Composing and decomposing functions and

 surfaces
cims.nyu.edu/~ryoung/slides/slidesICM.pdf
R.Y. was supported by NSF grant DMS 2005609

Motivation

Q: What's the most complex surface?

Motivation

Q: What's the most complex surface?
A: Probably too complicated to draw:

Motivation

Q: What's the most complex surface?
A: Probably too complicated to draw:

Q: What's the most complex surface in \mathbb{R}^{n} ?

Motivation

Q: What's the most complex surface?
A: Probably too complicated to draw:

Q: What's the most complex surface in \mathbb{R}^{n} ?
A: You can always add more complexity:

Motivation

Q: What's the most complex surface?
A: Probably too complicated to draw:

Q: What's the most complex surface in \mathbb{R}^{n} ?
A: You can always add more complexity: $-\infty$
Q: What's the most complex surface in \mathbb{R}^{n} of a given area?

Plan

- Warm-up: Lipschitz functions
- Measuring nonorientability
- Applications to metric geometry

Warm-up: Lipschitz functions

$f:[0,1] \rightarrow \mathbb{R}$ is L-Lipschitz if $|f(x)-f(y)| \leq L|x-y|$ for all x, y.

Warm-up: Lipschitz functions

$f:[0,1] \rightarrow \mathbb{R}$ is L-Lipschitz if $|f(x)-f(y)| \leq L|x-y|$ for all x, y.
What's the most complex 1-Lipschitz function?

Warm-up: Lipschitz functions

$f:[0,1] \rightarrow \mathbb{R}$ is L-Lipschitz if $|f(x)-f(y)| \leq L|x-y|$ for all x, y.
What's the most complex 1-Lipschitz function?
Maybe something like this:

Warm-up: Lipschitz functions

Let $\epsilon>0$, let

$$
1 \gg r_{1} \gg r_{2} \gg \cdots \gg r_{k} .
$$

Let $f=\sum_{i=1}^{k} \beta_{i}$, where β_{i} is a wave with wavelength r_{i} and amplitude $a_{i}=\epsilon r_{i}$.

Warm-up: Lipschitz functions

Let $\epsilon>0$, let

$$
1 \gg r_{1} \gg r_{2} \gg \cdots \gg r_{k} .
$$

Let $f=\sum_{i=1}^{k} \beta_{i}$, where β_{i} is a wave with wavelength r_{i} and amplitude $a_{i}=\epsilon r_{i}$. Then

$$
\begin{aligned}
\left\|f^{\prime}\right\|_{2}^{2} & \approx\left\|\beta_{1}^{\prime}\right\|_{2}^{2}+\cdots+\left\|\beta_{k}^{\prime}\right\|_{2}^{2} \\
& \approx\left(\frac{a_{1}}{r_{1}}\right)^{2}+\cdots+\left(\frac{a_{k}}{r_{k}}\right)^{2} \approx k \epsilon^{2} .
\end{aligned}
$$

Warm-up: Lipschitz functions

Let $\epsilon>0$, let

$$
1 \gg r_{1} \gg r_{2} \gg \cdots \gg r_{k} .
$$

Let $f=\sum_{i=1}^{k} \beta_{i}$, where β_{i} is a wave with wavelength r_{i} and amplitude $a_{i}=\epsilon r_{i}$. Then

$$
\begin{aligned}
\left\|f^{\prime}\right\|_{2}^{2} & \approx\left\|\beta_{1}^{\prime}\right\|_{2}^{2}+\cdots+\left\|\beta_{k}^{\prime}\right\|_{2}^{2} \\
& \approx\left(\frac{a_{1}}{r_{1}}\right)^{2}+\cdots+\left(\frac{a_{k}}{r_{k}}\right)^{2} \approx k \epsilon^{2}
\end{aligned}
$$

As long as $k \epsilon^{2} \ll \frac{1}{10}, f$ is mostly 1 -Lipschitz. So there's a 1 -Lipschitz function which is ϵ-bumpy at $\approx \epsilon^{-2}$ different scales.

How do you decompose a Lipschitz function?

Let f be 1 -Lipschitz on $[0,1]$. For each i, let f_{i} be the piecewise-linear approximation of f such that $f_{i}\left(k 2^{-i}\right)=f\left(k 2^{-i}\right)$ for all k.

How do you decompose a Lipschitz function?

