
MATH-GA 2012.001 and CSCI-GA 2945.001, Georg Stadler (NYU Courant)

Spring 2017: Advanced Topics in Numerical Analysis:
High Performance Computing

Assignment 4 (due April 13, 2017)

Handing in your homework: Same method as for the second assignment (send us a link to
the git repository). We will use the command

git clone YOURPATH/YOURREPO.git

cd YOURREPO

make

mpirun -np 4 ./mpi_solved1

...

mpirun -np 4 ./mpi_solved7

mpirun -np 16 ./jacobi-mpi2D 100 100

mpirun -np 10 ./ssort

to test your implementations. The git repository https://github.com/NYU-HPC17/homework4.
git contains examples needed for this homework.

1. Finding MPI bugs. The above repository contains the files mpi bug1.c, mpi bug2.c,
. . . , mpi bug7.c. These example codes contain bugs, resulting in hangs or other unde-
sirable behavior. Try to find these bugs and fix them. Add a short comment to the code
describing what was wrong and how you fixed the problem. Add the solutions to your
repository using the naming convention mpi solved{1,2,. . . }.c. Each problem should be
run with 4 MPI tasks.

2. MPI-parallel two-dimensional Jacobi smoother. We implement a distributed memory
(i.e., MPI) parallel version of the two-dimensional Jacobi smoother from the second assign-
ment. This is an extension of the one-dimensional case available in the class repository.1

We will use a uniform domain splitting as sketched in Figure 1 and exchange unknowns
corresponding to neighboring points on different processors. To make our lives easier, we
only consider uniform splittings of all unknowns using p = 4j, j = 0, 1, 2, 3, . . . processors.
Additionally we assume that we deal with N = 2jNl unknowns in the x and y directions,
such that each processor works on N2

l unknowns. Before you start coding, we need to
figure out a few things:

• For any p, find which points (and thus unknowns) must be updated by which MPI
tasks.

• Find which points must be communicated, and between which processors this com-
munication must take place.

1https://github.com/NYU-HPC17/lecture8.git

1

https://github.com/NYU-HPC17/homework4.git
https://github.com/NYU-HPC17/homework4.git
https://github.com/NYU-HPC17/lecture8.git


p0 p1 p2 p3

p4 p5

p15

Figure 1: Uniform splitting of unknowns for parallel computation with 16 MPI processes, and with Nl = 4.
Unknowns are shown as black dots, gray dots are domain boundary unknowns. As example, the ghost nodes
processor p5 requires for updating its values in a Jacobi step are shown in green. p5 needs to obtain these values
through communication with p1, p4, p6, p9, where they are updated.

• I suggest following my one dimensional example with blocking sends and receives
by allocating (Nl + 2)2 unknowns for each MPI task. The “inner” N2

l points are
processed by each MPI tasks, while the outer points are used to store and update the
ghost point copies from neighboring MPI tasks.

Run your implementation on Stampede. For large Nl (e.g., Nl = 100), perform a weak
scaling study and plot the timings (fix the number of iterations for this study) as you
increase the number of points and MPI tasks. Then choose Nl as large as possible to fit on
one processor, and perform a strong scaling study, i.e., keep the problem size unchanged
while increasing the number of MPI task, and plot the speedup compared to the ideal
speedup.
Voluntary bonus question: Compare a blocking with a non-blocking implementation, in
which you overlap computation and computation, and study if you observe a comparison
in the run time on Stampede.2

3. Parallel sample sort. Each of P processors creates an N -vector of random numbers.
The target is to sort the union of all these distributed vectors; this union, let’s call it v,
consists of PN numbers and is assumed to be too large to fit into the memory of a single
processor—thus, a serial sort algorithm cannot be used. The goal is to sort v such that
every processor roughly holds about N sorted numbers, say vi, and that all elements on
the processor with rank i are smaller than those on the processor with rank i + 1 (for all

2By the way, note that the arithmetic intensity of this Jacobi smoother is low and thus the problem is memory-
bound.

2



i = 0, 1, . . . , P − 2). The above repository contains a stub called ssort.c, which also
contains an outline of the algorithm. For a summary of the sample sort algorithm, see
the Wikipedia entry3 for sample sort, as well as the pages linked under “References” from
there. The main steps of sample sort are:

• Select local samples: Each of the P processors selects a set of S random entries and
communicates these entries to the root processor, who sorts the resulting SP entries
and determines P − 1 splitters {S1, . . . , SP−1}, which are broadcasted.

• Distribute to buckets: Each processor determines the “buckets” to which each of its
N elements belong; for instance, the first bucket contains all the numbers ≤ S1, the
second one are all the entries that are in (S1, S2] and so on. The numbers contained
in each bucket are then communicated; processor 0 receives every processor’s first
bucket, processor 1 gets processor’s second bucket, and so on.

• Local sort: Each processor uses a local sort and writes the result to disc.

Include the MPI rank in the filename (see the example pingpong array.c example file).
Run your implementation of the sorting algorithm on at least 64 cores of Stampede, and
present timings depending on the number of N of elements to be sorted per processor.

3http://en.wikipedia.org/wiki/Samplesort

3

http://en.wikipedia.org/wiki/Samplesort

