vi , p +2r vi ], p ∈ B. In fact, the set of (x,r ) such that B(x,r ) has this property is
Carleson.

We wanted coarse differentiability on the ball, not just these line segments,
but that’s easy to get.

Theorem 2.4 (Coarse Rademacher’s Theorem). Let ε > 0. The set of (x,r ) such
that f is not ε–coarsely differentiable on B(x,r ) is Carleson.

Let’s give two proofs. First, a proof by compactness.

Proof by compactness. 1

First, an exercise:

1Proof by a compactness argument is fun: it avoids a lot of bookkeeping, but loses constants.
We started by getting explicit bounds on the scale of the largest interval on which a curve is
ε–efficient/coarsely-differentiable, but when we use a compactness argument, we throw those
bounds out the window: the best we can say is that for any ε, there’s some r (ε) > 0 such that any
1–Lipschitz function is ε–coarsely differentiable on some ball of radius at least r (ε).
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Exercise 1. Let v1, . . . , vk+1 ∈ Rk be unit vectors in general position and let B1 be
the unit ball. There is an r > 0 such that if f |Br is linear on each line parallel to
one of the vi , then f |B1 is linear. (In fact, one can take r = 1.)

To prove the theorem, it suffices to show that there is a δ> 0 such that if f is
δ–coarsely differentiable on every line segment [p −2r vi , p +2r vi ], p ∈ B1, then
f is ε–coarsely differentiable on B1.

Suppose not. Then there is a sequence of 1–Lipschitz functions fi such that
fi (0) = 0 and fi is 1

i –coarsely differentiable on each line segment but not ε–
coarsely differentiable on B1. By passing to a subsequence, there is a uniform
limit f = lim fi which is linear on each line segment but not ε

2 –coarsely differen-
tiable. By the exercise, f is linear, which is a contradiction. �

Alternatively:

Alternative proof. 2 Let e1, . . . ,ek ∈ Rk be the standard basis. Let 0 < δ < 1
100 and

let B = B(x,r ) be a ball such that f is δ2–coarsely differentiable on every line
segment [p −2r ei , p +2r ei ], p ∈ B . Let B ′ = B(x,δr ). For any p ∈ B ′, there are
coarse partial derivatives ∂ j (p), j = 1, . . . ,k such that

| f (p + te j )− f (p)−∂ j (p)t | ≤ 8δ2r

for all |t | < 2r . Furthermore,

|∂ j (p)− f (p +2r e j )− f (p −2r e j )

4r
| ≤ 2δ2.

But ‖p −x‖ ≤ δr , so

|∂ j (p)−∂ j (x)| ≤ 4δ2 + δ

2
≤ δ.

Let v = (∂1(x), . . . ,∂k (x) and let

λ(q) = f (x)+~v · (q −x)

This is affine, and one can verify that for any q ∈ B ′,

| f (q)−λ(q)|. δ2kr.

So, there is a C > 0 such that if f is δ2–coarsely differentiable on every axis-
parallel line segment in B(x,r ), then f is Cδk–coarsely differentiable on B(x,δr ).
Since the first condition is satisfied away from a Carleson set, so is the sec-
ond. �

Exercise 2. There’s a remarkable theorem of Kirchheim which generalizes Rademacher’s
Theorem to maps from Rn to a metric space:

2This proof is a sort of quantitative adaptation of the following argument. In the infinitesimal
context, we know that the partial derivative of a Lipschitz function exists in any direction, and
the partial derivative function is L∞. By the Density Theorem, for almost every point, the partial
derivatives are almost continuous on sufficiently small balls around that point, and a function
with continuous partials is differentiable. The details of the translation are left as an exercise for
the reader.



NOTES ON QUANTITATIVE RECTIFIABILITY AND DIFFERENTIABILITY 7

Theorem 2.5 (Kirchheim). Let f : Rn → X be a Lipschitz map. For almost every
x ∈ Rn , f is metrically differentiable at x. That is, there is a seminorm md( f )x

such that

d( f (y), f (z)) = md( f )x (y, z)+o(max{|x − y |, |x − z|}).

(1) State and prove a coarse version of this theorem for n = 1.
(2) Try using coarse methods to prove a coarse version of this theorem.

3. APPLICATION: EMBEDDINGS OF THE HEISENBERG GROUP

I originally got interested in differentiation in metric spaces because of geo-
metric group theory. For an introduction to geometric group theory, look else-
where (Löh, Druţu–Kapovich, Bowditch, etc.), but here’s one result.

The integer Heisenberg groupH is the group of matrices

H=


1 x z
0 1 y
0 0 1

 : x, y, z ∈Z


under multiplication. This can be given the presentation 〈X ,Y , Z | [X ,Y ] = Z , [X , Z ] =
[Y , Z ] = 1〉. The Cayley graph of a group G (with respect to a generating set S) is
the graph ΓG whose vertices correspond to group elements such that two ver-
tices g1 and g2 are connected by an edge if there is an s ∈ S such that g2 = g1s±1.
G acts on itself by left multiplication; this action extends to a left action on ΓG .
The restriction of the path metric on ΓG to the vertex set, written dw , is called
the word metric on G (with respect to S), because

dw (e, g ) = min{k : g = s±1
1 . . . s±1

k where s1, . . . , sk ∈ S}.

That is, dw (e, g ) is the length of the shortest way to represent g as a product of
generators.

The Cayley graph looks like this:
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Here, the matrix

1 x z
0 1 y
0 0 1

 corresponds to the point (x, y, z), so the graph struc-

ture reflects the rules of matrix multiplication.
What does the metric look like? The key fact is that dw (I , Z n2

) ≈ n, because
X nY n X −nY −n = Z n2

. (The phrase in geometric group theory is that the sub-
group generated by Z is quadratically distorted.) It’s not hard to show:

Lemma 3.1. d(I , (x, y, z)) ≈ max{|x|, |y |,p|z|}.

This is called the ball-box inequality because it says that the ball of radius
r around the origin is shaped similarly to a box with dimensions r × r × r 2. In
particular, for r > 1, |Br | ≈ r 4.

Geometric group theory studies the geometry of spaces like this. A natural
question about a metric space is: can we draw this in a way that reflects the
geometry better? Can we embed this in Rn by an isometry? By a bilipschitz
embedding? By something weaker?

Theorem 3.2 (Pansu,Semmes). There is no bilipschitz embedding from H to Rn

for any n.

Key idea: Let f : H→ Rn . Consider the cosets of 〈X 〉 (red lines in the figure).
These partitionH into a family of horizontal lines. The restriction of f to each of
these lines satisfies the coarse differentiation theorem. Likewise, the restriction
to cosets of 〈Y 〉 (blue lines) satisfies the coarse differentiation theorem. So there
is a large ball B of radius r such that f is coarsely differentiable on 99% of the red
and blue intervals of length r with center in B . This implies strong restrictions
on f .

Proof. Consider a 1–Lipschitz map f : H→Rn . For any g ∈H, let γg (t ) = f (g X t ).
Then

‖γg (s)−γg (t )‖ = ‖ f (g X s)− f (g X t )‖ ≤ dw (g X t , g X s) = |s − t |,
so γg is a 1–Lipschitz map from Z→ Rn . We can extend by linear interpolation
to get a Lipschitz map γg : R→R.

By our previous results, for any ε > 0, the set of (t ,r ) such that γg is ε–coarse
differentiable on [t − r, t + r ] is Carleson. In fact:

Lemma 3.3. Let ε> 0 and let

Sε = {(g ,r ) ∈H×Z : γg is not ε–coarse differentiable on [−r,r ]}

Then Sε is Carleson in the sense that there is a C > 0 such that for any h ∈H and
any R > 1,

R∑
r=1

r−1
∣∣{(g ,r ) ∈ Sε : g ∈ BR (h)}

∣∣≤C |BR (h)| ≈C R4.

