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1. Lecture 1

1.1. Introduction. This course is called “Asymptotics of Filling Problems”, and
basically what I’m going to talk about all stems from one classical problem, the
isoperimetric problem. Describe.

References: Many of the ideas and examples in this series of talks are taken from
or inspired by examples of Gromov in “Asymptotic invariants of infinite groups”
and other papers.

• Isoperimetry in the plane
• Generalizing

– plane → Rn, Heisenberg group, hyperbolic plane, etc.
– area enclosed → filling area/volume
– curve of length ` → cycle of mass V
– Almgren: An n-cycle of mass V in RN has filling volume at most

cnV
n+1
n .

• GMT and GGT have both looked for similar results in different spaces, but
with different flavors.

These two directions have split apart a lot. Analytic vs. combinatorial. But in
recent years, I think there’s been a growing amount of overlap.

My main goal in this course is to talk about some avenues where the two questions
meet.

Goals:

• Introduction to geometric group theory
• Applying geometric measure theory to geometric group theory

– Hyperbolic and non-positively curved spaces
– Nilpotent groups
– Arithmetic groups and lattices in symmetric spaces (common thread

in a lot of these is the asymptotic cone – we end up proving bounds by
doing geometric measure theory in the asymptotic cone, then passing
back to the original space)

I want to start by covering some of the geometric group theory background first:
the Dehn function and how its related to hyperbolic groups and negative curvature,
and then how this relates to asymptotic cones and trees.

1.2. Geometric group theory background.

• The basic idea of geometric group theory is to study the geometry of finitely-
generated groups.
• Cayley graphs and word metric
• QIs.
• Examples: finite groups. Nets vs. whole space (so, for example, a finite-

index subgroup of G is q.i. to G.
• Lemma: Let X be a proper geodesic metric space and let G act on X

geometrically. Then G (with the word metric) is q.i. to X.
• So we can study groups through the spaces they act on!
• So: One major program in GGT: Classify groups up to qi. Subproject:

Define and study quasi-isometry invariants.
1
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• Examples of GGT invariants: growth rate (so you can tell whether a group
is (virtually) nilpotent by looking at its large-scale geometry , number of
ends.
• The Dehn function

– Definition: let δ(α) be the filling area of a closed curve α, let δX(`) be
the Dehn function of X (supremal filling area over all curves of length
at most `).

– QI invariance: If G1 and G2 are q.i. and act on X1 and X2 respectively,
then δX1 has the same asymptotic growth as δX2 .

2. Lecture 2

2.1. Dehn functions. References:

• Bridson, “The geometry of the word problem”

Outline:

• The Dehn function of a group
– The word problem: deciding whether a product of generators repre-

sents the identity.
– Dehn function as a “measure of difficulty” – how many applications of

relations to reduce a word to the trivial word?
– δ(w) – filling area, δG(`) – maximum filling area for words of length
≤ `.

• QI equivalence – Example: Z2 and R2.
• Examples:

– Rn – quadratic
– hyperbolic plane – linear
– Sol3 – exponential

3. Lecture 3

3.1. Asymptotic cones. One of the most powerful, yet most complicated QI in-
variants of a group is its asymptotic cone. This is a construction by Gromov; he
said it was like looking at the group “from infinity”. Imagine taking this finitely-
generated group, this discrete lattice, and zooming out until all the separate points
blur into a continuous space.

• Definition
– (X, d) be a metric space, {xn} be a sequence of points in X (scaling

centers), dn a sequence of scaling factors that go to ∞, and ω be an
ultrafilter.

– Ultralimits – linear, limit points.
– Sequence (X, d/d1, x1), . . . .
– Limit of these metric spaces is a quotient of the set of bounded se-

quences XN
b .

• Examples:
– X = Rn – X∞ = Rn
– X is the hyperbolic plane – X∞ is an R-tree

∗ No shortcuts in the hyperbolic plane
∗ Constructing the cone with geodesics

• Properties:
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– Symmetry: If G acts on X geometrically, then X∞ has a transitive
group of symmetries (in fact, G∞).

