MATH-GA 2012.001 and CSCI-GA 2945.001, Georg Stadler (NYU Courant)

Spring 2017: Advanced Topics in Numerical Analysis:
High Performance Computing
Assignment 1 (due Feb. 9, 2017)

1. Describe a parallel application and the algorithms used. Find and examine an ap-
plication problem for which high-performance computing has been used. Pick a problem
from your own research, or find a problem elsewhere. Prepare a 1-2 page description of the
problem and describe where and how successful high-performance computing has been/is
used. Consider to include the following:

a
b
c
d

What's the application problem being solved?
Why does the problem require large/fast computation?
What are the underlying mathematical/parallel algorithms?

(
(
(
(

~— —r N

If the application uses a supercomputer, where is that computer on the Top500 list
(http://www.top500.0rg/)? Try to say a few words about the architecture of that
machine.

(e) How well does the algorithm perform? Does it “scale”?

If you are looking for an application, take a look at the papers from one of the previous
Supercomputing conferences.! Alternatively, take a look at the National Science Foundation
(NSF)-funded supercomputing centers, which usually have science stories with links to
papers on their websites.? Please hand in this description as a separate PDF file by mailing
it to the TA (Bill Bao, yxb201@nyu.edu). | will post all descriptions on Piazza to serve as
with an overview of research topics that require HPC resources.

2. Write a program to solve the Laplace equation in one space dimension. For a
given function f : [0, 1] — R, we attempt to solve the linear differential equation

—u” = fin (0,1), and u(0) = 0,u(1) =0 (1)

for a function . In one space dimension?, this so-called boundary value problem can be
solved analytically by integrating f twice. In higher dimensions, the analogous problem

1See http://scl16.supercomputing.org/full-program/ or
http://sc15.supercomputing.org/schedule.html and choose to filter for “papers”.

2Qark Ridge National Laboratory: https://www.olcf.ornl.gov/;
National Energy Research Scientific Computing Center (NERSC): https://www.nersc.gov/;
San Diego Supercomputing Center: http://www.sdsc.edu/;
Nasa Advanced Supercomputing Division: http://www.nas.nasa.gov/;
Texas Advanced Computing Center (TACC): https://www.tacc.utexas.edu/

3The generalization of (1) to two and three-dimensional domains 2 instead of the one-dimensional interval
Q =[0,1] is the Laplace equation,

—Au = fon (),
u =0 on 0182,

which is one of the most important partial differential equations in mathematical physics.

http://www.top500.org/
mailto:yxb201@nyu.edu
http://sc16.supercomputing.org/full-program/
http://sc15.supercomputing.org/schedule.html
https://www.olcf.ornl.gov/
https://www.nersc.gov/
http://www.sdsc.edu/
http://www.nas.nasa.gov/
https://www.tacc.utexas.edu/

often cannot be solved analytically and one must rely on numerical approximations for .
We use a finite number of grid points in [0, 1] and finite-difference approximations for the
second derivative to approximate the solution to (1). We choose the uniformly spaced
points {z; =th :i=0,1,...,N,N + 1} C [0,1], with h = 1/(N + 1), and approximate
u(z;) ~ u; and f(x;) = f;, fori =0,...,N + 1. Using Taylor expansions of u(z; — h)
and u(z; + h) about u(z;) results in

—u(x; — h) + 2u(x;) — u(x; + h)
12

—u'(x;) = +ho.t.,

where h.o.t. stands for a remainder term that is of higher order in h, i.e., becomes small

as h becomes small. We now approximate the second derivative at the point x; as follows:

—Ui—1 + 2u; — Uiy
h? '

—u"(xi) ~

This results in the following finite-dimensional approximation of (1):

Au = f, (2)
where
2 =1 0 0 r g T i fi T
A= 73| 0 0 u = : fF=1:
: -1 2 -1 UN-1 fo1
o --- 0O —1 2 | UN] | fN i

Simple methods to solve (2) are the Jacobi and the Gauss-Seidel method, which start from
an initial vector u® € R" and compute approximate solution vectors u*, k = 1,2,.... The
component-wise formula for the Jacobi method is

1
k+1 _ k
uth=— = Y ey)
Qi

J#

where a;; are the entries of the matrix A. The Gauss-Seidel algorithm is given by

1
k+1 2 k+1 2 k
U, = — Ji — al-juj — aijuj .
Q4

J<i j>t

If you are unfamiliar with these methods, please take a look at the Wikipedia entries for
the Jacobi* and the Gauss-Seidel® methods. Note that due to the sparsity of the matrix A,
the Jacobi and the Gauss-Seidel iterations given above simplify substantially and amount
to simple averaging between neighboring grid points.

*http://en.wikipedia.org/wiki/Jacobi_method
Shttp://en.wikipedia.org/wiki/Gauss—Seidel_method

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss-Seidel_method

(a)

(b)

Write a program in C that uses the Jacobi or the Gauss-Seidel method to solve (2),
where the number of discretization points N is an input parameter, and f(z) = 1,
i.e., the right hand side vector f is a vector of all ones.

After each iteration, output the norm of the residual ||Au® — f|| on a new line.
Terminate the iteration when the initial residual is decreased by a factor of 10* or
after a maximum of 1000 iterations. Start the iteration with a zero initialization
vector, i.e., u® is the zero vector.

Compare the number of iterations (or, if the maximum number of iterations is reached,
the residual reduction after 1000 iterations) needed for the two different methods for
N = 1000 and N = 100,000 grid points. Compare the run times for N = 100, 000
using different compiler optimization flags (-00 and -03). Hand in the results and a
listing of your program. Specify which computer architecture you used for your runs.
Make sure you free all the allocated memory before you exit.