Proof. Let L1, . . . ,Lk be the cosets of 〈X 〉 that intersect BR (h). By the ball-box
inequality, k ≈ R3. Let g1, . . . , gk ∈ BR (h) be representatives of the Li . By the
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coarse differentiation theorem, there is a C0 such that

|{(g ,r ) ∈ Sε : g ∈ Li ∩BR (h)}| ≤ |{(t ,r ) : γgi not ε–CD on [t − r, t + r ]}|
R∑

r=1
r−1|{(g ,r ) ∈ Sε : g ∈ Li ∩BR (h)}| ≤C0R

R∑
r=1

r−1|{(g ,r ) ∈ Sε : g ∈ BR (h)}| ≤C0kR .R4.

�

Let δ> 0 and let R = 2m where m > 400Cδ−1. Then there is an m
2 ≤ s ≤ m such

that
2s+1∑
r=2s

r−1
∣∣{(g ,r ) ∈ Sε : g ∈ BR (h)}

∣∣≤ C |BR (h)|
200Cδ−1 = δ|BR (h)|

100
.

If 2s ≤ r ≤ 2s+1, then r ≈ 2s , so

2−s
2s+1∑
r=2s

∣∣{(g ,r ) ∈ Sε : g ∈ BR (h)}
∣∣≤ δ|BR (h)|

100
,

so there is an 2s ≤ r0 ≤ 2s+1 such that∣∣{(g ,r0) ∈ Sε : g ∈ BR (h)}
∣∣≤ δ|BR (h)|

100
.

By a covering argument, there is an h0 such that∣∣{(g ,r0) ∈ Sε : g ∈ Br0 (h0)}
∣∣. δ|Br0 (h0)|.

Ifδ is sufficiently small, then f is 2ε–coarsely differentiable on every line through
B = Br0 (h0). For g ∈ B , define

∂X (g ) = coarse derivative of γg |[−r,r ].

Likewise, define ∂Y (g ) in a similar fashion using the cosets of 〈Y 〉.
Translate so that h0 = 0. Let t = p

εr0. (We just need εr0 ¿ t ¿ r0.) Then
Z t 2 = X t Y t X −t Y −t . So

f (Z t 2
)− f (0)

t
= t∂X (0)+ t∂Y (X t )− t∂X (X t Y t )− t∂Y (X t Y t X −t )+O(εr0)

t
= ∂X (0)−∂X (X t Y t )+∂Y (X t )−∂Y (X t Y t X −t )+O(

p
ε).

The endpoints of the line segments of length 2r0 through 0 and X t Y t are sepa-
rated by ≈ t +p

tr0, so

|∂X (0)−∂X (X t Y t )|. t +p
tr0 +εr0

r0
. 4

p
ε.

Likewise,
|∂Y (X t )−∂X (X t Y t X −t )|. 4

p
ε,

so
f (Z t 2

)− f (0)

t
=O( 4

p
ε+p

ε) =O( 4
p
ε).

Therefore, f is not bilipschitz. �
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Exercise 3. Why can’t we prove the theorem using the coarse differentiation the-
orem for the restriction of f to vertical line segments?

Note that quantitative differentiation is crucial here: since the γg ’s are con-
structed to be piecewise linear, they are automatically differentiable almost ev-
erywhere. The fact that we use is not that they are linear on small intervals, it’s
that they are linear on large intervals.

Exercise 4. Prove a similar result for maps Z2 →H.

Pansu originally proved this using a differentiability result for Lipschitz maps
between sub-Riemannian manifolds, which we’ll sketch briefly. It’s natural to
consider a scaling limit of the Heisenberg group. For t ∈ Z, t > 1, the map
δt (x, y, z) = (t x, t y, t 2z) is a group automorphism that roughly scales the met-
ric by t , i.e., dw (δt (g ),δt (h)) ≈ t . In fact, we can define a metric

dCC (g ,h) = lim
t→∞

dw (δt (g ),δt (h))

t
.

This extends naturally to the rational Heisenberg group and by continuity to the
real Heisenberg groupHR, with the property that

dCC (δt (g ),δt (h)) = tdCC (g ,h).

In particular, dCC (0, Z t ) = dCC (0, (0,0, t )) = 4
p|t | for all t .

Let f : (H,dW ) → Rn be 1–Lipschitz. By the Arzela-Ascoli theorem, there is a
sequence t1, t2, . . . such that

f∞(x, y, z) = lim
i→∞

f (δti (x, y, z))

ti

converges to a 1–Lipschitz map from (HR,dCC ) → Rn . Pansu showed that any
such map is Pansu differentiable almost everywhere. That is, for almost every
p ∈HR, there is a differential α : HR→Rn such that α is a homomorphism and

lim
q→p

‖ f∞(q)− f∞(p)−α(p−1q)‖
dCC (p, q)

= 0.

Any homomorphism from HR to Rn must send Z to 0, so f∞ is not bilipschitz; it
follows that f is not bilipschitz either.

This is closely related to the following open question: Suppose G and H are
connected, simply-connected nilpotent Lie groups equipped with a left-invariant
Riemannian metric and suppose that G and H are bilipschitz equivalent. Are
G and H necessarily isomorphic? Pansu’s theorem implies that G and H must
have the same scaling limit, but many different groups can have the same scal-
ing limit.

4. RECTIFIABILITY AND THE ANALYST’S TRAVELING SALESMAN PROBLEM

Let’s switch gears from functions to sets.
A classic problem in computer science is the Traveling Salesman Problem:

given a finite set of points (in the plane, in a metric space), what’s the shortest
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path that goes through every point. Jones generalized this to infinite sets; the
Analyst’s Traveling Salesman Problem asks:

Let K ⊂Rn be a bounded set of points. Is there a Lipschitz curve
γ : [0,1] →Rn such that S ⊂ γ([0,1])?

Jones proved a beautiful criterion for answering this question based on how
closely K can be approximated by lines. For any axis-aligned cube Q, let l (Q)
be its side length. Let ω(Q) be the smallest radius of a cylinder (or line) that
contains Q ∩K . Let SQ be the center line of that cylinder. Define

βK (Q) = ω(Q)

l (Q)
.

This is scale-invariant and bounded, i.e., 0 ≤βK (Q) ≤p
n.

A dyadic interval in R is an interval of the form [a2−k , (a + 1)2−k ] for some
a,k ∈Z. A dyadic cube in Rn is a cube formed by taking the product of n dyadic
intervals of the same length. Let D be the set of dyadic cubes in Rn and let Dk be
the set of dyadic cubes of length 2−k ; the cubes in Dk tile Rn .

For any cube Q and any r > 0, let rQ be the concentric cube of side length
r l (Q).

Theorem 4.1 (Jones, Okikiolu). If Γ⊂Rn is a connected set, then

(3)
∑
D

βΓ(3Q)2l (Q).H 1(Γ).

Conversely, if K ⊂ Rn and
∑

D βK (3Q)2l (Q) < ∞, then there is a connected set Γ
such that K ⊂ Γ and

(4) H 1(Γ). diam(K )+∑
D

βK (3Q)2l (Q) <∞.