Let f be 1 -Lipschitz on $[0,1]$. For each i, let f_{i} be the piecewise-linear approximation of f such that $f_{i}\left(k 2^{-i}\right)=f\left(k 2^{-i}\right)$ for all k.

Let $g_{i}=\left(f_{i+1}-f_{i}\right)^{\prime}$. Then $\left\|g_{i}\right\|$ measures "bumpiness" at scale 2^{-i}

How do you decompose a Lipschitz function?

Let f be 1 -Lipschitz on $[0,1]$. For each i, let f_{i} be the piecewise-linear approximation of f such that $f_{i}\left(k 2^{-i}\right)=f\left(k 2^{-i}\right)$ for all k.

Let $g_{i}=\left(f_{i+1}-f_{i}\right)^{\prime}$. Then $\left\|g_{i}\right\|$ measures "bumpiness" at scale 2^{-i} and $\left\langle g_{i}, g_{j}\right\rangle=0$ for all $i \neq j$. So:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\left\|g_{1}+g_{2}+\ldots\right\|_{2}^{2}=\left\|g_{1}\right\|_{2}^{2}+\left\|g_{2}\right\|_{2}^{2}+\cdots \leq 1
$$

How do you decompose a Lipschitz function?

Let f be 1 -Lipschitz on $[0,1]$. For each i, let f_{i} be the piecewise-linear approximation of f such that $f_{i}\left(k 2^{-i}\right)=f\left(k 2^{-i}\right)$ for all k.

Let $g_{i}=\left(f_{i+1}-f_{i}\right)^{\prime}$. Then $\left\|g_{i}\right\|$ measures "bumpiness" at scale 2^{-i} and $\left\langle g_{i}, g_{j}\right\rangle=0$ for all $i \neq j$. So:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\left\|g_{1}+g_{2}+\ldots\right\|_{2}^{2}=\left\|g_{1}\right\|_{2}^{2}+\left\|g_{2}\right\|_{2}^{2}+\cdots \leq 1
$$

That is, f can only be ϵ-bumpy at ϵ^{-2} different scales.

How do you decompose a Lipschitz function?

Let f be 1 -Lipschitz on $[0,1]$. For each i, let f_{i} be the piecewise-linear approximation of f such that $f_{i}\left(k 2^{-i}\right)=f\left(k 2^{-i}\right)$ for all k.
Let $g_{i}=\left(f_{i+1}-f_{i}\right)^{\prime}$. Then $\left\|g_{i}\right\|$ measures "bumpiness" at scale 2^{-i} and $\left\langle g_{i}, g_{j}\right\rangle=0$ for all $i \neq j$. So:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\left\|g_{1}+g_{2}+\ldots\right\|_{2}^{2}=\left\|g_{1}\right\|_{2}^{2}+\left\|g_{2}\right\|_{2}^{2}+\cdots \leq 1
$$

That is, f can only be ϵ-bumpy at ϵ^{-2} different scales. (See also: Fourier, Littlewood-Paley, Dorronsoro, Jones, David-Semmes, among many others)

How can we measure nonorientability?

How can we measure nonorientability?

Let $d<n$, let K be a d-cycle with coefficients in \mathbb{Z}_{2} (a closed d-dimensional surface) in \mathbb{R}^{n}.

Klein bottle

How can we measure nonorientability?

Let $d<n$, let K be a d-cycle with coefficients in \mathbb{Z}_{2} (a closed d-dimensional surface) in \mathbb{R}^{n}.
K is orientable if and only if we can lift it to an integral cycle (a cycle with coefficients in \mathbb{Z}) with the same support.

Klein bottle

How can we measure nonorientability?

Let $d<n$, let K be a d-cycle with coefficients in \mathbb{Z}_{2} (a closed d-dimensional surface) in \mathbb{R}^{n}.
K is orientable if and only if we can lift it to an integral cycle (a cycle with coefficients in \mathbb{Z}) with the same support.

Otherwise, we can construct a pseudoorientation of K : an integral cycle P such that $K \equiv P(\bmod 2)$, but $\operatorname{area}(P) \geq$ $\operatorname{area}(K)$.

pseudo-orientation

How can we measure nonorientability?

Let $d<n$, let K be a d-cycle with coefficients in \mathbb{Z}_{2} (a closed d-dimensional surface) in \mathbb{R}^{n}.
K is orientable if and only if we can lift it to an integral cycle (a cycle with coefficients in \mathbb{Z}) with the same support.

