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Note: Most of the illustrations in these notes are omitted. Please draw
your own!

2. Geometric structures on surfaces

We know now what surfaces have flat structures, and it’s not very many
– plane, cylinder, Mobius strip, torus, Klein bottle. What about the rest?

Theorem 2.1. Every compact surface is homeomorpic to either a flat sur-
face, a spherical surface, or a hyperbolic surface.

Recall that a flat surface is one which is locally isometric to the plane
(small balls in the surface are isometric to small balls in the plane). A
spherical surface is one which is locally isometric to a sphere, and a hyper-
bolic surface is locally isometric to the hyperbolic plane (which we’ll talk
about tomorrow).

These are examples of geometric structures on surfaces; a surface with
a geometric structure is a surface which is locally isometric to some homo-
geneous model space. So in two dimensions, we can describe any compact
surface using three model spaces: the plane, the sphere, and the hyperbolic
plane. We’ve already seen the surfaces modeled on the plane, so let’s look
at the other two.

2.1. The sphere. If you’ve done some air travel, geometry on the sphere
should be a little familiar.

On the small scale, geometry on the sphere is arbitrarily close to geom-
etry on the plane. Geodesics are great circles, so if we look at them close
up, they’re basically lines, and if I have some picture in the plane, I can
draw something very close on the sphere.

You only really start to see the differences with the plane when you
zoom out. So what changes? Geodesics are great circles, and any two
great circles intersect, so there aren’t any parallel lines. Triangles have
larger angles than usual. (For example, an equilateral triangle with sides
of length π/2 (i.e., 1/4th of a great circle) has three right angles.) In fact,
there’s a formula: in the plane, you have α + β + γ = π, but in the sphere,
you have α + β + γ = π + area ∆.

Furthermore, circles are a little shorter than you’d expect: in the plane,
a circle of radius r has circumference 2πr. In the sphere, you can calculate,
and it’s 2π sin(r).

2.2. Surfaces based on the sphere. Suppose S is a complete surface
with a geometric structure modeled on the sphere. Then what is S?

Just like before, if S is modeled on the sphere, its universal cover is a
sphere, and we can view S as a quotient of the sphere by some fixed-point-
free group of symmetries. Any symmetry of the sphere is either a rotation
or a reflection plus a rotation. But any rotation has an axis (if you’ve done
some linear algebra, try to prove this!) so the group of symmetries can’t
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have any rotations except the identity. The square of any reflection or any
reflection + rotation is a rotation, so any symmetry in the group has to
have square equal to the identity. In fact there are only two possibilities:
the group is trivial (so the surface is the whole sphere) or the group is made
up of two symmetries, the identity and the map that sends every point of
the sphere to the point exactly opposite (the antipodal map).

In this case, any hemisphere is a fundamental domain for the action. If
we glue a hemisphere by gluing each point to its opposite point, we get a
surface called the projective plane.