– QI invariance.
– Possibly many asymptotic cones (bouquets of circles)

• One last example: Sol3
– Fibered by two sets of hyperbolic planes
– Subset of Hyp×Hyp.
– Fillings don’t pass to the cone – the cone is not simply connected, even

locally.

So now I can try to make it clear what I want to accomplish with this class:
I want to discuss the connections between the geometry of a space (especially its
filling inequalities) and the geometry and filling inequalities of its asymptotic cone.

4. Lecture 4

4.1. Nilpotent groups. Nilpotent groups are interesting because they are spaces
with simple group theory, but complicated geometry. They’re just above abelian
groups in terms of complexity, and there are easy formulas for calculation in nilpo-
tent groups, but there’s a lot that’s still not known about their geometry.

Here I want to give a brief introduction to the geometry of nilpotent groups and
then discuss some aspects of filling problems in them.

4.1.1. Introduction to nilpotent groups. References:

• Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces
symétriques de rang un”

• Gromov, “Asymptotic invariants of infinite groups”
• Ol’shanskii, Sapir, “Quadratic isoperimetric functions for Heisenberg groups:

a combinatorial proof”
• Allcock, “An isoperimetric inequality for the Heisenberg groups”
• Magnani, “Spherical Hausdorff measure of submanifolds in Heisenberg groups”

Outline:

• Definition (lower central series, nilpotency class)
• As lattices in nilpotent Lie groups:

– Every finitely-generated torsion-free nilpotent group is a lattice in a
(unique) simply-connected nilpotent Lie group (its Mal’cev comple-
tion)

– Every simply-connected nilpotent Lie group with rational structure
coefficients has a cocompact lattice.

• Example: Heisenberg group (as 3 × 3 matrices, as Lie algebra, as finitely-
generated group).

– Distorted center
– Scaling automorphism
– Asymptotic cone is a Carnot-Carathéodory (CC) space.

∗ CC-space: manifold with sub-riemannian metric.
∗ Illustrate via pullbacks: metric is like dm2 = dx2 + dy2 + t2 dz2.
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∗ Ultimately, if we parameterize like

1 x z
0 1 y
0 0 1

, then the horizon-

tal planes at (x, y, z) are spanned by (1, 0, 0) and (0, 1, x). These
are non-integrable! (Try to keep CC-metric visible on board.)

• More generally:
– A torsion-free class-k nilpotent group has distortion on the order of
nk.

– Homogeneous nilpotent groups have families of scaling automorphisms.
These distort terms in lower central series.

– Thm (Pansu): The asymptotic cone of a nilpotent group is a CC-
space; indeed, it is bilipschitz-equivalent to a left-invariant CC-metric
on a homogeneous nilpotent group. If the group was originally homo-
geneous, the horizontal vectors can be taken to be the lowest level of
the grading.

• Filling problems in Heisenberg groups: How difficult is it to fill a curve
in (H3, d) with a disc? Can we fill a Lipschitz curve in (H3, dc) with a
Lipschitz disc?

– H3 = R3 with multiplication

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2)

– d left-invariant Riemannian, dx2 + dy2 + (dz − y dx)2

– dc left-invariant sub-Riemannian, horizontal vectors are spanned (or-
thonormally) by (1, 0, 0) and (0, 1, x).

– Lifting of curves: γ 7→ (γ1(t), γ2(t),
∫ t
0
γ̇2(t)γ1(t) dx).

– Compare metrics, construct boxes (d(x, y, z) ∼ max{|x|, |y|,min{|z|,
√
|z|}},

etc.)
– Hausdorff dimension 4.
– Figure-eight curve says that the answer to both questions is no. (Use

cohomology.)
– Remarkably, in H5, the answer to both is yes! We’ll see a couple

different ways to prove this, and there are a couple of proofs in the
references.

