Composing and decomposing functions and surfaces

Q: What's the most complex surface?

- Q: What's the most complex surface?
- A: Probably too complicated to draw:

- Q: What's the most complex surface?
- A: Probably too complicated to draw:

Q: What's the most complex surface in \mathbb{R}^n ?

- Q: What's the most complex surface?
- A: Probably too complicated to draw:

- Q: What's the most complex surface in \mathbb{R}^n ?
- A: You can always add more complexity:

- Q: What's the most complex surface?
- A: Probably too complicated to draw:

- Q: What's the most complex surface in \mathbb{R}^n ?
- A: You can always add more complexity:

Q: What's the most complex surface in \mathbb{R}^n of a given area?

- ► Warm-up: Lipschitz functions
- Measuring nonorientability
- Applications to metric geometry

 $f:[0,1] \to \mathbb{R}$ is L-Lipschitz if $|f(x) - f(y)| \le L|x - y|$ for all x, y.

 $f: [0,1] \rightarrow \mathbb{R}$ is L-Lipschitz if $|f(x) - f(y)| \le L|x - y|$ for all x, y.

What's the most complex 1-Lipschitz function?

 $f:[0,1] \to \mathbb{R}$ is L-Lipschitz if $|f(x) - f(y)| \le L|x - y|$ for all x, y.

What's the most complex 1-Lipschitz function?

Maybe something like this:

Let $\epsilon > 0$, let

 $1 \gg r_1 \gg r_2 \gg \cdots \gg r_k$.

Let $f = \sum_{i=1}^{k} \beta_i$, where β_i is a wave with wavelength r_i and amplitude $a_i = \epsilon r_i$.

Let $\epsilon > 0$, let

$$1 \gg r_1 \gg r_2 \gg \cdots \gg r_k$$
.

Let $f = \sum_{i=1}^{k} \beta_i$, where β_i is a wave with wavelength r_i and amplitude $a_i = \epsilon r_i$. Then

$$\|f'\|_2^2 \approx \|\beta_1'\|_2^2 + \dots + \|\beta_k'\|_2^2$$
$$\approx \left(\frac{a_1}{r_1}\right)^2 + \dots + \left(\frac{a_k}{r_k}\right)^2 \approx k\epsilon^2.$$

Let $\epsilon > 0$, let

$$1 \gg r_1 \gg r_2 \gg \cdots \gg r_k$$
.

Let $f = \sum_{i=1}^{k} \beta_i$, where β_i is a wave with wavelength r_i and amplitude $a_i = \epsilon r_i$. Then

$$\|f'\|_2^2 \approx \|\beta_1'\|_2^2 + \dots + \|\beta_k'\|_2^2$$
$$\approx \left(\frac{a_1}{r_1}\right)^2 + \dots + \left(\frac{a_k}{r_k}\right)^2 \approx k\epsilon^2.$$

As long as $k\epsilon^2 \ll \frac{1}{10}$, *f* is *mostly* 1–Lipschitz. So there's a 1–Lipschitz function which is ϵ -bumpy at $\approx \epsilon^{-2}$ different scales.

Let f be 1–Lipschitz on [0, 1]. For each i, let f_i be the piecewise-linear approximation of f such that $f_i(k2^{-i}) = f(k2^{-i})$ for all k.

Let f be 1–Lipschitz on [0,1]. For each i, let f_i be the piecewise-linear approximation of f such that $f_i(k2^{-i}) = f(k2^{-i})$ for all k.

Let $g_i = (f_{i+1} - f_i)'$. Then $\|g_i\|$ measures "bumpiness" at scale 2^{-i}

Let f be 1–Lipschitz on [0, 1]. For each i, let f_i be the piecewise-linear approximation of f such that $f_i(k2^{-i}) = f(k2^{-i})$ for all k.

Let $g_i = (f_{i+1} - f_i)'$. Then $||g_i||$ measures "bumpiness" at scale 2^{-i} and $\langle g_i, g_j \rangle = 0$ for all $i \neq j$. So:

 $\|f'\|_2^2 = \|g_1 + g_2 + \dots\|_2^2 = \|g_1\|_2^2 + \|g_2\|_2^2 + \dots \le 1.$

Let f be 1–Lipschitz on [0, 1]. For each i, let f_i be the piecewise-linear approximation of f such that $f_i(k2^{-i}) = f(k2^{-i})$ for all k.

