Embeddings of the Heisenberg group and the Sparsest Cut problem

Robert Young
New York University (joint work with Assaf Naor)

January 2018
A.N. was supported by BSF grant 2010021, the Packard Foundation and the Simons Foundation. R.Y. was supported by NSF grant DMS 1612061, the Sloan Foundation, and the Fall 2016 program at MSRI. The research that is presented here was conducted under the auspices of the Simons Algorithms and Geometry (A\&G) Think Tank.

Part 1: The Sparsest Cut problem

What's the "best" way to cut a graph into two pieces?

Part 1: The Sparsest Cut problem

What's the "best" way to cut a graph into two pieces?
Problem
Let G be a graph. Find

$$
\Phi(G)=\min _{S \subset V(G)} \frac{\left|E\left(S, S^{c}\right)\right|}{|S| \cdot\left|S^{c}\right|}
$$

Part 1: The Sparsest Cut problem

What's the "best" way to cut a graph into two pieces?
Problem
Let G be a graph. Find

$$
\Phi(G)=\min _{S \subset V(G)} \frac{\left|E\left(S, S^{c}\right)\right|}{|S| \cdot\left|S^{c}\right|}
$$

Sparsest Cut is a matrix problem

$$
\because C=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

If C is the adjacency matrix of G, then

$$
\Phi(G)=\min _{S \subset V(G)} \frac{\left|E\left(S, S^{c}\right)\right|}{|S| \cdot\left|S^{c}\right|}=\min _{S \subset[n]} \frac{\sum_{i \in S, j \in S^{c}} C_{i j}}{\sum_{i \in S, j \in S^{c}}}
$$

$($ where $[n]=\{1, \ldots, n\})$

The Nonuniform Sparsest Cut problem

Problem
Let C (capacity) and D (demand) be symmetric $n \times n$ matrices with non-negative entries. Find:

$$
\Phi(C, D)=\min _{S \subset[n]} \frac{\sum_{i \in S, j \in S^{c}} C_{i j}}{\sum_{i \in S, j \in S^{c}} D_{i j}} .
$$

The Nonuniform Sparsest Cut problem

Problem
Let C (capacity) and D (demand) be symmetric $n \times n$ matrices with non-negative entries. Find:

$$
\Phi(C, D)=\min _{S \subset[n]} \frac{\sum_{i \in S, j \in S^{c}} C_{i j}}{\sum_{i \in S, j \in S^{c}} D_{i j}} .
$$

This problem is NP-hard

The Nonuniform Sparsest Cut problem

Problem

Let C (capacity) and D (demand) be symmetric $n \times n$ matrices with non-negative entries. Find:

$$
\Phi(C, D)=\min _{S \subset[n]} \frac{\sum_{i \in S, j \in S^{c}} C_{i j}}{\sum_{i \in S, j \in S^{c}} D_{i j}} .
$$

This problem is NP-hard, but there are polynomial-time algorithms to approximate $\Phi(C, D)$ based on metric embeddings.

Relaxing the problem

A cut metric is a semimetric of the form

$$
d_{S}(i, j)=\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right| \quad \text { where } S \subset X
$$

Relaxing the problem

A cut metric is a semimetric of the form

$$
d_{S}(i, j)=\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right| \quad \text { where } S \subset X
$$

Let

$$
\mathcal{C}=\left\{d_{S} \mid S \subset[n]\right\} \subset M_{n}
$$

Relaxing the problem

A cut metric is a semimetric of the form

$$
d_{S}(i, j)=\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right| \quad \text { where } S \subset X
$$

Let

$$
\mathcal{C}=\left\{d_{S} \mid S \subset[n]\right\} \subset M_{n}
$$

and let $\mathcal{K} \supset \mathcal{C}$. The relaxation $\Phi_{\mathcal{K}}$ of Sparsest Cut is

$$
\Phi_{\mathcal{K}}(C, D)=\min _{M \in \mathcal{K}} \frac{\sum_{i, j} C_{i j} M_{i j}}{\sum_{i, j} D_{i j} M_{i j}}
$$