5. Lecture 5

• So, basic questions: How do we solve filling problems in these groups and
metric spaces, how is the GGT of the nilpotent group related to the GMT
of these CC spaces?
• Thm (Gromov): When there is a microflexible sheaf of horizontal maps
Rk → G, then c-Lipschitz maps Sk → G have O(c)-Lipschitz extensions
Dk+1 → G.
• Thm (Young): When G is a Carnot group and there are sufficiently many

horizontal maps ∆k → G, then FVk(V ) � V k/(k−1).
• Thm (Wenger): Converse to the above. If (G, d) is a Carnot group with

FVk(V ) � V k/(k−1), then (G, dc) satisfies filling inequalities for Lipschitz
(k − 1)-currents.

5.0.2. Microflexibility and infinitesimal invertibility. References:
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• Gromov, “Carnot-Carathéodory spaces from the inside”
• Gromov, Partial Differential Relations

Outline:

• Thm (Gromov): When there is a microflexible sheaf of horizontal maps
Rk → G, then c-Lipschitz maps Sk → G have O(c)-Lipschitz extensions
Dk+1 → G.
• Microflexibility

– Microflexibility: the existence of many horizontal surfaces and contin-
uous families of horizontal surfaces.

– Microflexibility implies flexibility under certain circumstances. Ex:
γ : [0, 1]→ R2 with γ making a small angle with y = x.

– Extension from boundaries of simplices.
– Scaling argument shows that a L-Lipschitz map on the boundary of a

simplex can be extended to a cL-Lipschitz map on the simplex.
– Extend maps from spheres to balls.

• Proving microflexibility using infinitesimal invertibility:
– Horizontal planes are kernels of some 1-forms ηi.
– If f : R2 → G is smooth, then it is horizontal iff f∗(ηi) = 0.
– If f isn’t horizontal, can we perturb it to make it horizontal?
– Infinitesimal invertibility asks the same question infinitesimally – if f

is infinitesimally non-horizontal, can we perturb it to be horizontal?
– So let I be the differential operator f 7→ (f∗(ηi))i, and consider a

perturbation ft such that d
dtft|t=0 = h. Then consider d

dtI(ft)(v)|t=0.
– A priori, this is a degree 1 differential operator.
– But if we restrict to horizontal perturbations, the derivatives drop

out, and h 7→ d
dtI(ft) is a degree-0 differential operator on h (sending

g1 → Hom(Rk, g2) at each point). and if f satisfies some conditions,
then that operator is surjective. So I is infinitesimally invertible for
appropriate f ; Gromov calls these f regular, and the Gromov-Nash
Implicit Function Theorem implies microflexibility.

– Examples: H5, other Heisenberg groups, generic groups satisfying an
inequality.

5.0.3. Filling cycles by approximations. Here’s a completely different method of
producing fillings of spheres:

Thm (Young): When G is a Carnot group and there are sufficiently many hori-

zontal maps ∆k → G, then FVk(V ) � V k/(k−1).
References:

• Young, “Filling inequalities for nilpotent groups”

Outline:

• The basis of this idea is producing fillings using approximations. Rn is a
good example: Federer and Fleming initially proved a bound on the higher
filling functions of Rn using approximations, and this is a variant of their
approach:
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•

• Calculating area:

Approximations Homotopies Area
α : ` segments of length 1 R1(α) : ∼ ` 1× 1 squares ∼ `
P1(α) : ∼ `/2 segments of
length 2

R2(α) : ∼ `/2 2× 2 squares ∼ 2`

...

Pk(α) : ∼ `/2k segments of
length 2k

Rk(α) : ∼ `/2k 2k × 2k

squares
∼ 2k`

All this stops when Pk(α) is nothing – i.e., when ` ∼ 2k. The total area
is then ∼ 2k` ∼ `2.

• Generalize to n-cycles.

Approximations Homotopies Volume
α : V n-cubes of side 1 R1(α) : ∼ V (n + 1)-cubes of

side 1
∼ V

P1(α) : ∼ V/2n n-cubes of
side 2

R2(α) : ∼ V/2n (n+ 1)-cubes
of side 2

∼ 2V

...

