Hölder maps to the Heisenberg group and self-similar solutions to extension problems

> Robert Young New York University (joint with Stefan Wenger)

> > September 2019

This work was supported by NSF grant DMS 1612061

Problems that don't have smooth solutions can sometimes have "wild" solutions.

 (Kaufman) Surjective rank-1 maps from the cube to the square

- (Kaufman) Surjective rank-1 maps from the cube to the square
- (joint w/ Wenger, Guth) Topologically nontrivial low-rank maps

- (Kaufman) Surjective rank-1 maps from the cube to the square
- (joint w/ Wenger, Guth) Topologically nontrivial low-rank maps
- (joint w/ Guth) Hölder signed-area preserving maps

- (Kaufman) Surjective rank-1 maps from the cube to the square
- (joint w/ Wenger, Guth) Topologically nontrivial low-rank maps
- ▶ (joint w/ Guth) Hölder signed-area preserving maps
- ▶ (joint w/ Wenger) Hölder maps to the Heisenberg group

- (Kaufman) Surjective rank-1 maps from the cube to the square
- (joint w/ Wenger, Guth) Topologically nontrivial low-rank maps
- ▶ (joint w/ Guth) Hölder signed-area preserving maps
- ▶ (joint w/ Wenger) Hölder maps to the Heisenberg group
- What else?

Kaufman's construction

Theorem (Kaufman)

There is a Lipschitz map $f : [0,1]^3 \rightarrow [0,1]^2$ which is surjective and satisfies rank $Df \leq 1$ almost everywhere.

Kaufman's construction

Theorem (Kaufman)

There is a Lipschitz map $f : [0,1]^3 \rightarrow [0,1]^2$ which is surjective and satisfies rank $Df \leq 1$ almost everywhere.

By Sard's Theorem, if f is smooth and rank $Df \leq 1$ everywhere, then $f([0,1]^3)$ has measure zero, so there is no smooth map satisfying the theorem.

Kaufman's construction

Theorem (Kaufman)

There is a Lipschitz map $f : [0,1]^3 \rightarrow [0,1]^2$ which is surjective and satisfies rank $Df \leq 1$ almost everywhere.

By Sard's Theorem, if f is smooth and rank $Df \leq 1$ everywhere, then $f([0,1]^3)$ has measure zero, so there is no smooth map satisfying the theorem.

But there is a self-similar map!

The Heisenberg group

Let H be the 3-dimensional nilpotent Lie group

$$H = \left\{ \left. \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right| x, y, z \in \mathbb{R} \right\}.$$

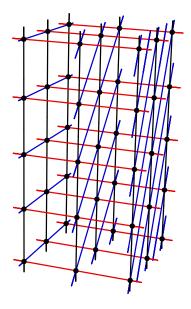
The Heisenberg group

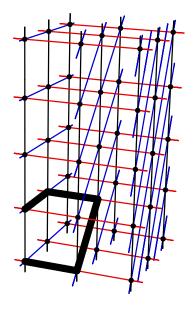
Let H be the 3-dimensional nilpotent Lie group

$$H = \left\{ \left. \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right| x, y, z \in \mathbb{R} \right\}.$$

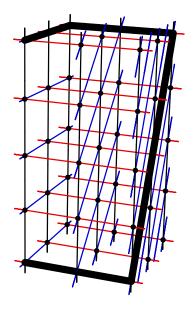
This contains a lattice

 $H^{\mathbb{Z}} = \langle X, Y, Z \mid [X, Y] = Z$, all other pairs commute \rangle .



