
MATH-GA 2012.001 and CSCI-GA 2945.001, Georg Stadler (NYU Courant)

Spring 2017: Advanced Topics in Numerical Analysis:
High Performance Computing

Assignment 1 (due Feb. 9, 2017)

1. Describe a parallel application and the algorithms used. Find and examine an ap-
plication problem for which high-performance computing has been used. Pick a problem
from your own research, or find a problem elsewhere. Prepare a 1–2 page description of the
problem and describe where and how successful high-performance computing has been/is
used. Consider to include the following:

(a) What’s the application problem being solved?

(b) Why does the problem require large/fast computation?

(c) What are the underlying mathematical/parallel algorithms?

(d) If the application uses a supercomputer, where is that computer on the Top500 list
(http://www.top500.org/)? Try to say a few words about the architecture of that
machine.

(e) How well does the algorithm perform? Does it “scale”?

If you are looking for an application, take a look at the papers from one of the previous
Supercomputing conferences.1 Alternatively, take a look at the National Science Foundation
(NSF)-funded supercomputing centers, which usually have science stories with links to
papers on their websites.2 Please hand in this description as a separate PDF file by mailing
it to the TA (Bill Bao, yxb201@nyu.edu). I will post all descriptions on Piazza to serve as
with an overview of research topics that require HPC resources.

2. Write a program to solve the Laplace equation in one space dimension. For a
given function f : [0, 1]→ R, we attempt to solve the linear differential equation

− u′′ = f in (0, 1), and u(0) = 0, u(1) = 0 (1)

for a function u. In one space dimension3, this so-called boundary value problem can be
solved analytically by integrating f twice. In higher dimensions, the analogous problem

1See http://sc16.supercomputing.org/full-program/ or
http://sc15.supercomputing.org/schedule.html and choose to filter for “papers”.

2Oark Ridge National Laboratory: https://www.olcf.ornl.gov/;
National Energy Research Scientific Computing Center (NERSC): https://www.nersc.gov/;
San Diego Supercomputing Center: http://www.sdsc.edu/;
Nasa Advanced Supercomputing Division: http://www.nas.nasa.gov/;
Texas Advanced Computing Center (TACC): https://www.tacc.utexas.edu/

3The generalization of (1) to two and three-dimensional domains Ω instead of the one-dimensional interval
Ω = [0, 1] is the Laplace equation,

−∆u = f on Ω,

u = 0 on ∂Ω,

which is one of the most important partial differential equations in mathematical physics.

1

http://www.top500.org/
mailto:yxb201@nyu.edu
http://sc16.supercomputing.org/full-program/
http://sc15.supercomputing.org/schedule.html
https://www.olcf.ornl.gov/
https://www.nersc.gov/
http://www.sdsc.edu/
http://www.nas.nasa.gov/
https://www.tacc.utexas.edu/

often cannot be solved analytically and one must rely on numerical approximations for u.
We use a finite number of grid points in [0, 1] and finite-difference approximations for the
second derivative to approximate the solution to (1). We choose the uniformly spaced
points {xi = ih : i = 0, 1, . . . , N,N + 1} ⊂ [0, 1], with h = 1/(N + 1), and approximate
u(xi) ≈ ui and f(xi) ≈ fi, for i = 0, . . . , N + 1. Using Taylor expansions of u(xi − h)
and u(xi + h) about u(xi) results in

−u′′(xi) =
−u(xi − h) + 2u(xi)− u(xi + h)

h2
+ h.o.t.,

where h.o.t. stands for a remainder term that is of higher order in h, i.e., becomes small
as h becomes small. We now approximate the second derivative at the point xi as follows:

−u′′(xi) ≈
−ui−1 + 2ui − ui+1

h2
.

This results in the following finite-dimensional approximation of (1):

Au = f , (2)

where

A =
1

h2


2 −1 0 · · · 0

−1 2 −1 ...

0
. 0

... −1 2 −1
0 · · · 0 −1 2

, u =


u1

u2
...

uN−1
uN

, f =


f1
f2
...

fN−1
fN

.

Simple methods to solve (2) are the Jacobi and the Gauss-Seidel method, which start from
an initial vector u0 ∈ RN and compute approximate solution vectors uk, k = 1, 2, The
component-wise formula for the Jacobi method is

uk+1
i =

1

aii

(
fi −

∑
j 6=i

aiju
k
j

)
,

where aij are the entries of the matrix A. The Gauss-Seidel algorithm is given by

uk+1
i =

1

aii

(
fi −

∑
j<i

aiju
k+1
j −

∑
j>i

aiju
k
j

)
.

If you are unfamiliar with these methods, please take a look at the Wikipedia entries for
the Jacobi4 and the Gauss-Seidel5 methods. Note that due to the sparsity of the matrix A,
the Jacobi and the Gauss-Seidel iterations given above simplify substantially and amount
to simple averaging between neighboring grid points.

4http://en.wikipedia.org/wiki/Jacobi_method
5http://en.wikipedia.org/wiki/Gauss-Seidel_method

2

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss-Seidel_method

(a) Write a program in C that uses the Jacobi or the Gauss-Seidel method to solve (2),
where the number of discretization points N is an input parameter, and f(x) ≡ 1,
i.e., the right hand side vector f is a vector of all ones.

(b) After each iteration, output the norm of the residual ‖Auk − f‖ on a new line.
Terminate the iteration when the initial residual is decreased by a factor of 104 or
after a maximum of 1000 iterations. Start the iteration with a zero initialization
vector, i.e., u0 is the zero vector.

(c) Compare the number of iterations (or, if the maximum number of iterations is reached,
the residual reduction after 1000 iterations) needed for the two different methods for
N = 1000 and N = 100, 000 grid points. Compare the run times for N = 100, 000
using different compiler optimization flags (-O0 and -O3). Hand in the results and a
listing of your program. Specify which computer architecture you used for your runs.
Make sure you free all the allocated memory before you exit.

3