Jones [Jon90] originally proved this theorem in R2 using complex analysis; his
proof of (3) is based on the following lemma:

Lemma 4.2. There is a C > 0 with the following property. Let S ⊂C be a bounded
simply-connected open set. Then S can be decomposed (up to measure-zero sets)
as a disjoint union S = ⋃

Si such that each Si is a Lipschitz domain (a rescal-
ing and translation of a set of the form {r e iθ | r < f (θ)} where f is a C –Lipschitz
function and f (θ) ∈ [C−1,C ] for all θ) and∑

H 1(∂Si ).H 1(∂S).

The proof is based on careful estimates of the derivatives of a conformal map
F : D2 → S; the pieces of the decomposition are the images of dyadic squares
and unions of dyadic squares. Given a bounded connected set Γ of diameter D ,
Jones adds a circle of radius 2D and a line segment to obtain a connected set
Γ′ such that C\Γ′ consists of some simply-connected bounded connected com-
ponents and a single unbounded component. By applying the lemma to each
bounded connected component, Jones obtains a union of Lipschitz domains
whose boundaries contain Γ; the bound on Γ follows from a bound on the Lips-
chitz domains.
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Jones’s proof of (4) was also originally stated in R2, but it holds for subsets
of Rn as well (and a variation holds in Hilbert space [Sch07]). Okikiolu [Oki92]
generalized (3) to subsets of Rn .

Before we sketch these proofs, it’s instructive to try some simple examples:

• K is a line segment: Then βK = 0 for any cube; the left side of (3) is 0 and
the right side of (4) is diam(K ).

• K is an L–shaped curve of length 1. There are a few cases for βK (3Q). If
3Q doesn’t contain the corner, then βK (3Q) = 0. If l (Q) ≥ 1, thenω(3Q) ≤
1, so βK (3Q) ≤ l (Q)−1. If Q contains the corner, then the corner is in the
middle of 3Q, so βK (3Q) > ε.

There are at most Cn cubes in Dk such that 3Q contains the corner;
the rest of the cubes can be ignored. If k ≤ 0, then these each contribute
at most βK (3Q)2l (Q) ≈ (l (Q)−1)2l (Q) = 2k to the sum.

If k > 0, then the cubes in Dk each contribute at most βK (3Q)2l (Q) ≤
(3
p

n)2l (Q). 2−k . At least one of the cubes contains the corner, so the
total contribution satisfies

ε22−k ≤ ∑
Q∈Dk

βK (3Q)2l (Q). 2−k ,

i.e.,
∑

Q∈Dk
βK (3Q)2l (Q) ≈ 2−k .

Therefore,∑
Q∈D

βK (3Q)2l (Q) = ∑
k≤0

∑
Q∈Dk

βK (3Q)2l (Q)+∑
k>0

∑
Q∈Dk

βK (3Q)2l (Q).
∑
k≤0

2k+∑
k>0

2−k ≈ 1.

And the contributions are largest when k is close to 0 and fall off expo-
nentially away from zero.

• K is a zig-zag curve of length 1 made up of segments of length 1
1024 .

Exercise 5. Show that
∑

Q∈Dk
βK (3Q)2l (Q) ≈ 2−|k−10|

• K is two zig-zag curves joined into an L shape.

Exercise 6. Estimate
∑

Q∈Dk
βK (3Q)2l (Q).

• K is the four-corners Cantor set.

Exercise 7. Estimate
∑

Q∈Dk
βK (3Q)2l (Q).

The proof of Theorem 4.1 has two parts. First, we construct Γ by perturbing
a connected set at smaller and smaller scales. Second, we prove (3) by showing
that a connected set can be approximated by lines and unions of lines at “most”
scales and locations.

4.1. General considerations. The use of dyadic cubes here is partly notational
convenience, and 3Q can be replaced by rQ for any r > 1. For S ⊂Rn , let

βK (S) =ω(S)diam(S)−1,

whereω(S) is the radius of the smallest cylinder containing S∩K . (This disagrees
with βK (Q) by a constant, but ignore that.)
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We say that S is a C –quasiball (or just a quasiball) if there is an x ∈ S such that
BC−1 diam(S) ⊂ S. For example, rectangles with bounded aspect ratio, triangles
with angles bounded below, cubes in Rn , etc.

Let Q(x,r ) be the cube of side length r centered at x. Then

Exercise 8. Let d ∈R. Show that if Q(x,r ) ⊂Q(y, s) and r ≈ s, then r dβK (Q(x,r )) ≈
sdβK (Q(y, s)). Show that∫ ∞

0

∫
Rn

r dβK (Q(x,r ))2 dx
dr

r
≈ ∑

k∈Z

∫
Rn

2−kdβK (Q(x,2−k ))2 dx.

Exercise 9. For k ∈ Z, let Ck be a collection of c–quasiballs such that diamS ≤
c2−k for every S ∈Ck . Let C =⋃

k Ck .

(1) Show that if for every k, Ck has multiplicity at most c, then∑
S∈C

βK (S)2 diamS.c

∫ ∞

0

∫
Rn

r−n+1βK (Q(x,r ))2 dx
dr

r

(2) Show that if for every k ∈Z and every x ∈Rn , there is an S ∈Ck such that
Bc−12−k (x) ⊂ S, then∑

S∈C

βK (S)2 diamS&c

∫ ∞

0

∫
Rn

r−n+1βK (Q(x,r ))2 dx
dr

r
.

(3) Conclude that for any r, s > 1,∑
Q∈D

βK (rQ)2l (Q) ≈ε
∑

Q∈D

βK (sQ)2l (Q).

(4) Find a set K such that∑
Q∈D

βK (3Q)2l (Q)�
∑

Q∈D

βK (Q)2l (Q).

4.2. Constructing Γ (after Jones). Let K ⊂Rd be a set such that∑
D

βK (50Q)2l (Q) <∞.

We will construct Γ as a limit of connected graphs that approximate K at smaller
and smaller scales.

Let r0 > 0 be a small number to be chosen later. By rescaling, suppose that
diamK = 1 and that 0 ∈ K . (If K is a single-point set, the theorem is trivial.) For
n ≥ 0, let Nn be a maximal r02−n–net and suppose that N0 ⊂ N1 ⊂ . . . . That is, if
z, z ′ ∈ Nn and z 6= z ′, then |z−z ′| ≥ r02−n , and if w ∈ K , there is a z ∈ Nn such that
|w − z| < r02−n . We will define a sequence of connected graphs (in the sense of
graph theory) Γn with vertex set V (Γn) = Nn and

`(Γn). 1+∑
D

βK (50Q)2l (Q).

Any finite graph admits a path that goes over each edge exactly twice, so if
we can find such graphs Γn , then there is a Lipschitz fn : [0,1] → Rd such that
Γn ⊂ f ([0,1]) and Lip( fn) ≤ 2`(Γn). By Arzela–Ascoli, a subsequence of these
maps converge to a Lipschitz map f : [0,1] →Rd ; we let Γ= f ([0,1]).
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Exercise 10. Let Γ ⊂ Rn be a connected set with H 1(Γ) < ∞. Then there is a
Lipschitz f : [0,1] →Rn such that Γ⊂ f ([0,1]) and Lip( f ).H 1(Γ).

Let 0 < ε0 < r0
100 be a small number to be chosen later. We call a dyadic cube Q

good if βK (50Q) < ε0 (i.e., 50Q ∩K is contained in a cylinder of radius 50ε0`(Q))
and bad otherwise.

We construct the Γi ’s inductively. Let Γ0 be the complete graph on N0. Let Di

be the set of dyadic cubes of side length 2−i . Suppose that we have constructed
Γi with the following properties.

