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Fillings in lattices in semisimple groups

Conjecture (Gromov, Bestvina-Eskin-Wortman,
Leuzinger-Pittet)

Roughly, in a non-uniform lattice in a symmetric space with rank
n, it should be easy to find fillings of spheres with dimension
≤ n− 2, but there should be (n− 1)-dimensional spheres which are
hard to fill.

Today:

I Why should we believe this conjecture?

I Why is it harder to fill spheres than to fill curves?

I How can we find fillings of spheres in solvable groups?
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The Dehn function: Measuring simple connectivity

Let X be a simply-connected simplicial complex or manifold and
let α : S1 → X be a closed curve. Define

δ(α) = inf
β:D2→X

β|S1=α

areaβ.

δX (n) = sup
α:S1→X
`(α)≤n

δ(α).

In the case of R2, the circle has maximal area for a given
perimeter, so δR2(2πr) = πr2.
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The word problem: how do you recognize the identity?

Let G = 〈g1, . . . , gn | r1, . . . , rm〉.

The word problem: If w is a product of generators (a word), how
can we tell if it represents the identity?
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Reducing using relations

Any two words representing the same group element can be
transformed into each other by:

I Application of a relation:

wr±1
i w ′ ↔ ww ′

I Free insertion/reduction:

wg±1
i g∓1

i w ′ ↔ ww ′

Q: How many steps does this take?
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The Dehn function of a group

If w represents the identity, define

δ(w) = # of applications of relations to reduce w

and
δG (n) = max

`(w)≤n

w=G1

δ(w).



Example: Z2

Let Z2 = 〈x , y | [x , y ]〉. Going from xy to yx takes one application
of the relation:

xy → (yxy−1x−1)xy → yx .

So if w = x2y2x−2y−2, then w represents the identity and
δ(w) = 4.
Similarly, δ(xnynx−ny−n) = n2.

This implies that δZ2(4n) ≥ n2; in fact, δZ2(4n) = n2.

Theorem (Gromov)

When G acts geometrically (properly discontinuously, cocompactly,
by isometries) on a space X , the Dehn function of G and of X are
the same up to constants.
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Dehn function examples – Combinatorial

The Dehn function reflects the complexity of the word problem.

I If G has unsolvable word problem, then δG is larger than any
computable function.

I If G is automatic, then δG (n) - n2.
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Dehn function examples – Geometric

The smallest Dehn functions are equivalent to negative curvature.

I If X has pinched negative curvature, then we can fill curves
using geodesics. These discs have area linear in the length of
their boundary, so δX (n) ∼ n.

I In fact, G is a group with sub-quadratic Dehn function (� n2)
if and only if G is δ-hyperbolic (Gromov).



Dehn function examples – Geometric

Nonpositive curvature implies quadratic Dehn function:

I If X has non-positive curvature, we can fill curves with
geodesics, but the discs may have quadratically large area.

I But the class of groups with quadratic Dehn functions is
extremely rich; it includes Thompson’s group (Guba), many
solvable groups (Leuzinger-Pittet, de Cornulier-Tessera), some
nilpotent groups (Gromov, Sapir-Ol’shanskii, others), SL(n; Z)
for large n (Y.), and many more.
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Sol3 and Sol5

Sol3 =


et 0 x

0 e−t y
0 0 1

∣∣∣∣∣∣x , y , t ∈ R



has exponential Dehn function. (Gromov)

Sol5 =



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0 et2 0 y
0 0 et3 z
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∑
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0 1
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Larger ranks

In general,

I Sol2n−1 ⊂ (H2)n

I i.e., Sol2n−1 is a subset of a symmetric space of rank n

I So Sol2n−1 contains lots of (n − 1)-dimensional surfaces
(intersections with flats), but no n-dimensional surfaces.

I It should be easy to find fillings of spheres with dimension
≤ n − 2, but there are (n − 1)-dimensional spheres which are
hard to fill.
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Low dimensions

Constructing short curves in rank 2:

I (Lubotzky-Mozes-Raghunathan) If Γ is an irreducible lattice in
a semisimple group G of rank ≥ 2, then dΓ(x , y) ∼ dG (x , y)
for all x , y ∈ Γ.

Constructing small discs in rank 3:

I (Druţu) If Γ is an irreducible lattice of Q-rank 1 in a
semisimple group G of rank ≥ 3, then δΓ(n) . n2+ε.

I (Y.) δSL(p;Z)(n) . n2 when p ≥ 5 (i.e., rank ≥ 4).

I (Leuzinger-Pittet) If Γ is an irreducible lattice in a semisimple
group G of rank 2, then it has exponential Dehn function.
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Higher dimensions

Fillings by balls (large k):

I (Bestvina-Eskin-Wortman) If Γ is an irreducible lattice in a
semisimple group G which is a product of n simple groups and
k < n, then the (k − 1)st Dehn function of Γ is bounded by a
polynomial.

I (Y.) If k ≤ n − 2, any k-sphere of volume rk in Sol2n−1 has a
filling of volume ∼ rk+1.
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Filling curves in Sol5

I Most flats in H2 ×H2 ×H2 intersect Sol5 in an octahedron.

I Curves in this octahedron are (quadratically) easy to fill.

I So we’ll fill arbitrary curves by breaking them down into
simple curves that lie in finitely many flats.
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Fillings in Sol5

Two lemmas:

1. Simple edges: Any two points can be connected by a curve
which lies in a flat.

2. Simple triangles: A curve in a finite union of flats can be filled
with a disc in a (larger) finite union of flats.

An arbitrary curve can be broken into triangles. Adding up the
filling areas of these curves gives us δSol5(`) ≤ `2.
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Filling in higher dimensions

If n > k, then a k − 1-sphere in a finite union of flats in Sol2n−1

can be filled with a k-disc in a (possibly larger) finite union of flats.

How do we break down a k − 1-sphere into “simple spheres”?
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From Lipschitz spheres to arbitrary cycles

Problem: Lipschitz spheres break down into simplices very nicely,
but arbitrary spheres don’t.

Solution: In Rn, we can use Whitney decompositions:



From Lipschitz spheres to arbitrary cycles

Problem: Lipschitz spheres break down into simplices very nicely,
but arbitrary spheres don’t.
Solution: In Rn, we can use Whitney decompositions:



From Lipschitz spheres to arbitrary cycles

In general, there’s a nice analogue of this construction due to Lang
and Schlichenmaier – (H2)

n breaks down into nice pieces and we
can use that to break a filling of α into nice simplices.



Generalizing further

This gives a way to turn a Lipschitz extension theorem into a filling
inequality.

I It turns out that this technique is extremely general – the full
generality is spaces which QI embed into a space with finite
Assouad-Nagata dimension.

I One project: Apply this to lattices in semisimple groups.

I Question: Which other spaces does this work for?



Generalizing further

This gives a way to turn a Lipschitz extension theorem into a filling
inequality.

I It turns out that this technique is extremely general – the full
generality is spaces which QI embed into a space with finite
Assouad-Nagata dimension.

I One project: Apply this to lattices in semisimple groups.

I Question: Which other spaces does this work for?



Generalizing further

This gives a way to turn a Lipschitz extension theorem into a filling
inequality.

I It turns out that this technique is extremely general – the full
generality is spaces which QI embed into a space with finite
Assouad-Nagata dimension.

I One project: Apply this to lattices in semisimple groups.

I Question: Which other spaces does this work for?