Pk(α) : ∼ V/2kn n-cubes of
side 2k

Rk(α) : ∼ V/2kn (n+1)-cubes
of side 2k

∼ 2kV

All this stops when Pk(α) is nothing – i.e., when V ∼ 2kn. The total

volume is then ∼ 2kV ∼ V n+1
n .

• When is this possible in nilpotent groups? When we can approximate by
simplicial cycles and when we can go from one approximation to another.

Thm (Young): If G is a Carnot group with a lattice Γ and if there are
“enough” horizontal maps Rk → G, then FV k(V ) � V k/(k−1).
• Basic tool: Federer-Fleming Deformation Lemma: (a simplified version)

Theorem 1. If τ is a simplicial complex and if α is a singular Lipschitz
k-chain in τ such that ∂α is a simplicial k − 1-cycle in τ , then there is a
simplicial k-chain Pτ (α) which approximates α in the sense that:

– massPτ (α) ≤ cmassα
– ∂Pτ (α) = ∂α
– FV (α− Pτ (α)) ≤ cmassα.
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So if f : τ → G is a map which is horizontal on k-cells of τ , then
f](Pτ (α)) is horizontal. So part of “enough” is that such a map f exists.
Let P (α) = f](Pτ (α)).
• Scalings give us the rest of the Pi: let

Pi(α) = s2i(P (s2−i ◦ α)).

• With some extra horizontal maps, we can connect those approximations to
get the Ri(α).
• Example: H5

• Example: Central products of free nilpotent groups.
• Example: Higher-order Dehn functions of Heisenberg groups H2n+1 – Lots

of horizontal maps for k ≤ n, none for k > n
• Example: Jet groups
• Open question: what happens when there aren’t as many horizontal maps?

– Example: Higher-dimensional Heisenberg groups:
– Chains are non-horizontal and scale differently.
– Say we fix a k − 1-sphere α: then the volume grows like tdk−1 , and

the filling volume is at most tdk ; so you might guess that FV k(V ) ∼
V dk/dk−1 . This turns out to be correct (conjecture of Gromov). Does
it generalize?

– So, sample conjecture: If G is a Carnot group, is there a cycle α so
that st(α) has near-maximal filling volume?

5.0.4. Lower bounds using the asymptotic cone. References:

• Wenger, “Nilpotent groups without exactly polynomial Dehn function”

Outline:

• Examples using central products:
– Quotients by commutators have quadratic Dehn function.

Thm: Let G be a class-2 nilpotent Lie group with Lie algebra g =
V1 ⊕ V2 and such that FV 2(`) ∼ `2. If u, v ∈ V1, then g′ = g/〈[u, v]〉
is the Lie algebra of a nilpotent Lie group G′ such that FV 2

G′(`) � `2.
Proof: We identify Lie groups and their Lie algebras by the exponential
map. Recall horizontal lifting – if h = W1 ⊕W2 is the lie algebra of a
Carnot group H and γ : [0, 1]→W1 is Lipschitz, we define

γ̃(t) = (γ(t),

∫ t

0

1

2
[γ(t), ˙γ(t)] dt).

This is horizontal, and if p : h→W1 is the projection and α : [0, 1]→ h
is a horizontal map such that α(0) = 0, then α is the lift of p ◦ α.
Let α′ be a closed curve in G′; without loss of generality, we can
assume that α′ is horizontal and α′(0) = 0. Let β : [0, 1] → V1 be
the projection of α′ to V1 and let α′ be the lift of β to G. This is no
longer closed, but the endpoint only differs by a multiple of [u, v]. Fill
it in with the commutator [tu, tv], fill in G, then project to G′. After
adding in a square filling [tu, tv], we get a filling of α.

– Quotients by anything have n2 log n Dehn function.
Thm: Let G be a class-2 nilpotent Lie group with Lie algebra g =
V1 ⊕ V2 and such that FV 2(`) ∼ `2. If w ∈ V2, then g′ = g/〈w〉 is the
Lie algebra of a nilpotent Lie group G′ such that FV 2

G′(`) � `2 log `.
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Proof:
As before start with α′ and lift it to G′. This is no longer closed, but
the endpoint only differs by a multiple of w. Close up the curve with
a geodesic γ, then scalings of γ.