(1) If Q ∈Di is bad, then Γi contains the complete graph on 50Q ∩Ni .
(2) If Q ∈ Di is good, then 50Q ∩K is contained in a cylinder C of radius

50ε0`(Q) = 50ε02−n and 30Q ∩Ni consists of points in C spaced at least
r02−n apart. Since ε0 < r0

100 , we can label these points z1, . . . , zk in order.
(That is, if we rotate C so that it lies along the x–axis, then the zi ’s are in
order of increasing x–coordinate.) Then Γi contains the path [z1, . . . , zk ].

We construct Γi+1 from Γi as follows.

(1) For each bad cube Q ∈ Di+1, add the complete graph on 50Q ∩Ni+1 to
Γi+1.

(2) Suppose Q ∈ Di+1 is a good cube. Let P (Q) ∈ Di be the parent of Q, i.e.,
the unique cube such that Q ⊂ P (Q). Note that 50Q ⊂ 30P (Q).

If P (Q) is bad, add the complete graph on 50Q ∩Ni+1 to Γi+1. Other-
wise, label the points in 50Q ∩Ni by z1, . . . , zk in order. Since 50Q ∩Ni ⊂
30P (Q)∩Ni , Γi contains the path [z1, . . . , zk ]. We orient the cylinder so
that z1 is on the left and zk is on the right.

If there are new points v ∈ 50Q ∩Ni+1 \ Ni that lie between z1 and zk ,
we label them y1, . . . , ym , in order and replace the path [z1, . . . , zk ] ⊂ Γi by
the path [y1, . . . , ym] ⊂ Γi+1.

If one of the endpoints of [z1, . . . , zk ] lies in 30Q, then we might need
to extend the path to one side or the other. If z1 ∈ 30Q and there are new
points v ∈ 40Q ∩Ni+1 \ Ni that are left of z1, then d(v, z1) < r02−i , so in
fact, v ∈ 31Q; otherwise, there would be points in 50Q ∩Ni that are left
of z1, which contradicts the minimality of z1. Denote these points by
y1, . . . , ym , in order (in this case, m must be small, say m ≤ 5) and extend
the path [z1, . . . , zk ] by adding [y1, . . . , ym]. Do likewise if zk ∈ 30Q. The
result satisfies the desired conditions.

Exercise 11. What happens if we change the choice of Q here?

What happens to the length of Γi when we execute this construction? It de-
pends on Q. If Q is bad, then we add a complete graph to Γi . Each complete
graph has ≈ 1 vertices (a r02−i –net can only have boundedly many points in any
2−i –cube) connected by edges of length at most ≈ 2−i , so each bad cube con-
tributes length ≈ 2−i . Correspondingly, Q contributes βK (50Q)2l (Q) ≥ ε2

02−i to
the sum, so the contribution is roughly the same as the length increase (up to a
multiplicative factor depending on ε0).
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If Q is good, things are more complicated. In this case, we perturb a path (re-
placing [z1, . . . , zk ] by [y1, . . . , ym] and/or extend a path at one of its endpoints (if
v < z1 or v > zk ). The effect of perturbation is straightforward: when we perturb,
the Pythagorean theorem implies that the length increases by a multiplicative
factor of ≈βK (50Q)2, so the net increase is ≈βK (50Q)2l (Q).

Extension is more complicated and requires a more holistic approach. We
consider the special case when Q0 ∈ D0 is a good cube with only good descen-
dants, βK (50Q ′) < ε0 for all Q ⊂ Q0; the general case is similar. Then there is a
thin cylinder C such that K ∩50Q0 ⊂C .

We define a family of sets Gi of paths in Γi , which we call tracks as follows. Let
z1, . . . , zk ∈ N0 ∩50Q0, arranged in order, and let G0 = {γ0 = [z1, . . . , zk ]}. For each
track γ = [x1, . . . , xk ] ∈ Gi , we construct a track in Gi+1 by replacing segments
of [x1, . . . , xk ] by paths [y1, . . . , ym] as in the construction of Γi+1. We extend γ

when the extension forms a small angle with the existing curve, i.e., if Q ∈ Di+1

and x1, x2 ∈ 50Q and v ∈ 30Q ∩Ni+1 \ Ni is left of x1, then we extend γ as in the
construction (likewise if xk−1, xk ∈ 50Q and v is right of xk ).

Otherwise, we create a new track. This happens when 50Q ∩Ni contains only
a single point x and there is a v ∈ 30Q∩Ni+1 \Ni . In this case, we label the points
in {x}∪30Q ∩Ni+1 by y1, . . . , ym in order and add the track [y1, . . . , ym] to Gi+1.
Note that in this case, d(x, v) < r02−i , so x ∈ 32Q; otherwise, there would be
another point in 50Q ∩Ni . In this case, we call x the parent vertex of [y1, . . . , ym]
and we call the track containing x the parent track of [y1, . . . , ym].

By induction, every point in Q ∩Ni is contained in one of the tracks of Gi . If
a track is created in Gi , it is created with diameter ≈ 2−i and then extended by at
most ≈ 2− j at the j th step, so a track created at the i th step never has a diameter
more than ≈ 2−i . We must thus estimate: how many tracks can be created at
each stage?

Let [y1, . . . , ym] be a track created at the i th step with parent track γ0 and par-
ent vertex xa ∈ Ni . Let xa−1 and xa+1 be the nearest points in Ni to xa . As
noted above, there is a Q ∈ Di+1 such that xa ∈ 32Q but xa−1, xa+1 6∈ 50Q, so
|xa −xa±1| ≥ 9 ·2−i . That is, there is a gap of width at least 7 ·2−i in the projection
of Q ∩Γ to the axis of C . Since each track with parent track γ0, corresponds to
a gap in the projection, the total diameter of these child tracks is at most, say
1
2 diamγ0. The same is true for the next generation of grandchild tracks and so
on, so the total diameter of all the tracks is ≈ diamγ0 . 1. Combining this with
the Pythagorean argument, we get the desired bound.

4.3. Bounding
∑
β2l (after Okikiolu). First, some reductions.

Suppose K ⊂ Rn is a connected set and H 1(K ) <∞. By Exercise 10, there is
a Lipschitz curve γ : [0,1] → Rn such that K ⊂ γ([0,1]), so it suffices to consider
images of Lipschitz curves (also known as rectifiable curves).

Let W = {0, 1
3 , 2

3 }n . The sets of cubes

Dk +W = {Q +w |Q ∈Dk , w ∈W }
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are covers of Rn that satisfy Exercise 9,∑
Q∈D

βK (3Q)2l (Q) ≈ ∑
Q∈D+W

βK (Q)2l (Q) = ∑
w∈W

∑
Q∈D

βK−w (Q)2l (Q).

Combining this with the previous result, it suffices to show that for any 1–Lipschitz
γ : [0,1] →Rn , ∑

Q∈D

β2
γ([0,1])(Q)l (Q) = ∑

Q∈D

ω(Q)2

l (Q)
. l (γ).

Recall that ω(Q) is the radius of the smallest cylinder containing Γ∩Q.
Now we describe the bound. Let Q0 = [0,1]n be the unit cube. By rescaling,

suppose that Γ = γ([0,1]) ⊂ Q0 and l (γ) ≈ 1. We may append line segments so
that γ(0) = γ(1) = 0. For each cube Q, let 〈Q〉 be the set of descendants (sub-
cubes) of Q and for each i , let 〈Q〉i be the set of i th–generation descendants of
Q (subcubes of side length 2−k−i ).

Consider the following sequence of approximations ofγ. Let Tk =⋃
Q∈〈Q0〉k

∂Q.
Let γi agree with γ on γ−1(Ti ). The complement of γ−1(Ti ) is an open set, i.e., a
union of disjoint intervals; extend γ over each of these intervals by linear inter-
polation.