Let $g_i = (f_{i+1} - f_i)'$. Then $||g_i||$ measures "bumpiness" at scale 2^{-i} and $\langle g_i, g_j \rangle = 0$ for all $i \neq j$. So:

$$\|f'\|_2^2 = \|g_1 + g_2 + \dots\|_2^2 = \|g_1\|_2^2 + \|g_2\|_2^2 + \dots \le 1.$$

That is, f can only be ϵ -bumpy at ϵ^{-2} different scales.

Let f be 1–Lipschitz on [0, 1]. For each i, let f_i be the piecewise-linear approximation of f such that $f_i(k2^{-i}) = f(k2^{-i})$ for all k.

Let $g_i = (f_{i+1} - f_i)'$. Then $||g_i||$ measures "bumpiness" at scale 2^{-i} and $\langle g_i, g_j \rangle = 0$ for all $i \neq j$. So:

$$\|f'\|_2^2 = \|g_1 + g_2 + \dots\|_2^2 = \|g_1\|_2^2 + \|g_2\|_2^2 + \dots \le 1.$$

That is, f can only be ϵ -bumpy at ϵ^{-2} different scales. (See also: Fourier, Littlewood–Paley, Dorronsoro, Jones, David–Semmes, among many others)

Let d < n, let K be a d-cycle with coefficients in \mathbb{Z}_2 (a closed d-dimensional surface) in \mathbb{R}^n .

Klein bottle

Let d < n, let K be a d-cycle with coefficients in \mathbb{Z}_2 (a closed d-dimensional surface) in \mathbb{R}^n .

K is *orientable* if and only if we can lift it to an integral cycle (a cycle with coefficients in \mathbb{Z}) with the same support.

Klein bottle

Let d < n, let K be a d-cycle with coefficients in \mathbb{Z}_2 (a closed d-dimensional surface) in \mathbb{R}^n .

K is orientable if and only if we can lift it to an integral cycle (a cycle with coefficients in \mathbb{Z}) with the same support.

Otherwise, we can construct a *pseudo*orientation of K: an integral cycle P such that $K \equiv P \pmod{2}$, but $\operatorname{area}(P) \ge \operatorname{area}(K)$.

pseudo-orientation

Let d < n, let K be a d-cycle with coefficients in \mathbb{Z}_2 (a closed d-dimensional surface) in \mathbb{R}^n .

K is *orientable* if and only if we can lift it to an integral cycle (a cycle with coefficients in \mathbb{Z}) with the same support.

Otherwise, we can construct a *pseudo*orientation of K: an integral cycle P such that $K \equiv P \pmod{2}$, but $\operatorname{area}(P) \ge \operatorname{area}(K)$.

In this case,

$$area(P) = area(K) + area of two discs.$$

pseudo-orientation

Let d < n, let τ be the unit grid in \mathbb{R}^n , and let $Z_d(\tau; S)$ be the set of cellular *d*-cycles with coefficients in *S* (i.e., *d*-chains with zero boundary).

Let d < n, let τ be the unit grid in \mathbb{R}^n , and let $Z_d(\tau; S)$ be the set of cellular *d*-cycles with coefficients in *S* (i.e., *d*-chains with zero boundary). For $A \in Z_d(\tau; \mathbb{Z}_2)$,

$$\begin{split} \mathsf{NO}(A) &= \min\{ \operatorname{area} P \mid P \text{ is a pseudo-orientation of } A \} \\ &= \min\{ \operatorname{area} P \mid P \in Z_d(\tau; \mathbb{Z}), P \equiv A \pmod{2} \}. \end{split}$$

Let d < n, let τ be the unit grid in \mathbb{R}^n , and let $Z_d(\tau; S)$ be the set of cellular *d*-cycles with coefficients in *S* (i.e., *d*-chains with zero boundary). For $A \in Z_d(\tau; \mathbb{Z}_2)$,

 $NO(A) = \min\{\text{area } P \mid P \text{ is a pseudo-orientation of } A\}$ = min{area $P \mid P \in Z_d(\tau; \mathbb{Z}), P \equiv A \pmod{2}\}.$

• If A is orientable, then NO(A) = area(A).

Let d < n, let τ be the unit grid in \mathbb{R}^n , and let $Z_d(\tau; S)$ be the set of cellular *d*-cycles with coefficients in *S* (i.e., *d*-chains with zero boundary). For $A \in Z_d(\tau; \mathbb{Z}_2)$,

 $NO(A) = \min\{\text{area } P \mid P \text{ is a pseudo-orientation of } A\}$ = min{area $P \mid P \in Z_d(\tau; \mathbb{Z}), P \equiv A \pmod{2}\}.$

If A is orientable, then NO(A) = area(A).
NO(A + B) < NO(A) + NO(B) for any A, B.