Relaxing the problem

A cut metric is a semimetric of the form

$$
d_{S}(i, j)=\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right| \quad \text { where } S \subset X
$$

Let

$$
\mathcal{C}=\left\{d_{S} \mid S \subset[n]\right\} \subset M_{n}
$$

and let $\mathcal{K} \supset \mathcal{C}$. The relaxation $\Phi_{\mathcal{K}}$ of Sparsest Cut is

$$
\Phi_{\mathcal{K}}(C, D)=\min _{M \in \mathcal{K}} \frac{\sum_{i, j} C_{i j} M_{i j}}{\sum_{i, j} D_{i j} M_{i j}}
$$

- Then $\Phi_{\mathcal{K}} \leq \Phi_{\mathcal{C}}=\Phi$.

Relaxing the problem

A cut metric is a semimetric of the form

$$
d_{S}(i, j)=\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right| \quad \text { where } S \subset X
$$

Let

$$
\mathcal{C}=\left\{d_{S} \mid S \subset[n]\right\} \subset M_{n}
$$

and let $\mathcal{K} \supset \mathcal{C}$. The relaxation $\Phi_{\mathcal{K}}$ of Sparsest Cut is

$$
\Phi_{\mathcal{K}}(C, D)=\min _{M \in \mathcal{K}} \frac{\sum_{i, j} C_{i j} M_{i j}}{\sum_{i, j} D_{i j} M_{i j}}
$$

- Then $\Phi_{\mathcal{K}} \leq \Phi_{\mathcal{C}}=\Phi$.
- Is there a \mathcal{K} such that $\Phi_{\mathcal{K}}$ is easy to compute and close to Φ ?

Geometric relaxations

If $f: X \rightarrow Y$, let $d_{f} \in M_{n}$ be the induced distance function $d_{f}(i, j)=d(f(i), f(j))$.

- If $\mathcal{K}_{1}=\left\{d_{f} \mid f:[n] \rightarrow L_{1}\right\}$, then $\Phi=\Phi_{\mathcal{K}_{1}}$ (Linial-London-Rabinovich)

Geometric relaxations

If $f: X \rightarrow Y$, let $d_{f} \in M_{n}$ be the induced distance function $d_{f}(i, j)=d(f(i), f(j))$.

- If $\mathcal{K}_{1}=\left\{d_{f} \mid f:[n] \rightarrow L_{1}\right\}$, then $\Phi=\Phi_{\mathcal{K}_{1}}$ (Linial-London-Rabinovich)

Proof: Every element of \mathcal{K}_{1} is a linear combination of cut metrics

Geometric relaxations

If $f: X \rightarrow Y$, let $d_{f} \in M_{n}$ be the induced distance function $d_{f}(i, j)=d(f(i), f(j))$.

- If $\mathcal{K}_{1}=\left\{d_{f} \mid f:[n] \rightarrow L_{1}\right\}$, then $\Phi=\Phi_{\mathcal{K}_{1}}$
(Linial-London-Rabinovich)
Proof: Every element of \mathcal{K}_{1} is a linear combination of cut metrics
- If $\mathcal{M}=\{n \times n$ distance matrices $\}$, then $\frac{\Phi}{\log n} \lesssim \Phi_{\mathcal{M}} \leq \Phi$ (Linial-London-Rabinovich, Aumann-Rabani).

Geometric relaxations

If $f: X \rightarrow Y$, let $d_{f} \in M_{n}$ be the induced distance function $d_{f}(i, j)=d(f(i), f(j))$.

- If $\mathcal{K}_{1}=\left\{d_{f} \mid f:[n] \rightarrow L_{1}\right\}$, then $\Phi=\Phi_{\mathcal{K}_{1}}$ (Linial-London-Rabinovich)

Proof: Every element of \mathcal{K}_{1} is a linear combination of cut metrics

- If $\mathcal{M}=\{n \times n$ distance matrices $\}$, then $\frac{\Phi}{\log n} \lesssim \Phi_{\mathcal{M}} \leq \Phi$ (Linial-London-Rabinovich, Aumann-Rabani).