Then Lk = l (γk ) ≤ 1 for every k and Lk is an increasing sequence. Let Γ =
γ([0,1]) and Γk = γk ([0,1]).

For each cube Q ∈ 〈Q0〉k , let

UQ = γk (γ−1(int(Q))),

where int(Q) is the interior of Q. This is a union of line segments connecting
points in ∂Q. Let

s(Q) = sup
x∈int(Q)∩Γ

d(x,UQ ) = sup
y∈γ−1(int(Q))

d(γ(y),UQ )

or s(Q) = 0 if int(Q)∩Γ=;. Let

t (Q) = sup
y∈γ−1(int(Q))

d(γk+1(y),UQ ).

By the Pythagorean Theorem,

Lk+1 −Lk &
∑

Q∈〈Q0〉k

t (Q)2

l (Q)
;

it follows that

(5)
∑

Q∈〈Q0〉

t (Q)2

l (Q)
. l (γ)

We have t (Q) ≤ s(Q) ≤ω(Q). In order to prove the theorem, we need to replace
t (Q) in (5) by s(Q), then by ω(Q).
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Replacing t (Q) by s(Q) is straightforward. For each i , let αQ,i ∈ 〈Q〉i be the
subcube that maximizes t (αQ,i ). Then s(Q) ≤∑∞

i=0 t (αQ,i ). It follows that( ∑
Q∈〈Q0〉

s(Q)2

l (Q)

) 1
2

.
∞∑

i=0

( ∑
Q∈〈Q0〉

t (αQ,i )2

l (Q)

) 1
2

by the triangle inequality for Hilbert space. If Q 6=Q ′, then αQ,i 6=αQ ′,i , so∑
Q∈〈Q0〉

t (αQ,i )2

l (Q)
= 2−i

∑
Q∈〈Q0〉

t (αQ,i )2

αQ,i
≤ 2−i

∑
Q∈〈Q0〉

t (Q)2

l (Q)
. 2−i l (Γ).

Therefore, ( ∑
Q∈〈Q0〉

s(Q)2

l (Q)

) 1
2

.
∞∑

i=0

√
2−i l (Γ).

√
l (Γ),

as desired.
Replacing s(Q) by ω(Q) is harder and we will just sketch the argument. Fix

a small δ > 0 and a large λ > 0. We can ignore cubes where s(λQ) > δω(Q);
those cubes contribute at most≈ δ−1l (Γ) to the sum. We thus consider the cubes
where s(λQ) ≤ δω(Q): cubes that are much closer to a union of lines than to a
single line. Call the set of such cube A .

We will show that
∑

Q∈A ω(Q). l (γ). We use a projection argument. Let L be
a line in Rn , let πL be orthogonal projection to L. By the coarea formula,

(6)
∫

L
|π−1

L (x)|dx ≤ l (γ).

We claim that there are lines L1, . . . ,Lk such that∑
Q∈A

ω(Q).
∑

i

∫
Li

|π−1
Li

(x)|dx ≤ l (γ) ≤ kl (γ).

The key is the following lemma.

Lemma 4.3. For each Q ∈ A , there are many lines L such that πL |2Q∩Γ has mul-
tiplicity > 1 on an interval of length ≈ l (Q).

If we choose enough lines Li , then for every cube in A , the lemma holds for
some Li . So, if there are a lot of cubes in A , the projection πL should have high
multiplicity, but the multiplicity is bounded by (6).

The difficulty is bookkeeping. Each cube in A corresponds to an interval on
which πL |2Q has multiplicity > 1, but we have to avoid overcounting these inter-
vals — this is nontrivial. For example, suppose Γ contains a subset P consisting
of two parallel line segments of length 1 and distance ρ. For any k such that
2k ≥ ρ, there are cubes Q containing segments of both lines, so the lines could
be counted roughly − log2ρ times. Nevertheless, there are exponentially fewer
large cubes that intersect P , so∑

Q

ωP (Q)2

l (Q)
.

∑
Q
ωP (Q). l (P ).
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Okikiolu solves this by a careful weighting procedure; see [Oki92] for the full
argument or [Sch07] for a generalization.

5. UNIFORM RECTIFIABILITY AND SINGULAR INTEGRALS

Jones’s Traveling Salesman Theorem links the parametrizability of a 1–dimensional
subset of R2 and its approximability by lines. It’s natural to ask how to generalize
these notions to higher-dimensional spaces and subsets.

David and Semmes [DS91, DS93] developed a remarkable generalization of
these ideas called uniform rectifiability. Uniform rectifiability can be defined in
several equivalent ways, several of which are based on:

(1) Approximability by planes and generalizations of β–numbers
(2) Parametrizability by Lipschitz and bilipschitz maps
(3) The boundedness of singular integral operators

Part of the power of uniform rectifiability is the way that it links approximabil-
ity, parametrizability, and singular integrals. In the next sections, we will briefly
sketch some aspects of the study of singular integrals and the Cauchy transform
in R2 and the links to the Jones Traveling Salesman Theorem, then give some of
the equivalent definitions of uniform rectifiability. Proofs of the equivalence can
be found in David and Semmes monograph [DS91].

5.1. Rectifiability and the Cauchy transform. This is mostly outside my area of
expertise and primarily motivational. If you’re interested in learning more, most
of the material in this section is drawn from [Tol14], and full details can be found
therein.

A classical question in complex analysis is the Painlevé problem, which asks
what compact subsets of C are removable for bounded analytic functions. A
compact subset E ⊂ C is removable if for every open set Ω containing E , every
bounded analytic function f : Ω \ E → C extends to an analytic function on E .
By the Riemann extension theorem, any point is removable, but the disc Br (0) is
not (the function 1

z is analytic and bounded by 1
r ), and any connected set with at

least two points is not (it contains a curve segment γ; consider a Riemann map
from C\γ→ D2). Thus any removable set must be totally disconnected.

When E is a set with Hausdorff dimension dimH (E) > 1, Frostman’s Lemma
can be used to show that E is nonremovable. Conversely, if H 1(E) = 0, then E is
removable; in fact, the analytic capacity γ(E), which measures the maximum of

| f ′(∞)|
‖ f ‖∞

=
∣∣limz→∞ z( f (z)− f (∞))

∣∣
‖ f ‖∞

for bounded analytic functions on C \ E (i.e., how far from constant an analytic
function with L∞–norm 1 can be), satisfies γ(E) ≤H 1(E).

Remarkably, the converse inequality does not hold: Vitushkin showed that if
E is the four-corners Cantor set obtained by replacing the unit square by four
squares of side length 1

4 at its corners, then each of those by four squares of side
length 1

16 , etc., then H 1(E) > 0, but γ(E) = 0 and thus E is removable.
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Denjoy’s conjecture, however, states that the converse does hold for rectifi-
able sets:

Theorem 5.1. Let Γ⊂ C be a rectifiable curve and E ⊂ Γ a compact subset. Then
E is removable if and only if H 1(E) = 0.

The theorem follows from a result of Calderón on the boundedness of the
Cauchy transform, which we now sketch.

By the above, it suffices to show that a positive-measure subset of a rectifiable
curve is nonremovable; indeed, it suffices to consider curves that are the graphs
of Lipschitz functions. We consider the Cauchy transform on such curves.

Given a finite complex measure or a compactly supported complex distribu-
tion µ on C, we define the Cauchy transform as

(7) C µ(z) =
∫

1

w − z
dµ(w).