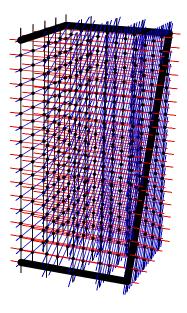


$$z = xyx^{-1}y^{-1}$$



$$z = xyx^{-1}y^{-1}$$

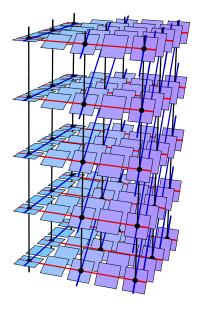
$$z^4 = x^2 y^2 x^{-2} y^{-2}$$



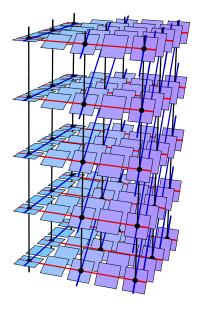
$$z = xyx^{-1}y^{-1}$$

$$z^4 = x^2 y^2 x^{-2} y^{-2}$$

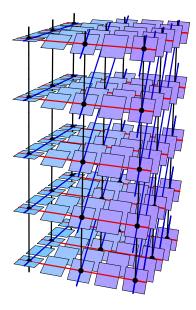
$$z^{n^2} = x^n y^n x^{-n} y^{-n}$$



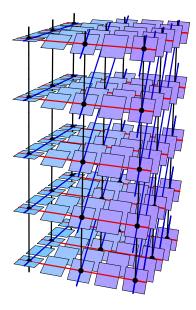
 There is a distribution of horizontal planes spanned by red and blue edges.



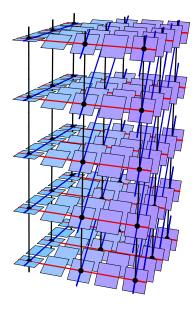
- There is a distribution of horizontal planes spanned by red and blue edges.
- d(u, v) = inf{ℓ(γ) | γ is a horizontal curve from u to v}



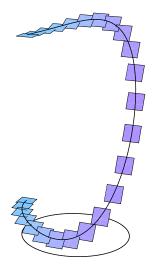
- There is a distribution of horizontal planes spanned by red and blue edges.
- d(u, v) = inf{ℓ(γ) | γ is a horizontal curve from u to v}
- ► s_t(x, y, z) = (tx, ty, t²z) scales the metric by t



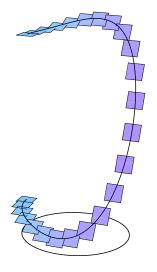
- There is a distribution of horizontal planes spanned by red and blue edges.
- d(u, v) = inf{ℓ(γ) | γ is a horizontal curve from u to v}
- ► s_t(x, y, z) = (tx, ty, t²z) scales the metric by t
- The ball of radius ε is roughly an ε × ε × ε² box.



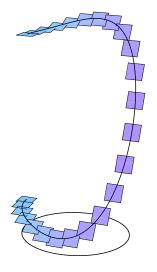
- There is a distribution of horizontal planes spanned by red and blue edges.
- d(u, v) = inf{ℓ(γ) | γ is a horizontal curve from u to v}
- ► s_t(x, y, z) = (tx, ty, t²z) scales the metric by t
- The ball of radius ε is roughly an ε × ε × ε² box.
- Non-horizontal curves have Hausdorff dimension 2.



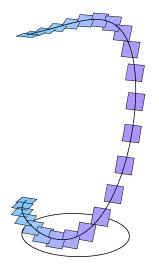
Every horizontal curve is the lift of a curve in the plane.



- Every horizontal curve is the lift of a curve in the plane.
- The length of the lift is the length of the original curve.



- Every horizontal curve is the lift of a curve in the plane.
- The length of the lift is the length of the original curve.
- The change in height along the lift of a closed curve is the signed area of the curve.



- Every horizontal curve is the lift of a curve in the plane.
- The length of the lift is the length of the original curve.
- The change in height along the lift of a closed curve is the signed area of the curve.
- By the isoperimetric inequality, geodesics are lifts of circular arcs.

A surface in H

 No C₂ surface can be horizontal.

A surface in H

- No C₂ surface can be horizontal.
- (Gromov, Pansu) In fact, any surface in *H* has Hausdorff dimension at least 3.