Proof: Every n-point metric space embeds in L_{1} with $\log n$ distortion (Bourgain)

The Goemans-Linial relaxation

Theorem (Goemans-Linial)
Let $\mathcal{N}=\{n \times n$ distance matrices with negative type $\}$. Then
$\mathcal{K}_{1} \subset \mathcal{N} \subset \mathcal{M}$, so

$$
\frac{\Phi}{\log n} \lesssim \Phi_{\mathcal{M}} \leq \Phi_{\mathcal{N}} \leq \Phi
$$

Furthermore, $\Phi_{\mathcal{N}}$ can be computed in polynomial time.

The Goemans-Linial question

Define the Goemans-Linial integrality gap $\alpha(n)=\max \frac{\Phi(C, D)}{\Phi_{\mathcal{N}}(C, D)}$ where C, D are $n \times n$ matrices.

The Goemans-Linial question

Define the Goemans-Linial integrality gap $\alpha(n)=\max \frac{\Phi(C, D)}{\Phi_{\mathcal{N}}(C, D)}$ where C, D are $n \times n$ matrices.

- $\alpha(n) \lesssim(\log n)^{\frac{1}{2}+o(1)}$ (Arora-Lee-Naor).

The Goemans-Linial question

Define the Goemans-Linial integrality gap $\alpha(n)=\max \frac{\Phi(C, D)}{\Phi_{\mathcal{N}}(C, D)}$ where C, D are $n \times n$ matrices.

- $\alpha(n) \lesssim(\log n)^{\frac{1}{2}+o(1)}$ (Arora-Lee-Naor).

Question (Goemans-Linial)
Is $\alpha(n)$ bounded?

The Goemans-Linial question

Define the Goemans-Linial integrality gap $\alpha(n)=\max \frac{\Phi(C, D)}{\Phi_{\mathcal{N}}(C, D)}$ where C, D are $n \times n$ matrices.

- $\alpha(n) \lesssim(\log n)^{\frac{1}{2}+o(1)}$ (Arora-Lee-Naor).

Question (Goemans-Linial)
Is $\alpha(n)$ bounded? Equivalently, does every finite negative-type metric space embed in L_{1} by a bilipschitz map?

The Goemans-Linial question

Define the Goemans-Linial integrality gap $\alpha(n)=\max \frac{\Phi(C, D)}{\Phi_{\mathcal{N}}(C, D)}$ where C, D are $n \times n$ matrices.

- $\alpha(n) \lesssim(\log n)^{\frac{1}{2}+o(1)}$ (Arora-Lee-Naor).

Question (Goemans-Linial)
Is $\alpha(n)$ bounded? Equivalently, does every finite negative-type metric space embed in L_{1} by a bilipschitz map?
But the answer is no:

- $\alpha(n) \gtrsim(\log \log n)^{c}$ (Khot-Vishnoi)

The Goemans-Linial question

Define the Goemans-Linial integrality gap $\alpha(n)=\max \frac{\Phi(C, D)}{\Phi_{\mathcal{N}}(C, D)}$ where C, D are $n \times n$ matrices.

- $\alpha(n) \lesssim(\log n)^{\frac{1}{2}+o(1)}$ (Arora-Lee-Naor).

Question (Goemans-Linial)
Is $\alpha(n)$ bounded? Equivalently, does every finite negative-type metric space embed in L_{1} by a bilipschitz map?
But the answer is no:

- $\alpha(n) \gtrsim(\log \log n)^{c}$ (Khot-Vishnoi)
$-\alpha(n) \gtrsim(\log n)^{c^{\prime}}\left(\right.$ with $\left.c^{\prime} \approx 2^{-60}\right)$ (Cheeger-Kleiner-Naor)

The main theorem

Theorem (Naor-Y.)
There is an n-point subspace X (a ball in the word metric) of the Heisenberg group H^{5} such that any embedding of X into L_{1} has distortion at least $\asymp \sqrt{\log n}$.

