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Distortion

Let X be a metric space.

I Let f : X → Y and let D ≥ 1. We say that f has distortion at
most D if there is an r > 0 such that

d(f (a), f (b))

d(a, b)
∈ [r ,Dr ]

for all a, b ∈ X , a 6= b.

I For p > 0, the Lp–distortion of X is the infimal D ∈ [1,∞]
such that there is an embedding f : X → Lp such that
d(a, b) ≤ ‖f (a)− f (b)‖p ≤ Dd(a, b) for every a, b ∈M.
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Examples

I (Kuratowski) For any metric space X , c∞(X ) = 1.

I (Bourgain) If X is an n–point metric space, then
cp(X ) . log n for any 1 ≤ p ≤ ∞.

I (Matoušek) If X is an n–point expander graph, and
1 ≤ p <∞, then cp(X ) & log n.
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The main theorem

Theorem (Naor-Y.)

Let k ≥ 2 and let B2k+1
Z (n) be the set of integer points in the ball

of radius n in the Heisenberg group H2k+1. Then

c1(B2k+1
Z (n)) �

√
log n.
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c1 and the Sparsest Cut problem

For n > 0, let

α(n) = max{c1(X ) | X is an n–point metric space of negative type}.

This is the Goemans–Linial integrality gap.

Theorem (Goemans–Linial)

There is a polynomial-time algorithm that approximates the
Nonuniform Sparsest Cut Problem to within a factor of α(n).

Theorem (Lee-Naor)

The Heisenberg group is bilipschitz equivalent to a metric of
negative type.
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The Goemans–Linial question

How does α(n) grow with n?

I α(n) . (log n)
1
2
+o(1) (Arora-Lee-Naor).

Does every finite negative-type metric space embed in L1 by a
bilipschitz map?
The answer is no:

I α(n) & (log log n)c (Khot-Vishnoi)

I α(n) & (log n)c
′

(with c ′ ≈ 2−60) (Cheeger-Kleiner-Naor)
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The Heisenberg group

Let H2k+1 ⊂ Mk+2 be the (2k + 1)–dimensional nilpotent Lie
group

H2k+1 =




1 x1 . . . xk z
0 1 0 0 y1

0 0
. . . 0

...
0 0 0 1 yk
0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣
xi , yi , z ∈ R


.

This contains a lattice

HZ
2k+1 = 〈x1, . . . , xk , y1, . . . , yk , z

| [xi , yi ] = z , all other pairs commute〉.
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A lattice in H3

z = xyx−1y−1

z4 = x2y2x−2y−2

zn
2

= xnynx−ny−n
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From Cayley graph to sub-riemannian metric

I d(u, v) = inf{`(γ) | γ is a
horizontal curve from u to
v}

I The map
st(x , y , z) = (tx , ty , t2z)
scales the metric

I The ball of radius ε is
approximately an ε× ε× ε2
box.

I The z–axis has Hausdorff
dimension 2
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Embeddings of the Heisenberg group

Theorem (Pansu, Semmes)

There is no bilipschitz embedding from H2k+1 to RN .

Theorem (Pansu)

Every Lipschitz map f : H2k+1 → RN is Pansu differentiable
almost everywhere.

That is, on sufficiently small scales, f is close to a homomorphism.
But any homomorphism sends z to 0 – so any Lipschitz map to
RN collapses the z direction.
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H2k+1 does not embed in L1

Pansu’s theorem does not work for L1 because Lipschitz maps to
L1 may not be differentiable anywhere.

Example

The map f : [0, 1]→ L1([0, 1])

f (t) = 1[0,t],

is an isometric embedding that cannot be approximated by a linear
map.



H2k+1 does not embed in L1

Pansu’s theorem does not work for L1 because Lipschitz maps to
L1 may not be differentiable anywhere.

Example

The map f : [0, 1]→ L1([0, 1])

f (t) = 1[0,t],

is an isometric embedding that cannot be approximated by a linear
map.



Regardless, Cheeger and Kleiner showed:

Theorem (Cheeger-Kleiner)

There is no bilipschitz embedding from the unit ball B ⊂ H2k+1 to
L1.

The proof involves a version of differentiation based on cut metrics.
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Cut metrics

Let X be a set. A cut metric on X is a semimetric of the form

dS(i , j) = |1S(i)− 1S(j)| where S ⊂ X .

The metric induced by any map f : X → L1 is a linear combination
of cut metrics:

Lemma
If f : X → L1, then there is a measure µ (the cut measure) on 2X

such that

d(f (x), f (y)) =

∫
dS(x , y) dµ(S).
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Proof: H2k+1 does not embed in L1

We can study maps f : H2k+1 → L1 by studying cuts in H2k+1.

Open sets in H2k+1 have Hausdorff dimension 2k + 2 and any
surface that separates two open sets has Hausdorff dimension at
least 2k + 1, so we let area = H2k+1, vol = H2k+2.

Lemma
If B ⊂ H2k+1 is the unit ball and f : B → L1 is Lipschitz, then the
cut measure µ is supported on sets S with area(∂S) <∞ and∫

area(∂S) dµ(S) . vol(B) Lip(f ).
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Proof: H2k+1 does not embed in L1

Theorem (Franchi-Serapioni-Serra Cassano)

If area ∂S <∞, then near almost every x ∈ ∂S , ∂S is close to a
plane containing the z–axis (the tangent plane at x .)

Cheeger and Kleiner show:

I For almost every x ∈ B, there is a neighborhood B ′ of x such
that most of the cuts are close to vertical on B ′.