A surface in H

- No C₂ surface can be horizontal.
- (Gromov, Pansu) In fact, any surface in *H* has Hausdorff dimension at least 3.
- What's the shape of a surface in H?

What's the shape of a surface in H?

Let $0 < \alpha \le 1$. A map $f : X \to Y$ is α -Hölder if there is some L > 0 such that for all $x_1, x_2 \in X$,

 $d_Y(f(x_1),f(x_2)) \leq L d_X(x_1,x_2)^{\alpha}.$

What's the shape of a surface in H?

Let $0 < \alpha \le 1$. A map $f : X \to Y$ is α -Hölder if there is some L > 0 such that for all $x_1, x_2 \in X$,

 $d_Y(f(x_1),f(x_2)) \leq L d_X(x_1,x_2)^{\alpha}.$

Question (Gromov)

Let $0 < \alpha \leq 1$. What are the α -Hölder maps from D^2 or D^3 to H?

For
$$\alpha \leq \frac{1}{2}$$
, any smooth map to *H* is $\frac{1}{2}$ -Hölder.

For $\alpha \leq \frac{1}{2}$, any smooth map to H is $\frac{1}{2}$ -Hölder. If f is α -Hölder, then dim_{Haus} $f(X) \leq \alpha^{-1} \dim_{Haus} X$. So...

For $\alpha \leq \frac{1}{2}$, any smooth map to *H* is $\frac{1}{2}$ -Hölder.

If f is α -Hölder, then dim_{Haus} $f(X) \leq \alpha^{-1} \dim_{Haus} X$. So...

▶ (Gromov) For α > ²/₃, there is no α-Hölder embedding of D² in H.

• For $\alpha \leq \frac{1}{2}$, any smooth map to *H* is $\frac{1}{2}$ -Hölder.

If f is α -Hölder, then dim_{Haus} $f(X) \leq \alpha^{-1} \dim_{Haus} X$. So...

- ▶ (Gromov) For α > ²/₃, there is no α-Hölder embedding of D² in H.
- (Züst) For α > ²/₃, any α−Hölder map from Dⁿ to H factors through a tree.

• For $\alpha \leq \frac{1}{2}$, any smooth map to *H* is $\frac{1}{2}$ -Hölder.

If f is α -Hölder, then dim_{Haus} $f(X) \leq \alpha^{-1} \dim_{Haus} X$. So...

- ▶ (Gromov) For α > ²/₃, there is no α-Hölder embedding of D² in H.
- (Züst) For α > ²/₃, any α−Hölder map from Dⁿ to H factors through a tree.

What happens when $\frac{1}{2} < \alpha < \frac{2}{3}$?

Theorem (Wenger–Y.) When $\frac{1}{2} < \alpha < \frac{2}{3}$, the set of α –Hölder maps is dense in $C_0(D^n, H)$.

Theorem (Wenger–Y.)

When $\frac{1}{2} < \alpha < \frac{2}{3}$, the set of α -Hölder maps is dense in $C_0(D^n, H)$.

Lemma

Let $\gamma: S^1 \to H$ be a Lipschitz closed curve in H and let $\frac{1}{2} < \alpha < \frac{2}{3}$. Then γ extends to a map $\beta: D^2 \to H$ which is α -Hölder.

Theorem (Wenger-Y.)

When $\frac{1}{2} < \alpha < \frac{2}{3}$, the set of α -Hölder maps is dense in $C_0(D^n, H)$.

Lemma

Let $\gamma: S^1 \to H$ be a Lipschitz closed curve in H and let $\frac{1}{2} < \alpha < \frac{2}{3}$. Then γ extends to a map $\beta: D^2 \to H$ which is α -Hölder.

We need the following result:

Theorem

There is a c > 0 such that for any $n \in \mathbb{N}$, a horizontal closed curve $\gamma : S^1 \to H$ of length L can be subdivided into cn^3 horizontal closed curves of length at most $\frac{L}{n}$.