The main theorem

Theorem (Naor-Y.)
There is an n-point subspace X (a ball in the word metric) of the Heisenberg group H^{5} such that any embedding of X into L_{1} has distortion at least $\asymp \sqrt{\log n}$.

Corollary (Naor-Y.)

$$
\alpha(n) \gtrsim \sqrt{\log n}
$$

Part 2: The Heisenberg group

Let $H^{2 k+1} \subset M_{k+2}$ be the $(2 k+1)$-dimensional nilpotent Lie group

$$
H^{2 k+1}=\left\{\left.\left(\begin{array}{ccccc}
1 & x_{1} & \ldots & x_{k} & z \\
0 & 1 & 0 & 0 & y_{1} \\
0 & 0 & \ddots & 0 & \vdots \\
0 & 0 & 0 & 1 & y_{k} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, x_{i}, y_{i}, z \in \mathbb{R}\right\}
$$

Part 2: The Heisenberg group

Let $H^{2 k+1} \subset M_{k+2}$ be the $(2 k+1)$-dimensional nilpotent Lie group

$$
H^{2 k+1}=\left\{\left.\left(\begin{array}{ccccc}
1 & x_{1} & \ldots & x_{k} & z \\
0 & 1 & 0 & 0 & y_{1} \\
0 & 0 & \ddots & 0 & \vdots \\
0 & 0 & 0 & 1 & y_{k} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, x_{i}, y_{i}, z \in \mathbb{R}\right\}
$$

This contains a lattice

$$
\begin{aligned}
H_{2 k+1}^{\mathbb{Z}}= & \left\langle x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z\right. \\
& \left.\mid\left[x_{i}, y_{i}\right]=z, \text { all other pairs commute }\right\rangle .
\end{aligned}
$$

A lattice in H^{3}

A lattice in H^{3}

$$
z=x y x^{-1} y^{-1}
$$

A lattice in H^{3}

$$
\begin{gathered}
z=x y x^{-1} y^{-1} \\
z^{4}=x^{2} y^{2} x^{-2} y^{-2}
\end{gathered}
$$

A lattice in H^{3}

$$
\begin{gathered}
z=x y x^{-1} y^{-1} \\
z^{4}=x^{2} y^{2} x^{-2} y^{-2} \\
z^{n^{2}}=x^{n} y^{n} x^{-n} y^{-n}
\end{gathered}
$$

From Cayley graph to sub-riemannian metric

- $d(u, v)=\inf \{\ell(\gamma) \mid \gamma$ is a horizontal curve from u to $v\}$

From Cayley graph to sub-riemannian metric

- $d(u, v)=\inf \{\ell(\gamma) \mid \gamma$ is a horizontal curve from u to $v\}$
- The map
$s_{t}(x, y, z)=\left(t x, t y, t^{2} z\right)$ scales the metric

From Cayley graph to sub-riemannian metric

- $d(u, v)=\inf \{\ell(\gamma) \mid \gamma$ is a horizontal curve from u to v \}
- The map
$s_{t}(x, y, z)=\left(t x, t y, t^{2} z\right)$ scales the metric
- The ball of radius ϵ is approximately an $\epsilon \times \epsilon \times \epsilon^{2}$ box.

From Cayley graph to sub-riemannian metric

- $d(u, v)=\inf \{\ell(\gamma) \mid \gamma$ is a horizontal curve from u to $v\}$
- The map
$s_{t}(x, y, z)=\left(t x, t y, t^{2} z\right)$ scales the metric
- The ball of radius ϵ is approximately an $\epsilon \times \epsilon \times \epsilon^{2}$ box.
- The z-axis has Hausdorff dimension 2

The Heisenberg group and the Goemans-Linial question

Theorem (Lee-Naor)
The sub-riemannian metric on the Heisenberg group is bilipschitz equivalent to a metric of negative type.

