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Part 1: The Sparsest Cut problem

What’s the “best” way to cut a graph into two pieces?

Problem
Let G be a graph. Find

Φ(G ) = min
S⊂V (G)

|E (S ,Sc)|
|S | · |Sc |

.
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Sparsest Cut is a matrix problem

C =



0 1 1 1 0 0 0
1 0 1 1 0 0 0
1 1 0 1 1 0 0
1 1 1 0 0 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1
0 0 0 0 1 1 0


If C is the adjacency matrix of G , then

Φ(G ) = min
S⊂V (G)

|E (S , Sc)|
|S | · |Sc |

= min
S⊂[n]

∑
i∈S ,j∈Sc Cij∑
i∈S,j∈Sc 1

(where [n] = {1, . . . , n})



The Nonuniform Sparsest Cut problem

Problem
Let C (capacity) and D (demand) be symmetric n × n matrices
with non-negative entries. Find:

Φ(C ,D) = min
S⊂[n]

∑
i∈S,j∈Sc Cij∑
i∈S ,j∈Sc Dij

.

This problem is NP-hard, but there are polynomial-time algorithms
to approximate Φ(C ,D) based on metric embeddings.
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Relaxing the problem

A cut metric is a semimetric of the form

dS(i , j) = |1S(i)− 1S(j)| where S ⊂ X .

Let
C = {dS | S ⊂ [n]} ⊂ Mn

and let K ⊃ C. The relaxation ΦK of Sparsest Cut is

ΦK(C ,D) = min
M∈K

∑
i ,j CijMij∑
i ,j DijMij

.

I Then ΦK ≤ ΦC = Φ.

I Is there a K such that ΦK is easy to compute and close to Φ?
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Geometric relaxations

If f : X → Y , let df ∈ Mn be the induced distance function
df (i , j) = d(f (i), f (j)).

I If K1 = {df | f : [n]→ L1}, then Φ = ΦK1

(Linial-London-Rabinovich)

Proof: Every element of K1 is a linear combination of cut
metrics

I If M = {n × n distance matrices}, then Φ
log n . ΦM ≤ Φ

(Linial-London-Rabinovich, Aumann-Rabani).

Proof: Every n-point metric space embeds in L1 with log n
distortion (Bourgain)
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The Goemans-Linial relaxation

Theorem (Goemans-Linial)

Let N = {n × n distance matrices with negative type}. Then
K1 ⊂ N ⊂M, so

Φ

log n
. ΦM ≤ ΦN ≤ Φ.

Furthermore, ΦN can be computed in polynomial time.



The Goemans-Linial question

Define the Goemans-Linial integrality gap α(n) = max Φ(C ,D)
ΦN (C ,D)

where C ,D are n × n matrices.

I α(n) . (log n)
1
2

+o(1) (Arora-Lee-Naor).

Question (Goemans-Linial)

Is α(n) bounded? Equivalently, does every finite negative-type
metric space embed in L1 by a bilipschitz map?

But the answer is no:

I α(n) & (log log n)c (Khot-Vishnoi)

I α(n) & (log n)c
′

(with c ′ ≈ 2−60) (Cheeger-Kleiner-Naor)
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The main theorem

Theorem (Naor-Y.)

There is an n–point subspace X (a ball in the word metric) of the
Heisenberg group H5 such that any embedding of X into L1 has
distortion at least �

√
log n.

Corollary (Naor-Y.)

α(n) &
√

log n
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Part 2: The Heisenberg group

Let H2k+1 ⊂ Mk+2 be the (2k + 1)–dimensional nilpotent Lie
group

H2k+1 =




1 x1 . . . xk z
0 1 0 0 y1

0 0
. . . 0

...
0 0 0 1 yk
0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣
xi , yi , z ∈ R


.

This contains a lattice

HZ
2k+1 = 〈x1, . . . , xk , y1, . . . , yk , z

| [xi , yi ] = z , all other pairs commute〉.
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A lattice in H3

z = xyx−1y−1

z4 = x2y2x−2y−2

zn
2

= xnynx−ny−n
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From Cayley graph to sub-riemannian metric

I d(u, v) = inf{`(γ) | γ is a
horizontal curve from u to
v}

I The map
st(x , y , z) = (tx , ty , t2z)
scales the metric

I The ball of radius ε is
approximately an ε× ε× ε2

box.

I The z–axis has Hausdorff
dimension 2
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The Heisenberg group and the Goemans–Linial question

Theorem (Lee-Naor)

The sub-riemannian metric on the Heisenberg group is bilipschitz
equivalent to a metric of negative type.

Theorem (Cheeger-Kleiner)

There is no bilipschitz embedding from the unit ball in H2k+1 to
L1.

Corollary (Cheeger-Kleiner)

There are finite subsets of H2k+1 that do not embed bilipschitzly
in L1. (i.e., counterexamples to the Goemans–Linial question)
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Part 3: Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)

There is no bilipschitz embedding from H2k+1 to RN .

Theorem (Pansu)

Every Lipschitz map f : H2k+1 → RN is Pansu differentiable
almost everywhere.

That is, on sufficiently small scales, f is close to a homomorphism.
But any homomorphism sends z to 0 – so any Lipschitz map to
RN collapses the z direction.
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H2k+1 does not embed in L1

Pansu’s theorem does not work for L1 because Lipschitz maps to
L1 may not be differentiable anywhere.

Example

The map f : [0, 1]→ L1([0, 1])

f (t) = 1[0,t],

is an isometric embedding that cannot be approximated by a linear
map.
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Theorem (Cheeger-Kleiner)

There is no bilipschitz embedding from H2k+1 to L1.