– Is this ever sharp?
• Wenger proved a result in this direction – that if w is not a commutator,

then the Dehn function is not quadratic.
• Technique: Take fillings of a scaled curve. These converge to a Lipschitz

current, using the same techniques as before (trimming to make it uniformly
compact, etc.) But analysis of the asymptotic cone makes it impossible –
fill in details if necessary.

5.0.5. Open questions.

• Given a nilpotent group (even a class-2 nilpotent group), can we calculate
its Dehn function? Higher-order Dehn functions?

– If dim g1 ≥ 2 dim g2, then quadratic for generic G.
– OTOH, if

(
dim g1

3

)
< (dim g1)(dim g2), then cubic. What happens

inbetween?
• Given a nilpotent group with a Carnot metric, what are the possible Haus-

dorff dimensions of closed, compact submanifolds of different dimensions?
• Filling questions involving Hausdorff dimensions.

5.1. Filling inequalties and asymptotic cones. Last time: Gave a vague illus-
tration of how to go back and forth between a space and its asymptotic cone: this
time, I want to go into more detail about that transfer, with some theorems about
how to go back and forth.

• Going back and forth. Lipschitz maps with the same Lipschitz constant
work well.
• OTOH, a map to X∞ is a sequence of maps to scaled copies – f =

limω fi, where fi : M → (X, d/di), but it’s hard to control that sequence:
d(fi(x), fi(y))/di → d(f(x), f(y)) only on a subsequence of i’s.
• Thm (Papasoglu): If X is a simply-connected, geodesic metric space with

bounded local geometry (e.g., a manifold on which a group acts geometri-
cally) such that all of its asymptotic cones have FA(`; s) ≤ `p for all ` > 1,
then X has δ(`) � `p+ε.
• Thm (Gromov): If X is a simply-connected, geodesic metric space with

bounded local geometry and all of its asymptotic cones are s.c., then there
is a p such that δ(`) � `p+ε.
• Define FA(`; s):

– You can break down any curve of length ` into FA(`; s) curves of
length s.

– If τ is a partition of a disc into polygons ρi and f : τ (0) → X, then
Mesh(f, τ) = max perim(f(ρi)).

– FA(α; s) = minMesh(f,τ)≤s #τ
• Proof:

– ETS that FAXn/2(n) ≤ c for some c.

– Proceed by contradiction. Find a limiting curve. This has a filling,
partition very finely by uniform continuity, etc.
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Similarly, simply connected implies polynomial Dehn function. A different argu-
ment (due to ?) shows that a quadratic Dehn function implies a simply-connected
asymptotic cone.

5.2. Hyperbolic groups. Okay, so there are connections between the Dehn func-
tion and the geometry of the asymptotic cone. Last time, one of our examples of
an asymptotic cone was the hyperbolic plane – it had an R-tree as its asymptotic
cone. Now, that’s really distinctive, and it turns out to have noticable consequences
for the Dehn function. What I’d like to do is talk about similar spaces – spaces
whose asymptotic cones are trees – and how that affects their Dehn function and
talk about how that generalizes to higher-dimensional questions.

So, the asymptotic cone of the hyperbolic plane is an infinite tree, and this is
basically because if you pick a direction and go out in that direction, then pick a
different direction, and so on, then the best way back is basically to retrace your
steps – there are not shortcuts. You can see this in the behavior of the random
walk – if you take an n-step walk in the plane, you end up at a distance of

√
n. If

you do that in the hyperbolic plane, you end up at a distance of n, because there
are no shortcuts.

Gromov had the idea that this “no shortcuts” property ought to be a large-scale
geometry phenomenon – that there ought to be a way of defining a QI-invariant
notion of “negative curvature”. The generalization he came up with is known as
δ-hyperbolicity or Gromov hyperbolicity, and it turns out to be a really powerful
notion; there are a lot of equivalent ways to define hyperbolicity, and it links a lot
of different phenomena.