The Heisenberg group and the Goemans-Linial question

Theorem (Lee-Naor)
The sub-riemannian metric on the Heisenberg group is bilipschitz equivalent to a metric of negative type.

Theorem (Cheeger-Kleiner)
There is no bilipschitz embedding from the unit ball in $H^{2 k+1}$ to L_{1}.

The Heisenberg group and the Goemans-Linial question

Theorem (Lee-Naor)
The sub-riemannian metric on the Heisenberg group is bilipschitz equivalent to a metric of negative type.

Theorem (Cheeger-Kleiner)
There is no bilipschitz embedding from the unit ball in $H^{2 k+1}$ to L_{1}.

Corollary (Cheeger-Kleiner)

There are finite subsets of $H^{2 k+1}$ that do not embed bilipschitzly in L_{1}. (i.e., counterexamples to the Goemans-Linial question)

Part 3: Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from $H^{2 k+1}$ to \mathbb{R}^{N}.

Part 3: Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from $H^{2 k+1}$ to \mathbb{R}^{N}.
Theorem (Pansu)
Every Lipschitz map $f: H^{2 k+1} \rightarrow \mathbb{R}^{N}$ is Pansu differentiable almost everywhere.

Part 3: Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from $H^{2 k+1}$ to \mathbb{R}^{N}.
Theorem (Pansu)
Every Lipschitz map $f: H^{2 k+1} \rightarrow \mathbb{R}^{N}$ is Pansu differentiable almost everywhere.
That is, on sufficiently small scales, f is close to a homomorphism.

Part 3: Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from $H^{2 k+1}$ to \mathbb{R}^{N}.
Theorem (Pansu)
Every Lipschitz map $f: H^{2 k+1} \rightarrow \mathbb{R}^{N}$ is Pansu differentiable almost everywhere.
That is, on sufficiently small scales, f is close to a homomorphism. But any homomorphism sends z to 0 - so any Lipschitz map to \mathbb{R}^{N} collapses the z direction.

$H^{2 k+1}$ does not embed in L_{1}

Pansu's theorem does not work for L_{1} because Lipschitz maps to L_{1} may not be differentiable anywhere.

$H^{2 k+1}$ does not embed in L_{1}

Pansu's theorem does not work for L_{1} because Lipschitz maps to L_{1} may not be differentiable anywhere.

Example
The map $f:[0,1] \rightarrow L_{1}([0,1])$

$$
f(t)=\mathbf{1}_{[0, t]},
$$

is an isometric embedding that cannot be approximated by a linear map.

Theorem (Cheeger-Kleiner)
There is no bilipschitz embedding from $H^{2 k+1}$ to L_{1}.

Theorem (Cheeger-Kleiner)
There is no bilipschitz embedding from $H^{2 k+1}$ to L_{1}.
Proof
Let B be a ball in $H^{2 k+1}$. Every L_{1}-metric on B is a linear combination of cut metrics:

Lemma
If $f: B \rightarrow L_{1}$, then there is a measure μ (the cut measure) on 2^{B} such that

$$
d(f(x), f(y))=\int d_{S}(x, y) d \mu(S)
$$

Theorem (Cheeger-Kleiner)
There is no bilipschitz embedding from $H^{2 k+1}$ to L_{1}.
Proof
Let B be a ball in $H^{2 k+1}$. Every L_{1}-metric on B is a linear combination of cut metrics:

Lemma
If $f: B \rightarrow L_{1}$, then there is a measure μ (the cut measure) on 2^{B} such that

$$
d(f(x), f(y))=\int d_{S}(x, y) d \mu(S)
$$

We can thus study f by studying cuts in $H^{2 k+1}$.

Proof: $H^{2 k+1}$ does not embed in L_{1}

Open sets in $H^{2 k+1}$ have Hausdorff dimension $2 k+2$ and any surface that separates two open sets has Hausdorff dimension at least $2 k+1$, so we let area $=\mathcal{H}^{2 k+1}$, vol $=\mathcal{H}^{2 k+2}$.

