Homological and homotopical filling functions

Robert Young
University of Toronto

Feb. 2012
The isoperimetric problem

Q: Given a curve of length l in the plane, what’s the maximum area it can enclose?
Q: Given a curve of length l in the plane, what’s the maximum area it can enclose? If $\gamma : S^1 \to \mathbb{R}^2$, let $F(\gamma)$ be the “area” of γ. Then we want to calculate:

$$i(n) = \sup_{\alpha : S^1 \to \mathbb{R}^2} f(\alpha).$$

$$\ell(\alpha) \leq n$$
Q: Given a curve $\alpha : S^1 \to X$, what’s its filling area?
Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G.
- Loops in X correspond to words in G that represent the identity.
- Discs in X correspond to proofs that a word represents the identity.

So by studying discs in X, we can get invariants related to the combinatorial group theory of G!
The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity
- Discs in X correspond to proofs that a word represents the identity

So by studying discs in X, we can get invariants related to the combinatorial group theory of G!
The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity

So by studying discs in X, we can get invariants related to the combinatorial group theory of G!
The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity
- Discs in X correspond to proofs that a word represents the identity
The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity
- Discs in X correspond to proofs that a word represents the identity

So by studying discs in X, we can get invariants related to the combinatorial group theory of G!
The geometric measure theory perspective

The Plateau problem: Is every curve in \(X \) filled by some minimal surface?
The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?

Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
The geometric measure theory perspective

The **Plateau problem**: Is every curve in X filled by some minimal surface?

Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.
The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?
Federer and Fleming constructed spaces of currents:
- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.
- Currents satisfy nice compactness properties.
The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?

Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.
- Currents satisfy nice compactness properties.

So we can find minimal currents filling a curve by taking limits of surfaces whose area approaches the infimum!
Two filling area functions

Let X be a simply-connected simplicial complex or manifold.
Two filling area functions

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \rightarrow X$ be a closed curve.

$$\delta(\alpha) = \inf_{\beta : D^2 \rightarrow X} \text{area } \beta.$$

$$\text{with } \beta|_{S^1} = \alpha.$$
Two filling area functions

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a closed curve.

Let a be a 1-cycle.

$$\delta(\alpha) = \inf_{\beta : D^2 \to X} \text{area } \beta.$$
$$\beta |_{S^1} = \alpha$$

$$\text{FA}(a) = \inf_{\beta \text{ a 2-chain}} \text{area } \beta.$$
$$\partial \beta = a$$
Two filling area functions

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a closed curve.

\[
\delta(\alpha) = \inf_{\beta : D^2 \to X} \text{area } \beta.
\]

\[
\delta_X(n) = \sup_{\alpha : S^1 \to X} \delta(\alpha).
\]

Let β be $\partial \beta = a$.

\[
\text{FA}(a) = \inf_{\beta \text{ a 2-chain}} \text{area } \beta.
\]

We call δ_X the homotopical Dehn function and FA the homological Dehn function.
Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a closed curve.

$$\delta(\alpha) = \inf_{\beta : D^2 \to X} \text{area } \beta.$$
$$\delta_X(n) = \sup_{\alpha : S^1 \to X} \delta(\alpha).$$

Let a be a 1-cycle.

$$\text{FA}(a) = \inf_{\beta \text{ a 2-chain} \atop \partial \beta = a} \text{area } \beta.$$
$$\text{FA}_X(n) = \sup_{a \text{ a 1-cycle} \atop \ell(a) \leq n} \text{FA}(a).$$

We call δ_X the homotopical Dehn function and FA_X the homological Dehn function.
Two filling area functions

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a closed curve.

$$\delta(\alpha) = \inf_{\beta : D^2 \to X} \text{area } \beta.$$
$$\beta|_{S^1} = \alpha$$

$$\delta_X(n) = \sup_{\alpha : S^1 \to X, \ell(\alpha) \leq n} \delta(\alpha).$$

Let a be a 1-cycle.

$$FA(a) = \inf_{\beta \text{ a 2-chain } \partial \beta = a} \text{area } \beta.$$

$$FA_X(n) = \sup_{a \text{ a 1-cycle } \ell(a) \leq n} FA(a).$$

We call δ_X the homotopical Dehn function and FA_X the homological Dehn function.
Question: Can we find nice spaces (say, spaces with a geometric action by some G) where these are different?
Question: Can we find nice spaces (say, spaces with a geometric action by some \(G \)) where these are different?

