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What is quantitative geometry?

One answer: Making existence problems quantitative.

I A closed manifold has closed geodesics. (Lusternik-Fet)
Q: What’s the length of the shortest closed geodesic?
A: Gromov’s systolic inequality

I A map f : X → Y is homotopic to a cellular map f̄ .
Q: How big is f̄ (X )?
A: The Federer-Fleming deformation theorem

I A compact metric space can be covered by finitely many
metric balls.
Q: How many?
A: Hausdorff measure and Hausdorff dimension

I If X is simply connected, then every curve in X bounds a disc.
Q: How big is the filling?
A: The Dehn function
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Measuring simple connectivity: The Dehn function

Let X be a simply-connected simplicial complex or manifold and
let α : S1 → X be a closed curve. Define

δ(α) = inf
β:D2→X

β|S1=α

areaβ.

δX (n) = sup
α:S1→X
`(α)≤n

δ(α).

In the case of R2, the circle has maximal area for a given
perimeter, so δR2(2πr) = πr2.
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The word problem: how do you recognize the identity?

Let G = 〈g1, . . . , gn | r1, . . . , rm〉.

The word problem: If w is a product of generators (a word), how
can we tell if it represents the identity?
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Reducing using relations

Any two words representing the same group element can be
transformed into each other by:

I Application of a relation:

wr±1
i w ′ ↔ ww ′

I Free insertion/reduction:

wg±1
i g∓1

i w ′ ↔ ww ′

Q: How many steps does this take?
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The Dehn function of a group

If w represents the identity, define

δ(w) = # of applications of relations to reduce w

and
δG (n) = max

`(w)≤n

w=G1

δ(w).



Example: Z2

Let Z2 = 〈x , y | [x , y ]〉. Going from xy to yx takes one application
of the relation:

xy → (yxy−1x−1)xy → yx .

So if w = x2y2x−2y−2, then w represents the identity and
δ(w) = 4.
Similarly, δ(xnynx−ny−n) = n2.

This implies that δZ2(4n) ≥ n2; in fact, δZ2(4n) = n2.

Theorem (Gromov)

When G acts geometrically (properly discontinuously, cocompactly,
by isometries) on a space X , the Dehn function of G and of X are
the same up to constants.
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Fundamental groups of surfaces
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G = 〈a, b, c , d | aba−1b−1cdc−1d−1〉
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Dehn’s algorithm for the word problem

Let w be a word.

1. Look for a subword that consists of more
than half of the octagon

w = . . . dc−1d−1ab . . .

2. Apply a relation to shorten it.

w = . . . c−1ba . . .

3. Repeat.

a

a
b

b
c

c

d

d

If this reduces w to the trivial word, it represents the identity;
otherwise, it doesn’t.
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The universal cover is the hyperbolic plane

a

c

a

b

b

d

c

d

Any closed path of edges (and thus any word that represents the
identity) must contain most of an octagon.











Linear Dehn functions correspond to negative curvature

Theorem (Gromov, Lysenok, Cannon)

If G is a finitely presented group, the following are equivalent:

I Dehn’s algorithm solves the word problem

I G is word-hyperbolic (i.e., triangles in the Cayley graph are
thin)

Theorem (Gromov)

If G is a finitely presented group, the following are equivalent:

I G is word-hyperbolic

I δG (n) ∼ n

I δG (n) � n2

I Geodesics diverge exponentially

I Several other definitions
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Examples

I Any negatively curved space has Dehn function bounded by n.

I Any non-positively curved space has Dehn function bounded
by n2.

I For any integer c ≥ 2, there’s a nilpotent group with Dehn
function growing like nc .

I The Baumslag-Solitar group 〈a, b | a−1ba = b2〉 has
exponential Dehn function.

I There are groups with two generators and one relation which
have Dehn function larger than any tower of exponentials.

I If G has unsolvable word problem, then δG is larger than any
computable function.
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Sol3 =


et 0 x

0 e−t y
0 0 1

∣∣∣∣∣∣x , y , t ∈ R


has exponential Dehn function.

Sol3 ⊂


ea 0 x

0 eb y
0 0 1

 ∼=
{(

ea x
0 1

)}
×

{(
eb y
0 1

)}
= Hyp2×Hyp2
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Open questions

I Similar geometry shows up in semisimple groups. (e.g., Druţu,
Bux-Wortman, Y.) What can you say about them?

I Filling spheres and cycles rather than curves?

I Other groups?
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