Otherwise, we can construct a pseudoorientation of K : an integral cycle P such that $K \equiv P(\bmod 2)$, but $\operatorname{area}(P) \geq$ area(K).

In this case,

pseudo-orientation
$\operatorname{area}(P)=\operatorname{area}(K)+$ area of two discs.

Quantitative nonorientability for cellular cycles

Let $d<n$, let τ be the unit grid in \mathbb{R}^{n}, and let $Z_{d}(\tau ; S)$ be the set of cellular d-cycles with coefficients in S (i.e., d-chains with zero boundary).

Quantitative nonorientability for cellular cycles

Let $d<n$, let τ be the unit grid in \mathbb{R}^{n}, and let $Z_{d}(\tau ; S)$ be the set of cellular d-cycles with coefficients in S (i.e., d-chains with zero boundary). For $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$,

$$
\begin{aligned}
\mathrm{NO}(A) & =\min \{\text { area } P \mid P \text { is a pseudo-orientation of } A\} \\
& =\min \left\{\operatorname{area} P \mid P \in Z_{d}(\tau ; \mathbb{Z}), P \equiv A(\bmod 2)\right\} .
\end{aligned}
$$

Quantitative nonorientability for cellular cycles

Let $d<n$, let τ be the unit grid in \mathbb{R}^{n}, and let $Z_{d}(\tau ; S)$ be the set of cellular d-cycles with coefficients in S (i.e., d-chains with zero boundary). For $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$,

$$
\begin{aligned}
\mathrm{NO}(A) & =\min \{\text { area } P \mid P \text { is a pseudo-orientation of } A\} \\
& =\min \left\{\operatorname{area} P \mid P \in Z_{d}(\tau ; \mathbb{Z}), P \equiv A(\bmod 2)\right\}
\end{aligned}
$$

- If A is orientable, then $\mathrm{NO}(A)=\operatorname{area}(A)$.

Quantitative nonorientability for cellular cycles

Let $d<n$, let τ be the unit grid in \mathbb{R}^{n}, and let $Z_{d}(\tau ; S)$ be the set of cellular d-cycles with coefficients in S (i.e., d-chains with zero boundary). For $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$,

$$
\begin{aligned}
\mathrm{NO}(A) & =\min \{\text { area } P \mid P \text { is a pseudo-orientation of } A\} \\
& =\min \left\{\operatorname{area} P \mid P \in Z_{d}(\tau ; \mathbb{Z}), P \equiv A(\bmod 2)\right\} .
\end{aligned}
$$

- If A is orientable, then $\mathrm{NO}(A)=\operatorname{area}(A)$.
- $\mathrm{NO}(A+B) \leq \mathrm{NO}(A)+\mathrm{NO}(B)$ for any A, B.

Quantitative nonorientability for cellular cycles

Let $d<n$, let τ be the unit grid in \mathbb{R}^{n}, and let $Z_{d}(\tau ; S)$ be the set of cellular d-cycles with coefficients in S (i.e., d-chains with zero boundary). For $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$,

$$
\begin{aligned}
\mathrm{NO}(A) & =\min \{\text { area } P \mid P \text { is a pseudo-orientation of } A\} \\
& =\min \left\{\operatorname{area} P \mid P \in Z_{d}(\tau ; \mathbb{Z}), P \equiv A(\bmod 2)\right\} .
\end{aligned}
$$

- If A is orientable, then $\mathrm{NO}(A)=\operatorname{area}(A)$.
- $\mathrm{NO}(A+B) \leq \mathrm{NO}(A)+\mathrm{NO}(B)$ for any A, B.

What's the most nonorientable surface?

Quantitative nonorientability for cellular cycles

Let $d<n$, let τ be the unit grid in \mathbb{R}^{n}, and let $Z_{d}(\tau ; S)$ be the set of cellular d-cycles with coefficients in S (i.e., d-chains with zero boundary). For $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$,

$$
\begin{aligned}
\mathrm{NO}(A) & =\min \{\text { area } P \mid P \text { is a pseudo-orientation of } A\} \\
& =\min \left\{\operatorname{area} P \mid P \in Z_{d}(\tau ; \mathbb{Z}), P \equiv A(\bmod 2)\right\}
\end{aligned}
$$

- If A is orientable, then $\mathrm{NO}(A)=\operatorname{area}(A)$.
- $\mathrm{NO}(A+B) \leq \mathrm{NO}(A)+\mathrm{NO}(B)$ for any A, B.