Let d < n, let τ be the unit grid in \mathbb{R}^n , and let $Z_d(\tau; S)$ be the set of cellular *d*-cycles with coefficients in *S* (i.e., *d*-chains with zero boundary). For $A \in Z_d(\tau; \mathbb{Z}_2)$,

$$\begin{split} \mathsf{NO}(A) &= \min\{ \text{area } P \mid P \text{ is a pseudo-orientation of } A \} \\ &= \min\{ \text{area } P \mid P \in Z_d(\tau;\mathbb{Z}), P \equiv A \pmod{2} \}. \end{split}$$

If A is orientable, then NO(A) = area(A).
NO(A + B) ≤ NO(A) + NO(B) for any A, B.

What's the most nonorientable surface?

Let d < n, let τ be the unit grid in \mathbb{R}^n , and let $Z_d(\tau; S)$ be the set of cellular *d*-cycles with coefficients in *S* (i.e., *d*-chains with zero boundary). For $A \in Z_d(\tau; \mathbb{Z}_2)$,

 $NO(A) = \min\{\text{area } P \mid P \text{ is a pseudo-orientation of } A\}$ = min{area $P \mid P \in Z_d(\tau; \mathbb{Z}), P \equiv A \pmod{2}\}.$

If A is orientable, then NO(A) = area(A).
NO(A + B) ≤ NO(A) + NO(B) for any A, B.

What's the most nonorientable surface? How large can $\frac{NO(A)}{area(A)}$ be?

One possibility:

1. Let M be a cube of side length R.

One possibility:

- 1. Let M be a cube of side length R.
- 2. Let $R \gg r_1 \gg r_2 \gg \cdots \gg r_k \gg 1$.

One possibility:

- 1. Let M be a cube of side length R.
- 2. Let $R \gg r_1 \gg r_2 \gg \cdots \gg r_k \gg 1$.
- 3. Add $\sim \frac{R^2}{r_1^2}$ cross-handles of scale r_1 on all sides.

One possibility:

- 1. Let M be a cube of side length R.
- 2. Let $R \gg r_1 \gg r_2 \gg \cdots \gg r_k \gg 1$.
- 3. Add $\sim \frac{R^2}{r_1^2}$ cross-handles of scale r_1 on all sides.
- 4. Repeat for each r_i .

One possibility:

- 1. Let M be a cube of side length R.
- 2. Let $R \gg r_1 \gg r_2 \gg \cdots \gg r_k \gg 1$.
- 3. Add $\sim \frac{R^2}{r_1^2}$ cross-handles of scale r_1 on all sides.
- 4. Repeat for each r_i .

Then

$$\operatorname{NO}(M) \approx \sum_{i=1}^{k} r_i^2 \frac{R^2}{r_i^2} \approx k R^2.$$

One possibility:

- 1. Let M be a cube of side length R.
- 2. Let $R \gg r_1 \gg r_2 \gg \cdots \gg r_k \gg 1$.
- 3. Add $\sim \frac{R^2}{r_1^2}$ cross-handles of scale r_1 on all sides.
- 4. Repeat for each r_i .

Then

$$\operatorname{NO}(M) \approx \sum_{i=1}^{k} r_i^2 \frac{R^2}{r_i^2} \approx kR^2.$$

But

$$ext{area}(M)pprox R^2+\sum_{i=1}^k r_i^2 rac{R^2}{r_i^2}pprox (k+1)R^2,$$

so $\frac{NO(M)}{area(M)}$ stays bounded!

Nonorientability is bounded by area

Theorem (Y.) For every $A \in Z_d(\tau; \mathbb{Z}_2)$, we have $NO(A) \lesssim \text{area } A$.

Nonorientability is bounded by area

Theorem (Y.)

For every $A \in Z_d(\tau; \mathbb{Z}_2)$, we have $NO(A) \lesssim area A$.

And we can bound the nonorientability of non-cellular surfaces by approximating by cellular surfaces.

Nonorientability is bounded by area

Theorem (Y.)

For every $A \in Z_d(\tau; \mathbb{Z}_2)$, we have $NO(A) \lesssim area A$.

And we can bound the nonorientability of non-cellular surfaces by approximating by cellular surfaces.

Corollary (Y.)

If D is an area-minimizing surface with boundary T, then there is an $\epsilon > 0$ such that any area-minimizing surface E with boundary 2T satisfies

 $\operatorname{area}(E) \geq \epsilon \operatorname{area}(D).$

Let $M \in Z_d(\tau; \mathbb{Z}_2)$, let $M_1 = M$.