Proof: $H^{2 k+1}$ does not embed in L_{1}

Open sets in $H^{2 k+1}$ have Hausdorff dimension $2 k+2$ and any surface that separates two open sets has Hausdorff dimension at least $2 k+1$, so we let area $=\mathcal{H}^{2 k+1}$, vol $=\mathcal{H}^{2 k+2}$.

Lemma
If $B \subset H^{2 k+1}$ is the unit ball and $f: B \rightarrow L_{1}$ is Lipschitz, then the cut measure μ is supported on sets S with area $(\partial S)<\infty$ and

$$
\int \operatorname{area}(\partial S) d \mu(S) \lesssim \operatorname{vol}(B) \operatorname{Lip}(f)
$$

Proof: $H^{2 k+1}$ does not embed in L_{1}

Theorem (Franchi-Serapioni-Serra Cassano)
If area $\partial S<\infty$, then near almost every $x \in \partial S, \partial S$ is close to a plane containing the z-axis (the tangent plane at x.)

Proof: $H^{2 k+1}$ does not embed in L_{1}

Theorem (Franchi-Serapioni-Serra Cassano)
If area $\partial S<\infty$, then near almost every $x \in \partial S, \partial S$ is close to a plane containing the z-axis (the tangent plane at x.)
Cheeger and Kleiner show:

- For almost every $x \in B$, there is a neighborhood B^{\prime} of x such that most of the cuts are close to vertical on B^{\prime}.

Proof: $H^{2 k+1}$ does not embed in L_{1}

Theorem (Franchi-Serapioni-Serra Cassano)
If area $\partial S<\infty$, then near almost every $x \in \partial S, \partial S$ is close to a plane containing the z-axis (the tangent plane at x.)
Cheeger and Kleiner show:

- For almost every $x \in B$, there is a neighborhood B^{\prime} of x such that most of the cuts are close to vertical on B^{\prime}.
- Therefore, $\left.f\right|_{B^{\prime}}$ is close to a map that is constant on vertical lines.

Proof: $H^{2 k+1}$ does not embed in L_{1}

Theorem (Franchi-Serapioni-Serra Cassano)
If area $\partial S<\infty$, then near almost every $x \in \partial S, \partial S$ is close to a plane containing the z-axis (the tangent plane at x.)
Cheeger and Kleiner show:

- For almost every $x \in B$, there is a neighborhood B^{\prime} of x such that most of the cuts are close to vertical on B^{\prime}.
- Therefore, $\left.f\right|_{B^{\prime}}$ is close to a map that is constant on vertical lines.
- So f is not a bilipschitz map.

Quantitative nonembeddability

Cheeger, Kleiner, and Naor quantified this result:
Theorem (Cheeger-Kleiner-Naor)
Let $B \subset H^{3}$ be the ball of radius 1. There is a $\delta>0$ such that for any $\epsilon>0$ and any 1 -Lipschitz map $f: B \rightarrow L_{1}$, there is a ball B^{\prime} of radius at least ϵ such that $\left.f\right|_{B^{\prime}}$ is $\asymp|\log \epsilon|^{-\delta}$-close to a map that is constant on vertical lines.

Quantitative nonembeddability

Cheeger, Kleiner, and Naor quantified this result:
Theorem (Cheeger-Kleiner-Naor)
Let $B \subset H^{3}$ be the ball of radius 1. There is a $\delta>0$ such that for any $\epsilon>0$ and any 1 -Lipschitz map $f: B \rightarrow L_{1}$, there is a ball B^{\prime} of radius at least ϵ such that $\left.f\right|_{B^{\prime}}$ is $\asymp|\log \epsilon|^{-\delta}$-close to a map that is constant on vertical lines.