What's the most nonorientable surface? How large can $\frac{\mathrm{NO}(A)}{\operatorname{area}(A)}$ be?

What's the most nonorientable surface?

One possibility:

1. Let M be a cube of side length R.

What's the most nonorientable surface?

One possibility:

1. Let M be a cube of side length R.
2. Let $R \gg r_{1} \gg r_{2} \gg \cdots>r_{k} \gg 1$.

What's the most nonorientable surface?

One possibility:

1. Let M be a cube of side length R.
2. Let $R \gg r_{1} \gg r_{2} \gg \cdots \gg r_{k} \gg 1$.
3. Add $\sim \frac{R^{2}}{r_{1}^{2}}$ cross-handles of scale r_{1} on all sides.

What's the most nonorientable surface?

One possibility:

1. Let M be a cube of side length R.
2. Let $R \gg r_{1} \gg r_{2} \gg \cdots \gg r_{k} \gg 1$.
3. Add $\sim \frac{R^{2}}{r_{1}^{2}}$ cross-handles of scale r_{1} on all sides.
4. Repeat for each r_{i}.

What's the most nonorientable surface?

One possibility:

1. Let M be a cube of side length R.
2. Let $R \gg r_{1} \gg r_{2} \gg \cdots \gg r_{k} \gg 1$.
3. Add $\sim \frac{R^{2}}{r_{1}^{2}}$ cross-handles of scale r_{1} on all sides.
4. Repeat for each r_{i}.

Then

$$
\mathrm{NO}(M) \approx \sum_{i=1}^{k} r_{i}^{2} \frac{R^{2}}{r_{i}^{2}} \approx k R^{2}
$$

What's the most nonorientable surface?

One possibility:

1. Let M be a cube of side length R.
2. Let $R \gg r_{1} \gg r_{2} \gg \cdots \gg r_{k} \gg 1$.
3. Add $\sim \frac{R^{2}}{r_{1}^{2}}$ cross-handles of scale r_{1} on all sides.
4. Repeat for each r_{i}.

Then

$$
\mathrm{NO}(M) \approx \sum_{i=1}^{k} r_{i}^{2} \frac{R^{2}}{r_{i}^{2}} \approx k R^{2}
$$

But

$$
\operatorname{area}(M) \approx R^{2}+\sum_{i=1}^{k} r_{i}^{2} \frac{R^{2}}{r_{i}^{2}} \approx(k+1) R^{2}
$$

so $\frac{\mathrm{NO}(M)}{\operatorname{area}(M)}$ stays bounded!

Nonorientability is bounded by area

Theorem (Y.)
For every $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, we have $\mathrm{NO}(A) \lesssim$ area A.

Nonorientability is bounded by area

Theorem (Y.)
For every $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, we have $\mathrm{NO}(A) \lesssim$ area A.
And we can bound the nonorientability of non-cellular surfaces by approximating by cellular surfaces.

Nonorientability is bounded by area

Theorem (Y.)
For every $A \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, we have $\mathrm{NO}(A) \lesssim$ area A.
And we can bound the nonorientability of non-cellular surfaces by approximating by cellular surfaces.

Corollary (Y.)

If D is an area-minimizing surface with boundary T, then there is an $\epsilon>0$ such that any area-minimizing surface E with boundary $2 T$ satisfies

$$
\operatorname{area}(E) \geq \epsilon \operatorname{area}(D)
$$

Proof: Decomposing surfaces in \mathbb{R}^{n}

Let $M \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, let $M_{1}=M$.

1. Find the smallest set $B_{1} \subset \mathbb{R}^{n}$ on which M_{1} can be deformed into a set of much smaller area. (M_{1} is not a quasiminimizer on B_{1})

Proof: Decomposing surfaces in \mathbb{R}^{n}

Let $M \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, let $M_{1}=M$.

1. Find the smallest set $B_{1} \subset \mathbb{R}^{n}$ on which M_{1} can be deformed into a set of much smaller area. (M_{1} is not a quasiminimizer on B_{1})
2. Deform M_{1} and call the result M_{2}. Let $A_{1}=M_{1}-M_{2}$

Proof: Decomposing surfaces in \mathbb{R}^{n}

Let $M \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, let $M_{1}=M$.