This integral is defined almost everywhere on C with respect to Lebesgue mea-
sure. For a fixed Radon measure µ and an f ∈ L1(µ), let Cµ( f ) = C ( f µ). This is
closely related to the Cauchy integral formula, which can be stated in terms of
C . Namely, if f is a holomorphic function on a neighborhoodΩ⊂C of a region
E bounded by a closed rectifiable Jordan curve γ, then

f (z) =
∫
γ

1

2πi

f (w)

w − z
dz =

∫
1

w − z
dµγ(w)

for an appropriate complex measure µ f supported on γ.
The function C µ is analytic outside the support of µ; conversely, if f ∈ L1,loc

is analytic outside some compact set K and f (∞) = 0, then f =C µ for some dis-
tribution µ supported in K [Tol14, Thm 1.14]. We can thus think of the Cauchy
transform as a way to express functions that are analytic outside the support of
µ. Thus, in order to show that a set E is nonremovable, it suffices to find a non-
trivial distribution µ supported on E such that C µ is bounded.

By results of Nazarov, Treil, and Volberg [Tol14, Thm. 2.16] and Davie and Øk-
sendal [Tol14, Thm. 4.6], this is closely connected to the L2–boundedness of the
Cauchy transform Cµ : L2(E) → L2(E) for measures µ supported on E . This takes
some definition, since (7) may not converge absolutely when z ∈ suppµ. Let

Cεµ(z) =
∫
|w−z|>ε

1

w − z
dµ(w)

and likewise Cµ,ε( f ) =Cε( f µ) be the truncated Cauchy transform, so that limε→0 Cεµ(z)
is the principal value of the integral (7) if it exists. We say that Cµ is L2(µ)–
bounded if the Cε are uniformly bounded as operators from L2(µ) to L2(µ). (If
so, then the limits limε→0 Cε f µ(z) exist a.e. w.r.t. µ, but this takes some effort to
prove and does not hold for other similar operators [Tol14, Ch. 8].)

Then:

Theorem 5.2 ([Tol14, Rem. 4.8]). If E supports a non-zero Radon measure µwith
linear growth (i.e., µ(Br (z0)). r for every z0 ∈ C, r > 0) such that Cµ is bounded
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as an operator from L2(µ) to L2(µ), then there is a non-zero function h with 0 ≤
h ≤ 1E such that ‖C (hµ)‖L∞(C\E) <∞ and thus E is nonremovable.

So, when is the Cauchy transform bounded? When µ = H 1
|R is Hausdorff 1–

measure on the real line, we have

Cµ( f )(t ) = 1

2πi
p. v.

∫ ∞

−∞
f (τ)

τ− t
dτ,

which is, up to a constant, the Hilbert transform H( f ) of f . This transform is
L2(R)–bounded (in fact, it acts on the Fourier transform as �H( f )(ω) =−i sign(ω) f̂ (ω),
where sign(ω) = ω

|ω| ). It follows that any subset ofRwith positive measure is non-
removable (but there are easier ways to prove this).

Since the Hilbert transform is a convolution with an odd kernel, it has a lot
of cancellation; for instance, H(c) = 0 for any constant function c. The bound-
edness of Cµ depends, in part on the amount of cancellation involved in (7),
which depends in turn on the amount of local symmetry of µ. Smooth curves
are locally linear, leading to bounds on Cµ by standard techniques. Calderón
showed L2–boundedness for arclength measure on the graph of a Lipschitz func-
tion with sufficiently small Lipschitz constant [Cal77], and Coifman, McIntosh
and Meyer for an arbitrary Lipschitz graph [CMM82]. Since a rectifiable curve
can be covered by rotations of countably many Lipschitz graphs, any positive-
measure subset of a rectifiable curve is nonremovable, which implies Denjoy’s
conjecture.

The original motivation for Jones’s formulation of the Traveling Salesman Prob-
lem was to study the Cauchy transform; Jones [Jon89] gave a new proof that
the Cauchy transform on a Lipschitz graph is bounded by using Theorem 4.1
to show that a Lipschitz graph is close to a line at most points and scales.

Conversely, if µ = H 1
|E for some set E ⊂ C, then L2(µ)–boundedness of the

Cauchy transform implies that E is close to a line at most points and most scales.
Theorems of Jones and Melnikov and Verdera [MV95] imply:

Theorem 5.3 ([Tol14, Prop. 3.3]). If E ⊂C is Ahlfors 1–regular (i.e., H1(E∩Br (x)) ≈
r for every x ∈ E and every 0 < r < diam(E)), then CH 1

|E
is L2(E)–bounded if and

only if ∑
Q∈D

βE (Q)2l (Q) <∞.

That is, CH 1
|E

is L2(E)–bounded if and only if E is contained in the image of a

Lipschitz curve.

This is an ingredient in David’s solution of the Painlevé problem for sets of
finite H 1–measure:

Theorem 5.4 (David). Let E ⊂ C be compact and H 1(E) <∞. Then E is remov-
able if and only if E is purely unrectifiable. (That is, if γ is any Lipschitz curve,
then H 1(γ∩E) = 0.)
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5.2. Uniform rectifiability. The necessary and sufficient conditions in the TST
don’t translate directly to higher dimensions. Among other things, while every
connected set with H 1(S) <∞ can be parametrized by a curve and thus a limit
of connected sets with uniformly bounded length has bounded length, the same
is not true in higher dimensions (for example, consider the unit disc with n2

cones of height 1 and base of radius 1
n2 attached, like a patch of grass). Instead,

they lead to uniform rectifiability. We give three main classes of definitions of
uniform rectifiability; all of these are equivalent.

In the following, let E ⊂ Rn be an Ahlfors d–regular set. That is, for every
x ∈ E and every 0 < r < diam(E) (including diamE =∞), H d (E ∩B(x,r )) ≈ r d .
Throughout this section, keep in mind the example of Lipschitz graphs. A Lip-
schitz graph is a translation and rotation of a set of the form Γ f = {(x, f (x)) ∈
Rn | x ∈ Rn−1}, where f : Rn−1 → R is a Lipschitz function, and these will be the
prototypical examples of uniformly rectifiable sets.

5.2.1. β–numbers. The Jones TST gives a characterization of rectifiable sets us-
ing β–numbers. In higher dimensions, a similar bound characterizes uniform
rectifiability.

For 1 ≤ p <∞, let

βp,E (x,r ) = inf
P

(
1

r d

∫
E∩B(x,r )

(
d(y,P )

r

)p

dH d (y)

) 1
p

,

where the infimum is taken over all n–planes P ⊂ Rn+1. When p = ∞, the Lp

norm on the distance becomes an L∞ norm, i.e.,

β∞,E (x,r ) = inf
P

sup
y∈E∩B(x,r )

d(y,P )

r
.

The βK ’s used in the TST are most similar to β∞,K . For all p, this is bounded
(because of the Ahlfors regularity) and scale-invariant.

Definition (C3). 3 An Ahlfors d–regular subset E ⊂ Rn is uniformly rectifiable if
and only if

β1(x,r )2 dx
dr

r
is a Carleson measure. That is, for any x ∈ E and any R > 0,

(8)
∫ R

0

∫
E∩B(x,r )

β1(x,r )2 dx
dr

r
.Rd .

When d = 1 and E is a bounded set, this is similar to the Jones TST, but the
bound uses β1 instead of β∞, and the Jones TST only bounds the global integral∫ ∞

0

∫
Rn
β1(x,r )2 dx

dr

r

rather than providing bounds on each of the B(x,R)’s.