Theorem (Abrams, Brady, Dani, Guralnik, Lee, Y.)

Yes.
Finitely generated and finitely presented are part of a spectrum of properties:
Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\iff G$ is finitely generated.
- G acts geometrically on a simply-connected complex $\iff G$ is finitely presented.
- G acts geometrically on a $n-1$-connected complex $\iff G$ is F_n.
 (Equivalently, G has a $K(G,1)$ with finite n-skeleton.)
Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\iff G$ is finitely generated.
Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\iff G$ is finitely generated.
- G acts geometrically on a simply-connected complex $\iff G$ is finitely presented.
Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\iff G$ is finitely generated.
- G acts geometrically on a simply-connected complex $\iff G$ is finitely presented.
- G acts geometrically on a $n-1$-connected complex $\iff G$ is \mathcal{F}_n.

(Equivalently, G has a $K(G, 1)$ with finite n-skeleton.)
Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\iff G$ is finitely generated.
- G acts geometrically on a simply-connected complex $\iff G$ is finitely presented.
- G acts geometrically on a $n - 1$-connected complex $\iff G$ is \mathcal{F}_n.
 (Equivalently, G has a $K(G, 1)$ with finite n-skeleton.)
Homological finiteness properties

G is FP$_n$ if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$-module which is finitely generated in dimensions $\leq n$.

In particular, if G is FP$_n$, we can take a $K(G,1)$ with finite n-skeleton and consider its simplicial chain complex. Or if G acts geometrically on some homologically n-connected space (i.e., with trivial $\tilde{H}_i(X;\mathbb{Z})$ for $i \leq n$).

δ and FA are quantitative versions of FP$_2$ and FP$_2$.
Homological finiteness properties

G is FP$_n$ if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$-module which is finitely generated in dimensions $\leq n$.

- In particular, if G is \mathcal{F}_n, we can take a $K(G, 1)$ with finite n-skeleton and consider its simplicial chain complex.
Homological finiteness properties

G is FP$_n$ if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$-module which is finitely generated in dimensions $\leq n$.

- In particular, if G is \mathcal{F}_n, we can take a $K(G,1)$ with finite n-skeleton and consider its simplicial chain complex.
- Or if G acts geometrically on some homologically n-connected space (i.e., with trivial $\tilde{H}_i(X;\mathbb{Z})$ for $i \leq n$).
Homological finiteness properties

G is FP_n if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$-module which is finitely generated in dimensions $\leq n$.

- In particular, if G is \mathcal{F}_n, we can take a $K(G,1)$ with finite n-skeleton and consider its simplicial chain complex.
- Or if G acts geometrically on some homologically n-connected space (i.e., with trivial $\tilde{H}_i(X;\mathbb{Z})$ for $i \leq n$).

So δ and FA are quantitative versions of \mathcal{F}_2 and FP$_2$.
Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y's.
Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y's.

- K_Y is finitely generated if and only if Y is connected

- K_Y is finitely presented if and only if Y is simply connected

- K_Y is F_n if and only if Y is $n-1$-connected

- K_Y is FP_n if and only if Y is homologically $n-1$-connected
Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y's.

- K_Y is finitely generated if and only if Y is connected
- K_Y is finitely presented if and only if Y is simply connected
- K_Y is F_n if and only if Y is $n-1$-connected
- K_Y is FP_n if and only if Y is homologically $n-1$-connected
Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y’s.