Corollary
There is a $\delta>0$ such that the Goemans-Linial integrality gap $\alpha(n)$ is bounded by

$$
\alpha(n) \gtrsim(\log n)^{\delta} .
$$

Quantitative nonembeddability

Cheeger, Kleiner, and Naor quantified this result:
Theorem (Cheeger-Kleiner-Naor)
Let $B \subset H^{3}$ be the ball of radius 1. There is a $\delta>0$ such that for any $\epsilon>0$ and any 1-Lipschitz map $f: B \rightarrow L_{1}$, there is a ball B^{\prime} of radius at least ϵ such that $\left.f\right|_{B^{\prime}}$ is $\asymp|\log \epsilon|^{-\delta}$-close to a map that is constant on vertical lines.

Corollary
There is a $\delta>0$ such that the Goemans-Linial integrality gap $\alpha(n)$ is bounded by

$$
\alpha(n) \gtrsim(\log n)^{\delta} .
$$

But δ is tiny - around 2^{-60}.

The main theorem

Theorem (Naor-Y.)
Let $k \geq 2$ and let $B \subset H^{2 k+1}$ be the unit ball. Let $Z \in H^{2 k+1}$ generate the z-axis. If $f: H^{2 k+1} \rightarrow L_{1}$ is Lipschitz, then

$$
\int_{0}^{1}\left(\int_{B} \frac{\left\|f(x)-f\left(x Z^{t}\right)\right\|_{1}}{d\left(x, x Z^{t}\right)} d x\right)^{2} \frac{d t}{t} \lesssim \operatorname{Lip}(f)^{2} .
$$

The main theorem

Theorem (Naor-Y.)
Let $k \geq 2$ and let $B \subset H^{2 k+1}$ be the unit ball. Let $Z \in H^{2 k+1}$ generate the z-axis. If $f: H^{2 k+1} \rightarrow L_{1}$ is Lipschitz, then

$$
\int_{0}^{1}\left(\int_{B} \frac{\left\|f(x)-f\left(x Z^{t}\right)\right\|_{1}}{d\left(x, x Z^{t}\right)} d x\right)^{2} \frac{d t}{t} \lesssim \operatorname{Lip}(f)^{2} .
$$

If f were bilipschitz, then this integral would be infinite, so
Corollary
B does not embed bilipschitzly in L_{1}.

The main theorem

Theorem (Naor-Y.)
Let $k \geq 2$ and let $B \subset H^{2 k+1}$ be the unit ball. Let $Z \in H^{2 k+1}$ generate the z-axis. If $f: H^{2 k+1} \rightarrow L_{1}$ is Lipschitz, then

$$
\int_{0}^{1}\left(\int_{B} \frac{\left\|f(x)-f\left(x Z^{t}\right)\right\|_{1}}{d\left(x, x Z^{t}\right)} d x\right)^{2} \frac{d t}{t} \lesssim \operatorname{Lip}(f)^{2} .
$$

If f were bilipschitz, then this integral would be infinite, so
Corollary
B does not embed bilipschitzly in L_{1}.
And this gives sharp bounds on the scale of the distortion:
Corollary
The Goemans-Linial integrality gap $\alpha(n)$ is bounded by

$$
\alpha(n) \gtrsim \sqrt{\log n} .
$$

Reducing to surfaces

The sharp bound on Lipschitz embeddings follows from:
Theorem (Naor-Y.)
Let $k \geq 2$ and let $S \subset H^{2 k+1}$ be a set with area $\partial S<\infty$. Let

$$
S \triangle T=(S \backslash T) \cup(T \backslash S)
$$

Then

$$
\int_{0}^{\infty} \frac{\operatorname{vol}\left(S \triangle S Z^{t}\right)^{2}}{t^{2}} d t \lesssim \operatorname{area}(\partial S)^{2}
$$

Rectifiability and embeddings

- Cheeger-Kleiner-Naor: Surfaces in $H^{2 k+1}$ are rectifiable (vertical tangent planes almost everywhere)

Rectifiability and embeddings

- Cheeger-Kleiner-Naor: Surfaces in $H^{2 k+1}$ are rectifiable (vertical tangent planes almost everywhere), so maps to L_{1} are differentiable (at sufficiently small scales, vertical lines collapse).