1. Find the smallest set $B_{1} \subset \mathbb{R}^{n}$ on which M_{1} can be deformed into a set of much smaller area. (M_{1} is not a quasiminimizer on B_{1})
2. Deform M_{1} and call the result M_{2}. Let $A_{1}=M_{1}-M_{2}$
3. Repeat until $M_{k}=0$. Write $M=\sum_{i} A_{i}$.

Proof: Decomposing surfaces in \mathbb{R}^{n}

Let $M \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, let $M_{1}=M$.

1. Find the smallest set $B_{1} \subset \mathbb{R}^{n}$ on which M_{1} can be deformed into a set of much smaller area. (M_{1} is not a quasiminimizer on B_{1})
2. Deform M_{1} and call the result M_{2}. Let $A_{1}=M_{1}-M_{2}$
3. Repeat until $M_{k}=0$. Write $M=\sum_{i} A_{i}$.

Then:

- $\operatorname{area}\left(M_{i}\right)$ is a decreasing sequence of integers, so this process terminates.

Proof: Decomposing surfaces in \mathbb{R}^{n}

Let $M \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, let $M_{1}=M$.

1. Find the smallest set $B_{1} \subset \mathbb{R}^{n}$ on which M_{1} can be deformed into a set of much smaller area. (M_{1} is not a quasiminimizer on B_{1})
2. Deform M_{1} and call the result M_{2}. Let $A_{1}=M_{1}-M_{2}$
3. Repeat until $M_{k}=0$. Write $M=\sum_{i} A_{i}$.

Then:

- $\operatorname{area}\left(M_{i}\right)$ is a decreasing sequence of integers, so this process terminates.
$-\operatorname{area}(M) \approx \sum_{i} \operatorname{area}\left(A_{i}\right)$.

Proof: Decomposing surfaces in \mathbb{R}^{n}

Let $M \in Z_{d}\left(\tau ; \mathbb{Z}_{2}\right)$, let $M_{1}=M$.

1. Find the smallest set $B_{1} \subset \mathbb{R}^{n}$ on which M_{1} can be deformed into a set of much smaller area. (M_{1} is not a quasiminimizer on B_{1})
2. Deform M_{1} and call the result M_{2}. Let $A_{1}=M_{1}-M_{2}$
3. Repeat until $M_{k}=0$. Write $M=\sum_{i} A_{i}$.

Then:
$-\operatorname{area}\left(M_{i}\right)$ is a decreasing sequence of integers, so this process terminates.
$-\operatorname{area}(M) \approx \sum_{i} \operatorname{area}\left(A_{i}\right)$.

- M_{i} is a quasiminimizer on any set smaller than B_{i}.

Proof: Uniform rectifiability

Theorem (David-Semmes)
A quasiminimizer in \mathbb{R}^{n} is uniformly rectifiable.
Definition (David-Semmes)
A set $E \subset \mathbb{R}^{k}$ is uniformly rectifiable if and only if there is a "small" collection of Lipschitz graphs that approximate E on most balls (a corona decomposition).

Proof: Conclusion

Therefore:

Proposition

Any mod-2 d-cycle M in \mathbb{R}^{n} can be written as a sum $M=\sum_{i} A_{i}$ of mod-2 d-cycles A_{i} with uniformly rectifiable support such that \sum area $A_{i} \lesssim$ area M.

Proof: Conclusion

Therefore:

Proposition

Any mod-2 d-cycle M in \mathbb{R}^{n} can be written as a sum $M=\sum_{i} A_{i}$ of mod-2 d-cycles A_{i} with uniformly rectifiable support such that \sum area $A_{i} \lesssim$ area M.

And:

Proposition

Any mod-2 d-cycle P with uniformly rectifiable support satisfies $\mathrm{NO}(P) \lesssim \operatorname{area}(P)$.

Proof: Conclusion

Therefore:

Proposition

Any mod-2 d-cycle M in \mathbb{R}^{n} can be written as a sum $M=\sum_{i} A_{i}$ of mod-2 d-cycles A_{i} with uniformly rectifiable support such that \sum area $A_{i} \lesssim$ area M.
And:

Proposition

Any mod-2 d-cycle P with uniformly rectifiable support satisfies $\mathrm{NO}(P) \lesssim \operatorname{area}(P)$.
So $\mathrm{NO}(M) \leq \sum_{i} \mathrm{NO}\left(A_{i}\right) \lesssim \sum_{i} \operatorname{area}\left(A_{i}\right) \lesssim \operatorname{area}(M)$.