- K_Y is finitely generated if and only if Y is connected
- K_Y is finitely presented if and only if Y is simply connected
- K_Y is F_n if and only if Y is $n-1$-connected
- K_Y is FP_n if and only if Y is homologically $n-1$-connected
First version of construction

Suppose X is a space (not necessarily with a group action) with large Dehn function,
First version of construction

Suppose X is a space (not necessarily with a group action) with large Dehn function, and suppose Y is a complex such that

- $H_1(Y)$ is trivial,
- $\pi_1(Y)$ is nontrivial,
- $\pi_1(Y)$ is generated by conjugates of γ.
First version of construction

Suppose X is a space (not necessarily with a group action) with large Dehn function, and suppose Y is a complex such that

1. $H_1(Y)$ is trivial,
2. $\pi_1(Y)$ is nontrivial,
3. $\pi_1(Y)$ is generated by conjugates of γ.

Then if we glue infinitely many scaled copies of Y to X, the result should have small homological Dehn function!
Let Y be a flag complex with trivial H_1 and nontrivial π_1, normally generated by a single element γ. Say γ is a path of length 4 in Y. Then, by Bestvina-Brady, the level set L_Y is acted on by a subgroup K_Y, and L_Y is made up of copies of Y. Furthermore, there is a copy of $F_2 \times F_2$ in A_Y corresponding to that square. Let $E = K_Y \cap F_2 \times F_2$. Then E acts on a subset $L_E \subset L_Y$ made up of copies of γ.
Let Y be a flag complex with trivial H_1 and nontrivial π_1, normally generated by a single element γ. Say γ is a path of length 4 in Y.

Then, by Bestvina-Brady, the level set L_Y is acted on by a subgroup K_Y, and L_Y is made up of copies of Y.

Let Y be a flag complex with trivial H_1 and nontrivial π_1, normally generated by a single element γ. Say γ is a path of length 4 in Y.

Then, by Bestvina-Brady, the level set L_Y is acted on by a subgroup K_Y, and L_Y is made up of copies of Y.

Furthermore, there is a copy of $F_2 \times F_2$ in A_Y corresponding to that square. Let $E = K_Y \cap F_2 \times F_2$.
Let Y be a flag complex with trivial H_1 and nontrivial π_1, normally generated by a single element γ. Say γ is a path of length 4 in Y.

Then, by Bestvina-Brady, the level set L_Y is acted on by a subgroup K_Y, and L_Y is made up of copies of Y.

Furthermore, there is a copy of $F_2 \times F_2$ in A_Y corresponding to that square. Let $E = K_Y \cap F_2 \times F_2$.

Then E acts on a subset $L_E \subset L_Y$ made up of copies of γ.

Modifying the construction for groups
So if we can find a copy of E in some other group D, we can amalgamate D and K_Y together along E.
So if we can find a copy of E in some other group D, we can amalgamate D and K_Y together along E.

There are semidirect products $D = F_n \rtimes (\phi,\phi) F_2$ which contain copies of E and have large Dehn functions.
So if we can find a copy of E in some other group D, we can amalgamate D and K_Y together along E.

There are semidirect products $D = F_n \rtimes_{(\phi,\phi)} F_2$ which contain copies of E and have large Dehn functions.

So we can construct an amalgam of D with several copies of K_Y, glued along E. This is a group with large homotopical Dehn function, but small homological Dehn function.
Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has $\text{FA}(n) \lesssim n^5$ but $\delta(n) \gtrsim n^d$ for any d, or even $\delta(n) \gtrsim e^n$.

In fact, if $\delta_k(n)$ is the k-th order homotopical Dehn function and FA_k is the corresponding homological Dehn function, then:

Yes! (ABDGLY)

$\delta_2 \prec \text{FA}_2 \delta_2 \succ \text{FA}_2$

Yes (Y)
No (Gromov, White)

$\delta_3^{+} \prec \text{FA}_3^{+} \delta_3^{+} \succ \text{FA}_3^{+}$

No (Brady-Bridson-Forester-Shankar)
No (Gromov, White)
Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has $FA(n) \lesssim n^5$ but $\delta(n) \gtrsim n^d$ for any d, or even $\delta(n) \gtrsim e^n$.