1. Find the smallest set $B_1 \subset \mathbb{R}^n$ on which M_1 can be deformed into a set of much smaller area. (M_1 is not a quasiminimizer on B_1)

Let $M \in Z_d(\tau; \mathbb{Z}_2)$, let $M_1 = M$.

- 1. Find the smallest set $B_1 \subset \mathbb{R}^n$ on which M_1 can be deformed into a set of much smaller area. $(M_1 \text{ is not a quasiminimizer} \text{ on } B_1)$
- 2. Deform M_1 and call the result M_2 . Let $A_1 = M_1 M_2$

Let $M \in Z_d(\tau; \mathbb{Z}_2)$, let $M_1 = M$.

- 1. Find the smallest set $B_1 \subset \mathbb{R}^n$ on which M_1 can be deformed into a set of much smaller area. (M_1 is not a quasiminimizer on B_1)
- 2. Deform M_1 and call the result M_2 . Let $A_1 = M_1 M_2$
- 3. Repeat until $M_k = 0$. Write $M = \sum_i A_i$.

Let $M \in Z_d(\tau; \mathbb{Z}_2)$, let $M_1 = M$.

- 1. Find the smallest set $B_1 \subset \mathbb{R}^n$ on which M_1 can be deformed into a set of much smaller area. (M_1 is not a quasiminimizer on B_1)
- 2. Deform M_1 and call the result M_2 . Let $A_1 = M_1 M_2$
- 3. Repeat until $M_k = 0$. Write $M = \sum_i A_i$.

Then:

 area(M_i) is a decreasing sequence of integers, so this process terminates.

Let $M \in Z_d(\tau; \mathbb{Z}_2)$, let $M_1 = M$.

- 1. Find the smallest set $B_1 \subset \mathbb{R}^n$ on which M_1 can be deformed into a set of much smaller area. $(M_1 \text{ is not a quasiminimizer} \text{ on } B_1)$
- 2. Deform M_1 and call the result M_2 . Let $A_1 = M_1 M_2$
- 3. Repeat until $M_k = 0$. Write $M = \sum_i A_i$.

Then:

- area(M_i) is a decreasing sequence of integers, so this process terminates.
- area $(M) \approx \sum_i \operatorname{area}(A_i)$.

Let $M \in Z_d(\tau; \mathbb{Z}_2)$, let $M_1 = M$.

- 1. Find the smallest set $B_1 \subset \mathbb{R}^n$ on which M_1 can be deformed into a set of much smaller area. $(M_1 \text{ is not a quasiminimizer} \text{ on } B_1)$
- 2. Deform M_1 and call the result M_2 . Let $A_1 = M_1 M_2$
- 3. Repeat until $M_k = 0$. Write $M = \sum_i A_i$.

Then:

- area(M_i) is a decreasing sequence of integers, so this process terminates.
- area $(M) \approx \sum_i \operatorname{area}(A_i)$.
- M_i is a quasiminimizer on any set smaller than B_i .

Proof: Uniform rectifiability

Theorem (David-Semmes)

A quasiminimizer in \mathbb{R}^n is uniformly rectifiable.

Definition (David–Semmes)

A set $E \subset \mathbb{R}^k$ is uniformly rectifiable if and only if there is a "small" collection of Lipschitz graphs that approximate E on most balls (a corona decomposition).

Proof: Conclusion

Therefore:

Proposition

Any mod-2 d-cycle M in \mathbb{R}^n can be written as a sum $M = \sum_i A_i$ of mod-2 d-cycles A_i with uniformly rectifiable support such that $\sum_i A_i \leq A_i \leq A_i$.

Proof: Conclusion

Therefore:

Proposition

Any mod-2 d-cycle M in \mathbb{R}^n can be written as a sum $M = \sum_i A_i$ of mod-2 d-cycles A_i with uniformly rectifiable support such that $\sum_i A_i \leq A_i \leq A_i$.

And:

Proposition

Any mod-2 d-cycle P with uniformly rectifiable support satisfies $NO(P) \lesssim area(P)$.

Proof: Conclusion

Therefore:

Proposition

Any mod-2 d-cycle M in \mathbb{R}^n can be written as a sum $M = \sum_i A_i$ of mod-2 d-cycles A_i with uniformly rectifiable support such that $\sum_i A_i \leq A_i \leq A_i$.

And:

Proposition

Any mod-2 d-cycle P with uniformly rectifiable support satisfies $NO(P) \leq area(P)$.