Rectifiability and embeddings

- Cheeger-Kleiner-Naor: Surfaces in $H^{2 k+1}$ are rectifiable (vertical tangent planes almost everywhere), so maps to L_{1} are differentiable (at sufficiently small scales, vertical lines collapse).

Theorem (David-Semmes)
A set $E \subset \mathbb{R}^{k}$ is uniformly rectifiable if and only if E has a corona decomposition. (Roughly, for all but a few balls B, the intersection $B \cap E$ is close to the graph of a Lipschitz function with small Lipschitz constant.)

Rectifiability and embeddings

- Cheeger-Kleiner-Naor: Surfaces in $H^{2 k+1}$ are rectifiable (vertical tangent planes almost everywhere), so maps to L_{1} are differentiable (at sufficiently small scales, vertical lines collapse).

Theorem (David-Semmes)
A set $E \subset \mathbb{R}^{k}$ is uniformly rectifiable if and only if E has a corona decomposition. (Roughly, for all but a few balls B, the intersection $B \cap E$ is close to the graph of a Lipschitz function with small Lipschitz constant.)

- Naor-Y.: Surfaces in $H^{2 k+1}$ are made of uniformly rectifiable pieces.

Decompositions in \mathbb{R}^{k} and $H^{2 k+1}$

Theorem (Y.)
If T is a mod- $2 d$-cycle in $\mathbb{R}^{k}, d<k$, it can be decomposed as a sum $T=\sum_{i} T_{i}$ such that supp T_{i} is uniformly rectifiable and \sum_{i} mass $T_{i} \lesssim$ mass T.

Decompositions in \mathbb{R}^{k} and $H^{2 k+1}$

Theorem (Y.)
If T is a mod- $2 d$-cycle in $\mathbb{R}^{k}, d<k$, it can be decomposed as a sum $T=\sum_{i} T_{i}$ such that $\operatorname{supp} T_{i}$ is uniformly rectifiable and \sum_{i} mass $T_{i} \lesssim$ mass T.

Theorem (Naor-Y.)
If $E \subset H^{2 k+1}$, then E can be decomposed into sets E_{i} so that each ∂E_{i} has a corona decomposition that approximates ∂E_{i} by intrinsic Lipschitz graphs.

An intrinsic Lipschitz graph

Bounding the roughness of surfaces

Theorem (Austin-Naor-Tessera, Naor-Y.)
If $k \geq 2$ and $S \subset B \subset H^{2 k+1}$ is bounded by an intrinsic Lipschitz graph with bounded Lipschitz constant, then

$$
\int_{0}^{1} \frac{\operatorname{vol}\left(S \triangle S Z^{t}\right)^{2}}{t^{2}} d t \lesssim 1
$$

Bounding the roughness of surfaces

Theorem (Austin-Naor-Tessera, Naor-Y.)
If $k \geq 2$ and $S \subset B \subset H^{2 k+1}$ is bounded by an intrinsic Lipschitz graph with bounded Lipschitz constant, then

$$
\int_{0}^{1} \frac{\operatorname{vol}\left(S \triangle S Z^{t}\right)^{2}}{t^{2}} d t \lesssim 1
$$

Theorem (Naor-Y.)
If $k \geq 2$ and $S \subset B \subset H^{2 k+1}$ is a set such that ∂S has a corona decomposition, then

$$
\int_{0}^{1} \frac{\operatorname{vol}\left(S \triangle S Z^{t}\right)^{2}}{t^{2}} d t \lesssim \operatorname{area}(\partial S)^{2} .
$$

Open questions

- What happens in H^{3} ? Sets in H^{3} can still be decomposed in the same way, but the inequality may not hold.

Open questions

- What happens in H^{3} ? Sets in H^{3} can still be decomposed in the same way, but the inequality may not hold.
- Uniform rectifiability in \mathbb{R}^{k} has definitions in terms of singular integrals, β-coefficients, corona decompositions, the big-pieces-of-Lipschitz-graphs property, and many more. We've used corona decompositions to study one class of surfaces in the Heisenberg group - do the rest of the definitions also generalize?