3The numbering of definitions follows [DS91].
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The fact that (8) holds for Lipschitz graphs is a theorem of Dorronsoro [Dor85].
For x ∈Rn , r > 0, define

αp, f (x,r ) = inf
λ∈Aff

(
1

r n

∫
B(x,r )

(
f (y)−λ(y)

r

)p

dy

) 1
p

= inf
λ∈Aff

‖ f −λ‖Lp (B(x,r ))

r
n
p +1

and

α∞, f (x,r ) = inf
λ∈Aff

‖ f −λ‖L∞(Q)

r
,

where Aff is the set of affine functions from Rn to R. These are analogues of βK

for functions rather than graphs; they measure the distance from f |B(x,r ) to an
affine function in a scale-invariant way.

Theorem 5.5 ([Dor85]). Let f ∈ W 1,2(Rn) (i.e., ‖ f ‖2 <∞ and ‖∇ f ‖2 <∞). Then
for any p ∈ [1,2],

‖∇ f ‖2
2 ≈

∫
Rn

∫ ∞

0
α f ,p (B(x,r ))2 dr

r
dx.

A nice proof of this theorem by Fourier analysis can be found in [Azz16].

5.2.2. Parametrizability. While connected 1–dimensional sets can be parametrized
by Lipschitz curves, uniformly rectifiable sets satisfy a weaker notion of parametriz-
ability.

Definition (C6). A d–regular set E ⊂ Rn is said to have big pieces of lipschitz
images (BPLI) if there are λ, M > 0 such that for every x ∈ E, 0 < r < diamE, there
is an M–Lipschitz map f : BRd (0,r ) →Rn such that if F = f (BRd (0,r )), then

(9) H d (F ∩E ∩B(x,r )) ≥λH d (E ∩B(x,r )) ≈ r d .

We say E is uniformly rectifiable if it has BPLI.

In particular, if E has BPLI, then it is rectifiable in the usual sense. That is,
there are Lipschitz maps f1, f2, . . . : Rd →Rn such that

H d (E \
⋃

i
fi (Rd )) = 0.

(One can construct such maps by taking a cover of E by disjoint balls, then find-
ing Lipschitz images that cover a positive fraction of each ball. By repeating on
the uncovered regions of E , one produces Lipschitz images that cover more and
more of E .)

As before, it is clear that Lipschitz graphs are uniformly rectifiable; a Lipschitz
graph can be covered entirely by a single Lipschitz image.
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5.2.3. Singular integrals. Recall that when E ⊂ C is a 1–dimensional set and f ∈
L2(E), the Cauchy transform of f is the principal value of the convolution of f
with the Cauchy kernel KC (w) = 1

w ; in real coordinates,

KC (x1, x2) = (
x1

‖(x1, x2)‖2 ,
−x2

‖(x1, x2)‖2 ).

The simplest substitutes for the Cauchy kernel for a d–dimensional set E ⊂Rn

are the Riesz kernels, Ki (x) = xi

‖x‖d+1 . Like KC , these are odd kernels (so if E is
a plane and f is constant, then Ki ∗ f = 0). Further, Ki is degree–d homoge-
neous, so the corresponding transforms are scale-invariant. It is an open ques-
tion whether the boundedness of the Riesz transform implies uniform rectifi-
ability in general, though recent work of Nazarov, Tolsa, and Volberg [NTV14]
proves that it does when d = n −1.

David and Semmes defined the following class of Cauchy-type kernels. Let
Kd (Rn) be the set of smooth real-valued functions K on Rn \{0} K such that K is
odd and

|x|d+ j |∇ j K (x)| ∈ L∞(Rn \ {0})

for j = 0,1,2 . . . . This includes, in particular, smooth odd functions that are
degree–d homogeneous. Then:

Definition (C1). Suppose E is H d –measurable. We say that E is good for the
kernel K if the family of operators

Tε f (x) =
∫

y∈E
|y−x|>ε

K (x − y) f (y)dy

determines a family of uniformly bounded linear operators from L2(E) to L2(E).
We say that E is uniformly rectifiable if it is good for any kernel K ∈Kd (Rn).

Again, Lipschitz graphs are uniformly rectifiable; this is a consequence of
Coifman, McIntosh and Meyer’s work on Lipschitz graphs in R2 [CMM82].

5.2.4. Approximability by Lipschitz graphs. Finally, we present one more defi-
nition, which is more complicated than the others, but is surprisingly useful in
many situations. A regular set E is uniformly rectifiable if any only if it admits
a corona decomposition, which consists of a collection of Lipschitz graphs that
approximates E at most points and most scales.

Formalizing this relies on the following proposition; this is due to David [Dav88]
for subsets of Rn and to Christ [Chr90] for metric-measure spaces.

Proposition 5.6. Let E be a d–regular set in Rn of diameter R ≤∞. Then E ad-
mits decompositions into dyadic “cubes” in the following sense. For each k ∈ Z
such that 2−k ≤ R, there is a partition ∆k of E (i.e., a collection of sets such that⋃

Q∈∆k
Q = E and such that if Q,Q ′ ∈ ∆k , Q 6= Q ′, then Q is disjoint from Q ′) and

there is a C > 1 such that:

(1) If R <∞ and k = blog2 Rc, then ∆k = {E }.
(2) For all Q ∈∆k , C−12k ≤ diamQ ≤C 2k and C−12kd ≤H d (Q) ≤C 2kd .
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(3) For each k, the partition ∆k+1 is a refinement of ∆k . That is, if Q ∈ ∆ j ,
Q ′ ∈∆k , k ≥ j , then either Q ′ ⊂Q or Q ∩Q ′ =;.

(4) For any k ∈ Z, Q ∈ ∆k , and any r > 0, the boundary of Q is small in the
following sense. Let

∂Q(r ) = {x ∈Q | d(x,E \Q) ≤ r }∪ {x ∈ E \Q | d(x,Q) ≤ r }.

For any 0 < t < 1,

(10) H d (∂Q(t2k )) ≤C t 1/C 2kd

for each Q ∈∆k .

The last condition is a little subtle; it implies, for instance, that if ε is suffi-
ciently small, depending on C , then

H d (∂Q(ε2k )) ≤ H d (Q)

2
for any Q.

When diamE <∞, one can arrange the ∆k ’s into a rooted tree. Let ∆ be the
tree with one vertex at height k for each element of ∆k . This has a single vertex
at height blog2 Rc, which we mark as the root. For each vertex v
i nV (∆) at height k, there is a corresponding cube Qv ∈ ∆k , and we let h(v) = k
and σ(v) = 2k . We connect vertices v and w if h(v) = h(w)+ 1 and Qw ⊂ Qv ,
in which case we say that v is the parent of w . One can check that each vertex
(except the root) has a single parent and that the tree has bounded degree. For
each v ∈ V (∆), let C (v) be the children of v (the adjacent vertices of height h(v)+
1) and we write v ≤ w if v is a descendant of w . We call ∆ and the collection of
associated cubes a cubical patchwork for E .

Given a cubical patchwork ∆, a coronization is a partition of V (∆) into sin-
gletons and coherent subsets (a subset S ⊂ V (∆) is coherent if S is the vertex set
of a connected subtree of ∆ and such that for every v ∈ S, either C (v) ⊂ S or
C (v)∩S =;). Let B be the set of singletons, which we call bad cubes and let F

be the set of coherent subsets, which we call stopping-time regions. We require
the following properties:

(1) B satisfies a Carleson packing condition. That is, for any v ∈∆,∑
w∈B
w≤v

H d (Qw ).H d (Qv ).

(2) For each S ∈ F , let M(S) be the maximal vertex (root) of S. Then M(F )
satisfies a Carleson packing condition.