Proof
Let B be a ball in H2k+1. Every L1-metric on B is a linear
combination of cut metrics:

Lemma
If f : B → L1, then there is a measure µ (the cut measure) on 2B

such that

d(f (x), f (y)) =

∫
dS(x , y) dµ(S).

We can thus study f by studying cuts in H2k+1.
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Proof: H2k+1 does not embed in L1

Open sets in H2k+1 have Hausdorff dimension 2k + 2 and any
surface that separates two open sets has Hausdorff dimension at
least 2k + 1, so we let area = H2k+1, vol = H2k+2.

Lemma
If B ⊂ H2k+1 is the unit ball and f : B → L1 is Lipschitz, then the
cut measure µ is supported on sets S with area(∂S) <∞ and∫

area(∂S) dµ(S) . vol(B) Lip(f ).
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Proof: H2k+1 does not embed in L1

Theorem (Franchi-Serapioni-Serra Cassano)

If area ∂S <∞, then near almost every x ∈ ∂S, ∂S is close to a
plane containing the z–axis (the tangent plane at x.)

Cheeger and Kleiner show:

I For almost every x ∈ B, there is a neighborhood B ′ of x such
that most of the cuts are close to vertical on B ′.

I Therefore, f |B′ is close to a map that is constant on vertical
lines.

I So f is not a bilipschitz map.
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Quantitative nonembeddability

Cheeger, Kleiner, and Naor quantified this result:

Theorem (Cheeger-Kleiner-Naor)

Let B ⊂ H3 be the ball of radius 1. There is a δ > 0 such that for
any ε > 0 and any 1–Lipschitz map f : B → L1, there is a ball B ′

of radius at least ε such that f |B′ is � | log ε|−δ–close to a map
that is constant on vertical lines.

Corollary

There is a δ > 0 such that the Goemans-Linial integrality gap α(n)
is bounded by

α(n) & (log n)δ.

But δ is tiny – around 2−60.
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of radius at least ε such that f |B′ is � | log ε|−δ–close to a map
that is constant on vertical lines.

Corollary

There is a δ > 0 such that the Goemans-Linial integrality gap α(n)
is bounded by

α(n) & (log n)δ.

But δ is tiny – around 2−60.



The main theorem

Theorem (Naor-Y.)

Let k ≥ 2 and let B ⊂ H2k+1 be the unit ball. Let Z ∈ H2k+1

generate the z–axis. If f : H2k+1 → L1 is Lipschitz, then∫ 1

0

(∫
B

‖f (x)− f (xZ t)‖1

d(x , xZ t)
dx

)2 dt

t
. Lip(f )2.

If f were bilipschitz, then this integral would be infinite, so

Corollary

B does not embed bilipschitzly in L1.

And this gives sharp bounds on the scale of the distortion:

Corollary

The Goemans-Linial integrality gap α(n) is bounded by

α(n) &
√

log n.
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Reducing to surfaces

The sharp bound on Lipschitz embeddings follows from:

Theorem (Naor-Y.)

Let k ≥ 2 and let S ⊂ H2k+1 be a set with area ∂S <∞. Let

S4T = (S \ T ) ∪ (T \ S)

Then ∫ ∞
0

vol(S4SZ t)2

t2
dt . area(∂S)2.



Rectifiability and embeddings

I Cheeger-Kleiner-Naor: Surfaces in H2k+1 are rectifiable
(vertical tangent planes almost everywhere)

, so maps to L1

are differentiable (at sufficiently small scales, vertical lines
collapse).

Theorem (David-Semmes)

A set E ⊂ Rk is uniformly rectifiable if and only if E has a corona
decomposition. (Roughly, for all but a few balls B, the intersection
B ∩ E is close to the graph of a Lipschitz function with small
Lipschitz constant.)

I Naor-Y.: Surfaces in H2k+1 are made of uniformly rectifiable
pieces.
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Decompositions in Rk and H2k+1

Theorem (Y.)

If T is a mod-2 d–cycle in Rk , d < k, it can be decomposed as a
sum T =

∑
i Ti such that suppTi is uniformly rectifiable and∑

i massTi . massT.

Theorem (Naor-Y.)

If E ⊂ H2k+1, then E can be decomposed into sets Ei so that each
∂Ei has a corona decomposition that approximates ∂Ei by intrinsic
Lipschitz graphs.
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An intrinsic Lipschitz graph



Bounding the roughness of surfaces

Theorem (Austin-Naor-Tessera, Naor-Y.)

If k ≥ 2 and S ⊂ B ⊂ H2k+1 is bounded by an intrinsic Lipschitz
graph with bounded Lipschitz constant, then∫ 1

0

vol(S4 SZ t)2

t2
dt . 1.

Theorem (Naor-Y.)

If k ≥ 2 and S ⊂ B ⊂ H2k+1 is a set such that ∂S has a corona
decomposition, then∫ 1

0

vol(S4SZ t)2

t2
dt . area(∂S)2.
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Open questions

I What happens in H3? Sets in H3 can still be decomposed in
the same way, but the inequality may not hold.

I Uniform rectifiability in Rk has definitions in terms of singular
integrals, β–coefficients, corona decompositions, the
big-pieces-of-Lipschitz-graphs property, and many more.
We’ve used corona decompositions to study one class of
surfaces in the Heisenberg group – do the rest of the
definitions also generalize?



Open questions

I What happens in H3? Sets in H3 can still be decomposed in
the same way, but the inequality may not hold.

I Uniform rectifiability in Rk has definitions in terms of singular
integrals, β–coefficients, corona decompositions, the
big-pieces-of-Lipschitz-graphs property, and many more.
We’ve used corona decompositions to study one class of
surfaces in the Heisenberg group – do the rest of the
definitions also generalize?