For a closed curve γ , let $\sigma(\gamma)$ be the signed area of γ (the integral of the winding number of γ). This is defined when γ is α -Hölder with $\alpha > \frac{1}{2}$.

For a closed curve γ , let $\sigma(\gamma)$ be the signed area of γ (the integral of the winding number of γ). This is defined when γ is α -Hölder with $\alpha > \frac{1}{2}$. A map $f : D^2 \to \mathbb{R}^2$ has null signed area if every Lipschitz closed curve λ in D^2 satisfies $\sigma(f \circ \lambda) = 0$.

For a closed curve γ , let $\sigma(\gamma)$ be the signed area of γ (the integral of the winding number of γ). This is defined when γ is α -Hölder with $\alpha > \frac{1}{2}$. A map $f : D^2 \to \mathbb{R}^2$ has null signed area if every Lipschitz closed curve λ in D^2 satisfies $\sigma(f \circ \lambda) = 0$.

Corollary

Let $\gamma: S^1 \to \mathbb{R}^2$ be a Lipschitz closed curve with $\sigma(\gamma) = 0$ and let $\frac{1}{2} < \alpha < \frac{2}{3}$. Then γ extends to a map $\beta: D^2 \to \mathbb{R}^2$ which is α -Hölder and has null signed area.

A map f : D² → D² is signed-area preserving if for every Lipschitz closed curve γ, σ(γ) = σ(f ∘ γ).

- A map f : D² → D² is signed-area preserving if for every Lipschitz closed curve γ, σ(γ) = σ(f ∘ γ).
- A smooth signed-area preserving map must preserve orientation; in fact, the Jacobian must equal 1.

- A map f : D² → D² is signed-area preserving if for every Lipschitz closed curve γ, σ(γ) = σ(f ∘ γ).
- A smooth signed-area preserving map must preserve orientation; in fact, the Jacobian must equal 1.
- ► (De Lellis–Hirsch–Inauen) When α > ²/₃, an α–Hölder signed-area preserving map must preserve orientation. (The image of a positively-oriented simple closed curve has nonnegative winding number around any point.)

- A map f : D² → D² is signed-area preserving if for every Lipschitz closed curve γ, σ(γ) = σ(f ∘ γ).
- A smooth signed-area preserving map must preserve orientation; in fact, the Jacobian must equal 1.
- ► (De Lellis-Hirsch-Inauen) When α > ²/₃, an α-Hölder signed-area preserving map must preserve orientation. (The image of a positively-oriented simple closed curve has nonnegative winding number around any point.)
- (Guth−Y.)When ¹/₂ < α < ²/₃, the α−Hölder signed-area preserving maps from D² to ℝ² are dense in C₀(D², ℝ²).

- A map f : D² → D² is signed-area preserving if for every Lipschitz closed curve γ, σ(γ) = σ(f ∘ γ).
- A smooth signed-area preserving map must preserve orientation; in fact, the Jacobian must equal 1.
- (De Lellis–Hirsch–Inauen) When α > ²/₃, an α−Hölder signed-area preserving map must preserve orientation. (The image of a positively-oriented simple closed curve has nonnegative winding number around any point.)
- (Guth−Y.)When ¹/₂ < α < ²/₃, the α−Hölder signed-area preserving maps from D² to ℝ² are dense in C₀(D², ℝ²).
- ▶ Based on lemma: There is a c > 0 such that for any $n \in \mathbb{N}$, a curve $\gamma : S^1 \to \mathbb{R}^2$ of length *L* can be subdivided into $\gamma_1, \ldots, \gamma_{cn^3}$ such that $\ell(\gamma_i) \leq \frac{L}{n}$ and $\sigma(\gamma_i) = \frac{\sigma(\gamma)}{cn^3}$.

Open questions

What else can this be used for?

Hölder maps from \mathbb{R}^3 to H

Theorem (Wenger–Y.) When $\frac{1}{2} < \alpha < \frac{2}{3}$, the set of α –Hölder maps is dense in $C_0(D^n, H)$.