I Therefore, f |B′ is close to a map that is constant on vertical
lines.

I So f is not a bilipschitz map.
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Quantitative nonembeddability

Cheeger, Kleiner, and Naor quantified this result:

Theorem (Cheeger-Kleiner-Naor)

Let B ⊂ H3 be the ball of radius 1. There is a δ > 0 such that for
any ε > 0 and any 1–Lipschitz map f : B → L1, there is a ball B ′

of radius at least ε such that f |B′ is � | log ε|−δ–close to a map
that is constant on vertical lines.

Corollary

There is a δ > 0 such that the Goemans-Linial integrality gap α(n)
is bounded by

α(n) & (log n)δ.

But δ is tiny – around 2−60.
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0
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B
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d(x , xZ t)
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)2 dt

t
. Lip(f )2.

If f were bilipschitz, then this integral would be infinite, so

Corollary

B does not embed bilipschitzly in L1.

And this gives sharp bounds on the scale of the distortion:

Corollary

When k ≥ 2,
c1(B2k+1

Z (n)) �
√

log n.
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Reducing to surfaces

The sharp bound on Lipschitz embeddings follows from the
following horizontal–vertical isoperimetric inequality:

Theorem (Naor-Y.)

Let k ≥ 2 and let S ⊂ H2k+1 be a set with area ∂S <∞. Let

S4T = (S \ T ) ∪ (T \ S)

Then ∫ ∞
0

(
vol(S4SZ t)

d(0,Z t)

)2 dt

t
. area(∂S)2.



Rectifiability and embeddings

I Cheeger-Kleiner-Naor: Surfaces in H2k+1 are rectifiable
(vertical tangent planes almost everywhere)

, so maps to L1
are differentiable (at sufficiently small scales, vertical lines
collapse).

Theorem (David-Semmes)

A set E ⊂ Rk is uniformly rectifiable if and only if E has a corona
decomposition. (Roughly, for all but a few balls B, the intersection
B ∩ E is close to the graph of a Lipschitz function with small
Lipschitz constant.)

I Naor-Y.: Surfaces in H2k+1 are made of uniformly rectifiable
pieces.
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Decompositions in Rk and H2k+1

Theorem (Y.)

If T is a mod-2 d–cycle in Rk , d < k , it can be decomposed as a
sum T =

∑
i Ti such that suppTi is uniformly rectifiable and∑

i massTi . massT .

Theorem (Naor-Y.)

If E ⊂ H2k+1, then E can be decomposed into sets Ei so that each
∂Ei has a corona decomposition that approximates ∂Ei by intrinsic
Lipschitz graphs.



Decompositions in Rk and H2k+1

Theorem (Y.)

If T is a mod-2 d–cycle in Rk , d < k , it can be decomposed as a
sum T =

∑
i Ti such that suppTi is uniformly rectifiable and∑

i massTi . massT .

Theorem (Naor-Y.)

If E ⊂ H2k+1, then E can be decomposed into sets Ei so that each
∂Ei has a corona decomposition that approximates ∂Ei by intrinsic
Lipschitz graphs.



An intrinsic Lipschitz graph



The isoperimetric inequality for graphs

Theorem (Austin-Naor-Tessera, Naor-Y.)

If k ≥ 2 and S ⊂ B ⊂ H2k+1 is bounded by an intrinsic Lipschitz
graph with bounded Lipschitz constant, then∫ ∞

0

(
vol(S4SZ t)

d(0,Z t)

)2 dt

t
. area(∂S)2.

Theorem (Naor-Y.)

If k ≥ 2 and S ⊂ B ⊂ H2k+1 is a set such that ∂S has a corona
decomposition, then∫ ∞

0

(
vol(S4SZ t)

d(0,Z t)

)2 dt

t
. area(∂S)2.

This proves the main theorem for H2k+1 when k ≥ 2.
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graph with bounded Lipschitz constant, then∫ ∞

0

(
vol(S4SZ t)

d(0,Z t)

)2 dt

t
. area(∂S)2.

Theorem (Naor-Y.)

If k ≥ 2 and S ⊂ B ⊂ H2k+1 is a set such that ∂S has a corona
decomposition, then∫ ∞

0

(
vol(S4SZ t)

d(0,Z t)

)2 dt

t
. area(∂S)2.

This proves the main theorem for H2k+1 when k ≥ 2.



What fails in H3?

I We can still decompose sets in H3 into uniformly rectifiable
pieces, but the isoperimetric inequality fails for intrinsic
Lipschitz graphs in H3.

I In fact, graphs in H3 satisfy a different inequality!
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The three-dimensional case: a counterexample

Proposition

For any α > 1, there is a half-space S ⊂ B ⊂ H3 bounded by an
intrinsic Lipschitz graph such that for any p > 0,∫ ∞
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vol(S4 SZ t)
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)p dt

t
& α4−p.
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The three-dimensional case: foliated corona
decompositions

Proposition (Naor-Y.)

For any S ⊂ H3,∫ ∞
0

(
vol(S4SZ t)

d(0,Z t)

)4 dt

t
. area(∂S)4.

The proof is based on foliated corona decompositions:
decompositions of a graph into quadrilaterals of varying shapes
and sizes on which the graph is nearly foliated by horizontal curves.
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Question

I Uniform rectifiability in Rk has definitions in terms of singular
integrals, β–coefficients, corona decompositions, the
big-pieces-of-Lipschitz-graphs property, and many more.
We’ve used corona decompositions to study one class of
surfaces in the Heisenberg group – do the rest of the
definitions also generalize?


