
MATH-GA 2012.001 and CSCI-GA 2945.001, Georg Stadler (NYU Courant)

Spring 2017: Advanced Topics in Numerical Analysis:
High Performance Computing

Assignment 5 (due May 11, 2017)

Make your own homework choice. This final assignment gives you freedom to explore what
you are most interested in. Please hand in (as always, using a git repository) a solution to either
Problem 1 or Problem 2.

1. Generalize the Multigrid Implementation. Generalize the one-dimensional serial multi-
grid implementation1 in at least one (you choose!) of the following directions:

(a) Generalize to the two-dimensional problem. From previous homework, you already
have implementation of the two-dimensional Jacobi method. Note that for Jacobi
within multigrid, one should use a relaxation parameter ω in the Jacobi update step—
see the one-dimensional version.

(b) Extend either the one- or the two-dimensional version to a shared memory (OpenMP)
parallel implementation and run a series of large problems on Stampede. Report
scalability results.

(c) Same but for distributed memory (MPI) version.

2. Image convolution with OpenCL. The convolution example code2 implements an image
blurring algorithm. This algorithms replaces each pixel’s value with a weighted average of
its neighbor pixels. Mathematically, a gray value image can be considered as a matrix with
entries pi,j at the position (i, j), with (0, 0) being the upper left pixel and i ≤ W − 1
and j ≤ H − 1, where W and H denote the width and heigth (in number of pixels) of
the image. The type of blurring is described by the blurring kernel3 (which has nothing to
do with an OpenCL kernel), which is a square matrix K ∈ R(2l+1)×(2l+1), where l > 0 is
the half width of the blurring kernel. The blurred image pixels p̃i,j are then computed as
follows:

p̃i,j =
l∑

m,n=−l

Km,npi+m,j+n for l ≤ i ≤ W − l − 1, l ≤ j ≤ H − l − 1.

Here, we have used the indices i, j ∈ {−l,−l + 1, . . . , l} for the blurring kernel K, i.e.,
K0,0 represents the center of the blurring kernel K. Moreover, blurring is only done l
pixels away from the boundary, such that no boundary effects occur.4 The code requires as
input an image in uncompressed portable pixmap (PPM) format5, as well as the number
of repetitions of the blurring on the computing device, e.g.:

1https://github.com/NYU-HPC17/multigrid
2The example code can be obtained from https://github.com/NYU-HPC17/homework5. Note that this is a

slightly simplified version of the problem we discussed in class, which is available in the lecture11 github repository.
3See for instance http://en.wikipedia.org/wiki/Kernel_(image_processing).
4The blurring kernel would otherwise have to be modified at the boundary.
5http://en.wikipedia.org/wiki/Netpbm_format

1

https://github.com/NYU-HPC17/multigrid
https://github.com/NYU-HPC17/homework5
http://en.wikipedia.org/wiki/Kernel_(image_processing)
http://en.wikipedia.org/wiki/Netpbm_format


./ convolution IMAGE.ppm 100

The output images are called output cpu.ppm and output cl.pl. There are several
image viewers for the PPM format, for instance gimp, Toyviewer or even emacs. To
convert an image from, say, JPEG format, into uncompressed PPM format on Linux, you
can use:

convert -compress none IMAGE.jpg IMAGE.ppm

If you are using a Mac and the convert function is not installed, try finding an online tool
that converts into PPM or use the example image that is checked into the repository.

(a) Pick your favorite image and convert it to PPM format. Run the convolution program
on at least two different devices (besides your laptop/desktop, you can try cuda1 or
cuda3 at CIMS, or you can use the GPUs on Stampede6) and report the number of
processed pixels/s, the bandwidth, and the Flop/s. Also, show the original and the
blurred image in your documentation. Try changing the local work group size (the size
is currently set to 16 × 16 as defined at the beginning of the file convolution.c).
Do you observe an improvement in the performance?

(b) As you can see from the code, the OpenCL application of the blurring operator is
applied to the same input image many times, always resulting in the same output
image. Change the program such that the blurring operator is consecutively applied
to the input image, i.e., the kth application of the blurring operator is applied to the
already (k − 1)-times blurred image.7 Try to avoid boundary effects8, and document
several output images, which result from different numbers of applications of the
blurring operator to the original image. Note that after a large number of blurring
applications, the image should become completely washed out, i.e., all pixels will
(approximately) have the same gray value.

6https://portal.tacc.utexas.edu/user-guides/stampede#gpu-opencl
7One way to do this is to create a second OpenCL kernel, which copies the output image back onto the input

image. This copy kernel is a simple modification of the blurring kernel. Surely, there are other possibilities to
consecutively apply the blurring operator, for instance pointer flipping.

8Uncompressed PPM images are plain text file that contain that contain the matrix corresponding to the gray
values of pixels. I found it useful to open the matrix in a text editor or import it into Matlab to compare the
result after one, two or more applications of the blurring operator.

2

https://portal.tacc.utexas.edu/user-guides/stampede#gpu-opencl