So $NO(M) \leq \sum_{i} NO(A_i) \lesssim \sum_{i} area(A_i) \lesssim area(M)$.

Q: What's the most complex surface in \mathbb{R}^n of a given area?

Q: What's the most complex surface in \mathbb{R}^n of a given area?

A surface of area A can be decomposed into uniformly rectifiable surfaces of total area $\approx A$

Q: What's the most complex surface in \mathbb{R}^n of a given area?

A surface of area A can be decomposed into uniformly rectifiable surfaces of total area $\approx A$, which can be described by Lipschitz graphs of total area $\approx A$.

The Heisenberg group

Let $\mathbb{H}^{2k+1} \subset M_{k+2}$ be the (2k+1)-dimensional nilpotent group

$$\mathbb{H}^{2k+1} = \left\{ egin{pmatrix} 1 & x_1 & \ldots & x_k & z \ 0 & 1 & 0 & 0 & y_1 \ 0 & 0 & \ddots & 0 & \vdots \ 0 & 0 & 0 & 1 & y_k \ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \middle| \ x_i, y_i, z \in \mathbb{R}
ight\}.$$

The Heisenberg group

Let $\mathbb{H}^{2k+1} \subset M_{k+2}$ be the (2k+1)-dimensional nilpotent group

$$\mathbb{H}^{2k+1} = \left\{ egin{pmatrix} 1 & x_1 & \ldots & x_k & z \ 0 & 1 & 0 & 0 & y_1 \ 0 & 0 & \ddots & 0 & dots \ 0 & 0 & 0 & 1 & y_k \ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \middle| \ x_i, y_i, z \in \mathbb{R}
ight\}.$$

This contains a lattice

$$\mathbb{H}^{2k+1}_{\mathbb{Z}} = \langle X_1, \dots, X_k, Y_1, \dots, Y_k, Z \\ \mid [X_i, Y_i] = Z, \text{ all other pairs commute} \rangle.$$

The Heisenberg group $\mathbb{H}^3_{\mathbb{Z}}$

The Heisenberg group $\mathbb{H}^3_{\mathbb{Z}}$

The Heisenberg group $\mathbb{H}^3_{\mathbb{Z}}$

Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)

There is no bilipschitz embedding from \mathbb{H} to \mathbb{R}^N .

Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)

There is no bilipschitz embedding from \mathbb{H} to \mathbb{R}^N .

Theorem (Cheeger-Kleiner)

There is no bilipschitz embedding from \mathbb{H} to L_1 .

Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)

There is no bilipschitz embedding from \mathbb{H} to \mathbb{R}^{N} .

Theorem (Cheeger-Kleiner)

There is no bilipschitz embedding from \mathbb{H} to L_1 .

Cheeger and Kleiner's proof is based on approximating the level sets of functions $\mathbb{H}\to\mathbb{R}$ by planes. Our methods let us decompose these sets into Lipschitz graphs, leading to:

Theorem (Naor-Y.)

Sharp quantitative bounds on Lipschitz maps from \mathbb{H} to L_1 .

Applications (with Naor)

► The integrality gap for the Goemans–Linial relaxation of Sparsest Cut is at least √log n.

Applications (with Naor)

- ► The integrality gap for the Goemans–Linial relaxation of Sparsest Cut is at least √log n.
- ▶ The ball of radius *r* in the three-dimensional Heisenberg group $\mathbb{H}^3_{\mathbb{Z}}$ embeds into L_1 with distortion $\sqrt[4]{\log r}$, while the same ball in the higher-dimensional Heisenberg groups $\mathbb{H}^5_{\mathbb{Z}}, \mathbb{H}^7_{\mathbb{Z}}, \ldots$ has distortion $\sqrt{\log r}$.

Applications (with Naor)

- ► The integrality gap for the Goemans–Linial relaxation of Sparsest Cut is at least √log n.
- ▶ The ball of radius *r* in the three-dimensional Heisenberg group $\mathbb{H}^3_{\mathbb{Z}}$ embeds into L_1 with distortion $\sqrt[4]{\log r}$, while the same ball in the higher-dimensional Heisenberg groups $\mathbb{H}^5_{\mathbb{Z}}, \mathbb{H}^7_{\mathbb{Z}}, \ldots$ has distortion $\sqrt{\log r}$.
- There is a metric space M that has a bilipschitz embedding into L₁ and L₄, but not L_p for 1

Surfaces in $\mathbb H$

Some of the most complex Lipschitz graphs in \mathbb{H}^3 .