References:

• Alonso et al., H. Short (editor), Notes on word hyperbolic groups
• Bowditch, A short proof that a subquadratic isoperimetric inequality im-

plies a linear one
• Väisälä, Gromov hyperbolic spaces

Outline:

• Negative curvature phenomena:
– A unique geodesic between any pair of points
– Geodesics diverge exponentially quickly.
– Triangles are close to tripods.

• δ-hyperbolic spaces are spaces with thin triangles.
– Neighborhoods of edges (Rips)
– Gromov product: Given a base point w ∈ X, define

(x, y)w =
1

2
(d(x,w) + d(w, y)− d(x, y))

In a tree, this represents the distance from w to the geodesic from x
to y.
If this satisfies a coarse ultrametric inequality:

(x, y)w ≥ min{(x, z)w, (y, z)w} − δ

then the space is δ-hyperbolic. (Independent of base point up to a
change in δ.)

– Geodesic stability: Geodesics are isometric embeddings; quasi-geodesics
are QI-embeddings. If X is δ-hyperbolic, then all (k, c)-quasi-geodesics
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between a and b are within C(k, c, δ) of one another, and vice versa.
Note – this property is QI-invariant.

• Examples: trees are 0-hyperbolic. Hyperbolic space. Not Rn.
• Hyperbolicity can also be characterized using the Dehn function: G is a

group which is hyperbolic wrt the word metric iff G has a linear Dehn
function (even subquadratic).
• Remark: This means that there’s a gap in the isoperimetric spectrum
• Why?

– One possibility: if X is δ-hyperbolic, then its asymptotic cone is an
R-tree. By Papasoglu, X has a subquadratic DF.

– Conversely, if the DF is linear, then there aren’t any thick triangles

The beauty of hyperbolicity is that there are so many equivalent definitions –
hyperbolic spaces are so distinctive that these three ways of looking at them (metric
inequalities, asymptotic cones, Dehn functions) give the same definition.

Are spaces which have 2-dimensional asymptotic cones or strong bounds on the
filling volumes of spheres equally distinctive?

5.3. Generalizing hyperbolicity. References:

• Gromov, “Filling Riemannian manifolds”
• Wenger, “A short proof of Gromov’s filling inequality”
• Wenger, “The asymptotic rank of metric spaces”
• Kleiner, “The local structure of length spaces with curvature bounded

above”

Summary:

• One candidate: G acts on a rank k Hadamard space.
• Hadamard spaces - generalization of a manifold with nonpositive sectional

curvature.
– Are complete CAT(0) spaces.
– CAT(0) – geodesic metric space with non-positive curvature. Triangles

are “thinner” than those in Euclidean space.
– Example: non-positively curved manifolds, but also trees, products of

trees, etc.
– Consequences:

∗ Unique geodesics.
∗ Distance function is convex – if γ1, γ2 are geodesics, then d(γ1(t), γ2(t))

is convex.
∗ Hadamard spaces have δ(`) � `2.

∗ Hadamard spaces satisfy cone-type inequalities: FVk(α) ≤ diam(α)mass(α)
• Euclidean rank: dimension of the maximal isometric copy of Rk in a space.
• Examples:

– Hyperbolic space is HR1

– Trees
– H2 ×H2 is HR2

– product of two trees has rank 2.
• Define: X is HRk if it is a Hadamard space with euclidean rank k and

which has a proper, cocompact group action.
• Gromov’s aphorism: Rank k spaces should show hyperbolic behavior in

dimensions k and higher.
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• Recent research has studied how to generalize notions of hyperbolicity:
– Asymptotic cones: HRk implies that asymptotic cone has geometric

dimension k (asymptotic rank is k).
– Dehn function: HRk spaces have small higher-order Dehn functions

(i.e. spheres are easy to fill).
– Metric inequalities: Coarse uniqueness of quasi-qeodesics vs. Kleiner

and Lang’s work on quasi-minimizers

The proof of the second thing above (that HRk spaces have small higher-order
Dehn functions) is a particularly good illustration of how the geometry of the
asymptotic cone affects the geometry of the space; the next section will be a sketch
of the proof.