In fact, if $\delta^k(n)$ is the k-th order homotopical Dehn function and FA^k is the corresponding homological Dehn function, then:
Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has $\text{FA}(n) \preceq n^5$ but $\delta(n) \gtrsim n^d$ for any d, or even $\delta(n) \gtrsim e^n$.

In fact, if $\delta^k(n)$ is the k-th order homotopical Dehn function and FA^k is the corresponding homological Dehn function, then:

\begin{align*}
\delta &\preceq \text{FA} \\
\delta^2 &\preceq \text{FA}^2 \\
\delta^3+ &\preceq \text{FA}^{3+}
\end{align*}

\begin{align*}
\delta &\succ \text{FA} \\
\delta^2 &\succ \text{FA}^2 \\
\delta^3+ &\succ \text{FA}^{3+}
\end{align*}

Yes!(ABDGLY)
Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has $\text{FA}(n) \lesssim n^5$ but $\delta(n) \gtrsim n^d$ for any d, or even $\delta(n) \gtrsim e^n$.

In fact, if $\delta^k(n)$ is the k-th order homotopical Dehn function and FA^k is the corresponding homological Dehn function, then:

\[
\delta \prec \text{FA} \quad \quad \quad \delta \succ \text{FA} \\
\delta^2 \prec \text{FA}^2 \\
\delta^3 \prec \text{FA}^3
\]

Yes! (ABDGLY)

\[
\delta^2 \succ \text{FA}^2 \\
\delta^3 \succ \text{FA}^3
\]

Yes (Y)

No (Gromov, White)

No (Brady-Bridson-Forester-Shankar)
Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has \(FA(n) \lesssim n^5 \) but \(\delta(n) \gtrsim n^d \) for any \(d \), or even \(\delta(n) \gtrsim e^n \).

In fact, if \(\delta^k(n) \) is the \(k \)-th order homotopical Dehn function and \(FA^k \) is the corresponding homological Dehn function, then:

\[
\delta \prec FA \quad \quad \quad \delta \succ FA
\]

Yes!(ABDGLY)

\[
\delta^2 \prec FA^2 \quad \quad \quad \delta^2 \succ FA^2
\]

Yes(Y) No(Gromov, White)

\[
\delta^{3+} \prec FA^{3+} \quad \quad \quad \delta^{3+} \succ FA^{3+}
\]

No(Gromov, White) No(Gromov, White)
Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has \(FA(n) \lesssim n^5 \) but \(\delta(n) \gtrsim n^d \) for any \(d \), or even \(\delta(n) \gtrsim e^n \).

In fact, if \(\delta^k(n) \) is the \(k \)-th order homotopical Dehn function and \(FA^k \) is the corresponding homological Dehn function, then:

\[
\delta \prec FA \quad \delta \succ FA
\]

Yes!(ABDGLY)

\[
\delta^2 \prec FA^2 \quad \delta^2 \succ FA^2
\]

Yes(Y) \quad No(Gromov, White)

\[
\delta^{3+} \prec FA^{3+}
\]

No(Brady-Bridson-Forester-Shankar) \quad No(Gromov, White)
Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has $\text{FA}(n) \lesssim n^5$ but $\delta(n) \gtrsim n^d$ for any d, or even $\delta(n) \gtrsim e^n$.

In fact, if $\delta^k(n)$ is the k-th order homotopical Dehn function and FA^k is the corresponding homological Dehn function, then:

\[\delta \prec \text{FA} \quad \quad \delta \succ \text{FA} \]

\[\delta^2 \prec \text{FA}^2 \quad \quad \delta^2 \succ \text{FA}^2 \]

\[\delta^{3+} \prec \text{FA}^{3+} \quad \quad \delta^{3+} \succ \text{FA}^{3+} \]

Yes!(ABDGLY) Yes!(Y) No(Gromov, White) No(Gromov, White) No(Brady-Bridson-Forester-Shankar) No(Gromov, White)
Open question: Is there a finitely presented group with $\delta \prec FA$?
Open question: Is there a finitely presented group with $\delta \not\preccurlyeq FA$? This would have to be a group where it’s harder to fill two curves of length $n/2$ than to fill any curve of length n.