Roughly, this says that for almost every x ∈ E , the number of bad cubes and
stopping-time regions containing x is finite and bounds the average number of
bad cubes and stopping-time regions containing x.

Definition (C4). For any cube Q and any r > 0, let

rQ = {x ∈ E | d(x,Q) ≤ (r −1)diam(Q)

(analogously to our notation 3Q for concentric cubes above).
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A d–regular set E admits a corona decomposition if for every η> 0 and θ > 0,
there is a coronization (B,F ) such that for every S ∈ F , there is a d–dimensional
Lipschitz graphΓS with Lipschitz constantη such that d(x,ΓS) ≤ θdiam(Qv ) when-
ever x ∈ 2Qv and v ∈ S.

E is uniformly rectifiable if and only if it admits a corona decomposition.

Note that it is nontrivial to show that a Lipschitz graph admits a corona de-
composition, since one must approximate a λ–Lipschitz graph by a family of
η–Lipschitz graphs and η may be much less than λ.

If a set has a corona decomposition, it can be constructed by a stopping-time
argument. First, we construct the set of bad cubes; for some large r > 0 and
small ε> 0, we say that Q is bad if β1,E (rQ) > ε, where

β1,E (rQ) = inf
P

1

diam(rQ)d

∫
E∩rQ

d(y,P )

diam(rQ)
dH d (y).

The rest of the cubes are good. (Note that because of Ahlfors regularity, if β1,E is
small, then so is βp,E for any 1 ≤ p ≤∞.)

Consider what happens when every cube is good. Then every cube can be
approximated by a plane – in fact, a large neighborhood in E around every cube
can be approximated by a plane. If ε is sufficiently, small, one would hope to find
a surface interpolating between these planes, but this surface need not be a Lip-
schitz graph, because the slope of the planes may increase at smaller and smaller
scales. We thus partition the set of good cubes into coherent subsets such that in
each coherent subset, the approximating planes form angles of roughly η with
each other. These are the stopping-time regions; it remains to show that they can
be approximated by Lipschitz graphs with small Lipschitz constant and to prove
the Carleson packing condition. (See Chapters 7–14 of [DS91], or see Chapter 4
of [DS93] for a proof that Lipschitz graphs admit a corona decomposition)

Exercise 12. Construct a corona decomposition for:

• a square
• the graph of f (x) = sin(x) (where η< 1)
• the graph of f (x) = x sin(x2) (where η< 1)

5.3. Equivalence of definitions. Remarkably, all of the definitions of uniform
rectifiability given above are equivalent. Indeed, one of the reasons that uni-
form rectifiability is so powerful is that there are so many different definitions;
in addition to the four formulated above, [DS91] gives three more,4 and many
more have been described since David and Semmes’s original monographs.

Some of the implications:

(C6) ⇒ (C1): By Coifman–McIntosh–Meyer, a Lipschitz graph is good for any
Cauchy-type kernel. David showed that if a class S of sets is “good for
K ”, then so is the class of sets with big pieces of S – that is, sets E that

4(C2) is a Carleson condition on a measure related to kernels of Cauchy type, (C5) is the very
big pieces of bilipschitz images condition, which strengthens the BPLI condition, and (C7) de-
scribes parametrizations by maps satisfy a condition weaker than Lipschitz.
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satisfy (9) for some F ∈ S . In particular, a set with BPLI is good for any
Cauchy-type kernel.

(C1) ⇒ (C3): I have not verified this, but I suspect that given (C1), one can prove
(C3) by considering the Riesz kernels. I may be entirely wrong about this,
because the proof in [DS91] goes through some other definitions.

(C3) ⇒ (C4): See above.
(C4) ⇒ (C6): When S ⊂ V (∆) is a stopping-time region containing infinitely many

vertices, the approximating Lipschitz graph covers part of Q(S). By patch-
ing together such maps, one can cover S by Lipschitz images.

6. APPLICATION: SURFACES IN Rn

Two of my recent works [You18, NY18] have used uniform rectifiability to
study arbitrary surfaces in Rn and the Heisenberg group. I’d like to briefly sketch
some of the ideas to demonstrate how UR can be applied to geometry.

The first obstacle in applying UR to the geometry of surfaces is that many
surfaces are not uniformly rectifiable. We have seen this already with the four-
corners Cantor set K , but this set is not the best example because K is not really
a surface – it isn’t rectifiable.

To see surfaces that are rectifiable but not uniformly rectifiable, it’s better to
look at UR from the quantitative viewpoint. Namely, for any choice of constants
in any of the definitions of uniform rectifiability, there is a d–regular rectifiable
subset of Rn that fails to be uniformly rectifiable with those constants; for in-
stance, while the i th step Ki in the construction of the four-corners set has BPLI
for some λi and Mi , as i →∞, either λi → 0 or Mi →∞.

An advantage of this perspective is that we can use uniform rectifiability to
study surfaces with bounded curvature and cellular surfaces (surfaces that can
be written as a union of cells in the unit grid). While every such surface which
is bounded is uniformly rectifiable for some constants, those constants depend
on the size of the surface – large surfaces may have multiscale structure (like
the four-corners set) or may fail to be Ahlfors regular. Regardless, one can prove
decompositions along the lines of Lemma 4.2:

Theorem 6.1 ([You18]). If A ∈ Cd (τ;Z2) is a d-cycle in the unit grid in RN , then
there are cycles M1, . . . , Mk ∈ Cd (τ;Z2) and uniformly rectifiable sets E1, . . . ,Ek ⊂
RN with bounded uniform rectifiability constants such that A =∑

i Mi , supp Mi ⊂
Ei , and

∑
i H d (Ei ).mass A.

The main ingredient in this result is a theorem of David and Semmes on quasi-
minimizing sets. A quasiminimizing set, or quasiminimizer, is a set whose vol-
ume cannot be reduced too much by a small deformation. Specifically,

Definition 6.2. Let 0 < d < N be an integer. If φ : RN → RN is a Lipschitz map
such that φ(x) = x for all x outside some compact set, let W = {x ∈Rn |φ(x) 6= x}.
We say that φ is a deformation of RN supported on the set suppφ=W ∪φ(W ).

If k ≥ 1 and 0 < r ≤ ∞ and S ⊂ RN is a nonempty closed set with Hausdorff
dimension d , we say that S is a (k,r )-quasiminimizer if:
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• H d (S ∩B) <∞ for every ball B ⊂RN , and
• if φ is a deformation supported on a set of diameter ≤ r and W is as

above, we have

|H d (S ∩W ) ≤ kH s(φ(S ∩W )).

Theorem 6.3 ([DS00, Thm. 2.11]). Let S ⊂ RN be a (k,r )-quasiminimizer. For
each x ∈ S∗ and each 0 < R < r , there is a uniformly rectifiable, Ahlfors regular set
E of dimension d such that

S∗∩B(x,R) ⊂ E ⊂ S∗∩B(x,2R).

The uniform rectifiability constants of E can be taken to depend only on N and k.

Theorem 6.1 is used to prove the main results of [You18], including the fol-
lowing lifting property for cycles mod n:

Theorem 6.4. For every n,d , N > 0, there is a c > 0 such that if τ is the unit grid in
RN and A ∈ Cd (τ;Zn) is a mod-n cellular cycle in τ, then there is a cellular cycle
R ∈Cd (τ;Z) such that A ≡ R (mod n) and massR ≤ c mass A.

A theorem similar to Theorem 6.1 for codimension–1 cycles in the Heisenberg
group is used in [NY18] to prove quantitative bounds on the embeddability of
the Heisenberg group into L1 (a descendant of Theorem 3.2).
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