5.4. Higher-order filling functions of HRk spaces.

• References:
– Gromov, “Filling Riemannian manifolds”
– Wenger, “A short proof of Gromov’s filling inequality”
– Wenger, “The asymptotic rank of metric spaces”

• Higher-order filling functions:
– Define FVX

k geometrically for (k − 1)-connected spaces X (using Lip-
schitz singular chains)

– Define FVG
k geometrically for groups G which act geometrically on

(k − 1)-connected spaces.

• Ex: Almgren: FVRn

k (V ) ∼ V k/(k−1).
The main difference between Dehn functions and higher-order Dehn functions is

that closed curves can be parameterized by length, but spheres can’t be. This has
a lot of consequences.

• Higher-order difficulty: The diameter of a curve is bounded by its length;
not so for spheres. Even simple facts become difficult (example: filling
spheres in Rn).

• Gromov solved this by a cutting procedure (Wenger has given a very nice
simplified and generalized version of this procedure, whose exposition I’ll
follow).

• Lemma: There is a d > 1 such that for almost every x ∈ spt(α) and all
0 < ε� 1, there is an r > 0 such that α∩B(x, r) is a chain αx,r such that:

(1) Roundness: M(αx,r) ≥ rkεk−1

d
(2) Small caps: FV(∂αx,r) ≤ dεM(αx,r)
(3) Maximality: M(αx,5r) ≤ dM(αx,r)

Proof. Let r0 = max{r ≥ 0 | M(αx,r) ≥ εk−1rk}. This is > 0 for almost
every x ∈ spt(α). If r0 ≤ r ≤ 2r0, then properties 1 and 3 are clear. It
remains to check 2.

SinceM(r0) = εk−1rk0 andM(2r0) < εk−1(2r0)k, there is an r0 ≤ r ≤ 2r0
such that M ′(r) ≤ 2kεk−1rk−10 . By induction,

FV(∂αx,r) ≤ cM(∂αx,r)
k/(k−1)

≤ dεkrk0
≤ dεM(αx,r0).

�
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• By Vitali’s covering lemma, we can find enough disjoint αx,r’s to make up a
positive fraction of α. Take α̂x,r their sealed version, and look at α−

∑
α̂x,r.

If ε is small, this is a smaller cycle – repeat until satisfied.
• Wenger showed that for an HRk space, we can do slightly better:
• Thm (Wenger): If G is HRk, then

FVG
i (V ) ∼ V (i+1)/i when i ≤ k

and
FVG

i (V ) ≺ V (i+1)/i when i > k.

In particular, you can determine the rank of G from its filling functions.
• Sketch:

– If G is HRk, then G∞ has geometric dimension k. In particular, there
are no nonzero k + 1-currents in G∞.

– On the other hand, G∞ is contractible, because G is Hadamard. So
any k-cycle in G∞ is the boundary of a k+ 1-current – so any k-cycles
must be 0 too.

– We claim that if there is a sequence of cycles which is hard to fill, then
there is a non-zero k-cycle in G∞ – this is a contradiction.

– How do we show this? Using similar methods to the ones we used be-
fore, we can show that, in a CAT(0) space with FVG

k+1(V ) ∼ V (k+1)/k,
we can find a sequence of tendril-free cycles αn with mass Vn such that

Vn →∞ and FVG
k+1(αn) ∼ V (k+1)/k

n .
That is, since X is a CAT(0) space, we can take a sequence of cycles
with maximal filling volume and trim them to be uniformly compact.

– Tendril-freeness means that the supports of (scalings of) these cycles
are uniformly compact. The support converges to a subset of the
asymptotic cone, and the cycles converge to a non-zero cycle in the
asymptotic cone – this is a contradiction.

• Open questions:
– Can we improve “strictly less than V (k+1)/k” to linear?
– Can we define spaces like this in some coarse way, as for δ-hyperbolicity?
– Corollary of previous two: Can we generalize the existence of a “gap”

in the Dehn function? What’s the largest class of groups where there’s
a gap in the higher-order DFs?