Q: What's the most complex surface in \mathbb{R}^{n} of a given area?

Q: What's the most complex surface in \mathbb{R}^{n} of a given area?
A surface of area A can be decomposed into uniformly rectifiable surfaces of total area $\approx A$

Q: What's the most complex surface in \mathbb{R}^{n} of a given area?

A surface of area A can be decomposed into uniformly rectifiable surfaces of total area $\approx A$, which can be described by Lipschitz graphs of total area $\approx A$.

The Heisenberg group

Let $\mathbb{H}^{2 k+1} \subset M_{k+2}$ be the $(2 k+1)$-dimensional nilpotent group

$$
\mathbb{H}^{2 k+1}=\left\{\left.\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x_{k} & z \\
0 & 1 & 0 & 0 & y_{1} \\
0 & 0 & \ddots & 0 & \vdots \\
0 & 0 & 0 & 1 & y_{k} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, x_{i}, y_{i}, z \in \mathbb{R}\right\}
$$

The Heisenberg group

Let $\mathbb{H}^{2 k+1} \subset M_{k+2}$ be the $(2 k+1)$-dimensional nilpotent group

$$
\mathbb{H}^{2 k+1}=\left\{\left.\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x_{k} & z \\
0 & 1 & 0 & 0 & y_{1} \\
0 & 0 & \ddots & 0 & \vdots \\
0 & 0 & 0 & 1 & y_{k} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, x_{i}, y_{i}, z \in \mathbb{R}\right\}
$$

This contains a lattice

$$
\begin{aligned}
\mathbb{H}_{\mathbb{Z}}^{2 k+1}= & \left\langle X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}, Z\right. \\
& \left.\mid\left[X_{i}, Y_{i}\right]=Z, \text { all other pairs commute }\right\rangle
\end{aligned}
$$

The Heisenberg group $\mathbb{H}_{\mathbb{Z}}^{3}$

The Heisenberg group $\mathbb{H}_{\mathbb{Z}}^{3}$

The Heisenberg group $\mathbb{H}_{\mathbb{Z}}^{3}$

Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from \mathbb{H} to \mathbb{R}^{N}.

Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from \mathbb{H} to \mathbb{R}^{N}.
Theorem (Cheeger-Kleiner)
There is no bilipschitz embedding from \mathbb{H} to L_{1}.

Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from \mathbb{H} to \mathbb{R}^{N}.
Theorem (Cheeger-Kleiner)
There is no bilipschitz embedding from \mathbb{H} to L_{1}.
Cheeger and Kleiner's proof is based on approximating the level sets of functions $\mathbb{H} \rightarrow \mathbb{R}$ by planes. Our methods let us decompose these sets into Lipschitz graphs, leading to:
Theorem (Naor-Y.)
Sharp quantitative bounds on Lipschitz maps from \mathbb{H} to L_{1}.

Applications (with Naor)

- The integrality gap for the Goemans-Linial relaxation of Sparsest Cut is at least $\sqrt{\log n}$.

Applications (with Naor)

- The integrality gap for the Goemans-Linial relaxation of Sparsest Cut is at least $\sqrt{\log n}$.
- The ball of radius r in the three-dimensional Heisenberg group $\mathbb{H}_{\mathbb{Z}}^{3}$ embeds into L_{1} with distortion $\sqrt[4]{\log r}$, while the same ball in the higher-dimensional Heisenberg groups $\mathbb{H}_{\mathbb{Z}}^{5}, \mathbb{H}_{\mathbb{Z}}^{7}, \ldots$ has distortion $\sqrt{\log r}$.

Applications (with Naor)

- The integrality gap for the Goemans-Linial relaxation of Sparsest Cut is at least $\sqrt{\log n}$.
- The ball of radius r in the three-dimensional Heisenberg group $\mathbb{H}_{\mathbb{Z}}^{3}$ embeds into L_{1} with distortion $\sqrt[4]{\log r}$, while the same ball in the higher-dimensional Heisenberg groups $\mathbb{H}_{\mathbb{Z}}^{5}, \mathbb{H}_{\mathbb{Z}}^{7}, \ldots$ has distortion $\sqrt{\log r}$.
- There is a metric space M that has a bilipschitz embedding into L_{1} and L_{4}, but not L_{p} for $1<p<4$.

Surfaces in \mathbb{H}

Some of the most complex Lipschitz graphs in \mathbb{H}^{3}.

