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Organization issues

I Please register for an XSEDE account such that Bill can add
you to the Stampede allocation (see his post on Piazza).
You’re welcome to do that even if you only audit the course

I Please fill out the poll for makeup class either on March 6 or 7

I Next week, my colleague Marsha Berger will fill in for me

I And yes, there will be new homework at some point. . .
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Memory hierarchies
On my Mac Book Pro: 32KB L1 Cache, 256KB L2 Cache, 3MB Cache, 8GB RAM

CPU: O(1ns), L2/L3: O(10ns), RAM: O(100ns), disc: O(10ms)
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Memory hierarchies

Important terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.
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Memory hierarchy
Simple model

1. Only consider two levels in hierarchy, fast (cache) and slow
(RAM) memory

2. All data is initially in slow memory

3. Simplifications:
I Ignore that memory access and arithmetic operations can

happen at the same time
I assume time for access to fast memory is 0

4. Computational intensity: flops per slow memory access

q =
f

m
, where f . . .#flops,m . . .#slow memop.

Computational intensity should be as large as possible.
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Memory hierarchy

Example: Matrix-matrix multiply Comparison between naive and
blocked optimized matrix-matrix multiplication for different matrix
sizes: Different algorithms can increase the computational intensity
significantly.
BLAS: Optimized Basic Linear Algebra Subprograms

I Temporal and spatial locality is key for fast performance.

I Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

I In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.
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Levels of parallelism
I Parallelism at the bit level (64-bit

operations)

I Parallelism by pipelining
(overlapping of execution of
multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

I multiple functional units
parallelism: ALUs (algorithmic
logical units), FPUs (floating point
units), load/store memory units,. . .

all of the above assume single sequential control flow

I process/thread level parallelism: independent processor cores,
multicore processors; parallel control flow
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Amdahl’s law
Is there enough parallelism in my problem?

Suppose only part of the application is parallel
Amdahl’s law:

I Let s be the fraction of work done sequentially, and (1− s)
the part that is done in parallel

I p. . . number of parallel processor (cores).

Speedup:

time(1 proc)

time(p proc)
≤ 1

s+ (1− s)/p
≤ 1

s

Thus: Performance is limited by
sequential part.

Source: Wikipedia
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Load (im)balance in parallel computations

In parallel computations, the work should be distributed evenly
across workers/processors.

I Load imbalance: Idle time due to insufficient parallelism or
unequal sized tasks

I Initial/static load balancing: distribution of work at beginning
of computation

I Dynamic load balancing: work load needs to be re-balanced
during computation. Imbalance can occur, e.g., due to

I adapting (mesh refinement)
I in completely unstructured problems
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Parallel scalability
Strong and weak scaling/speedup
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Locality and parallelism

Locality of data to processing unit is critical in general, and even
more so on parallel computers.

I Memory hierarchies even deeper on
parallel computers.

I In parallel computing, data often
must be communicated through
the network, which is slow. Again,
locality is key.

I Computation should mostly be on
local (cache-local, in DRAM,
processor-local, disc-local) data
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Why Use Version Control?
Slides adapted from Andreas Skielboe

A Version Control System (VCS) is an integrated fool-proof
framework for

I Backup and Restore

I Short and long-term undo

I Tracking changes

I Synchronization

I Collaborating

I Sandboxing

... with minimal overhead.
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Local Version Control Systems

Conventional version control systems provides some of these
features by making a local database with all changes made to files.

Any file can be recreated by getting changes from the database
and patch them up.
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Centralized Version Control Systems

To enable synchronization and collaborative features the database
is stored on a central VCS server, where everyone works in the
same database.

Introduces problems: single point of failure, inability to work
offline.
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Distributed Version Control Systems

To overcome problems related to centralization, distributed VCSs
(DVCSs) were invented. Keeping a complete copy of database in
every working directory.

Actually the most simple and most powerful implementation of
any VCS.
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Git Basics - The Git Workflow

The simplest use of Git:

I Modify files in your working directory.

I Stage the files, adding snapshots of them to your staging
area.

I Commit, takes files in the staging area and stores that
snapshot permanently to your Git directory.
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Git Basics - The Three States

The three basic states of files in your Git repository:
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Git Basics - Commits

Each commit in the git directory holds a snapshot of the files that
were staged and thus went into that commit, along with author
information.

Each and every commit can always be looked at and retrieved.
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Git Basics - File Status Lifecycle

Files in your working directory can be in four different states in
relation to the current commit.
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Git Basics - Working with remotes

In Git all remotes are equal.

A remote in Git is nothing more than a link to another git directory.
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Git Basics - Working with remotes

The easiest commands to get started working with a remote are

I clone: Cloning a remote will make a complete local copy.

I pull: Getting changes from a remote.

I push: Sending changes to a remote.

Fear not! We are starting to get into more advanced topics. So
lets look at some examples.
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Git Basics - Advantages

Basic advantages of using Git:

I Nearly every operation is local.

I Committed snapshots are always kept.

I Strong support for non-linear development.
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Hands-on - First-Time Git Setup

Before using Git for the first time:

Pick your identity

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Check your settings

$ git config --list

Get help

$ git help <verb>
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Hands-on - Getting started with a bare remote server

Using a Git server (ie. no working directory / bare repository) is
the analogue to a regular centralized VCS in Git.

28 / 48



Hands-on - Getting started with remote server

When the remote server is set up with an initialized Git directory
you can simply clone the repository:

Cloning a remote repository

$ git clone <repository>

You will then get a complete local copy of that repository, which
you can edit.
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Hands-on - Getting started with remote server

With your local working copy you can make any changes to the
files in your working directory as you like. When satisfied with your
changes you add any modified or new files to the staging area
using add:

Adding files to the staging area

$ git add <filepattern>
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Hands-on - Getting started with remote server

Finally to commit the files in the staging area you run commit
supplying a commit message.

Committing staging area to the repository

$ git commit -m <msg>

Note that so far everything is happening locally in your working
directory.
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Hands-on - Getting started with remote server

To share your commits with the remote you invoke the push
command:

Pushing local commits to the remote

$ git push

To recieve changes that other people have pushed to the remote
server you can use the pull command:

Pulling remote commits to the local working directory

$ git pull

And thats it.
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Hands-on - Summary

Summary of a minimal Git workflow:

I clone remote repository

I add you changes to the staging area

I commit those changes to the git directory

I push your changes to the remote repository

I pull remote changes to your local working directory
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More advanced topics

Git is a powerful and flexible DVCS. Some very useful, but a bit
more advanced features include:

I Branching

I Merging

I Tagging

I Rebasing
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References

Some good Git sources for information:

I Git Community Book - http://book.git-scm.com/

I Pro Git - http://progit.org/

I Git Reference - http://gitref.org/

I GitHub - http://github.com/

I Git from the bottom up - http:
//ftp.newartisans.com/pub/git.from.bottom.up.pdf

I Understanding Git Conceptually -
http://www.eecs.harvard.edu/~cduan/technical/git/

I Git Immersion - http://gitimmersion.com/
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Applications

GUIs for Git:

I GitX (MacOS) - http://gitx.frim.nl/

I Giggle (Linux) - http://live.gnome.org/giggle
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Parallel architectures (Flynn’s taxonomy)

Characterization of architectures according to Flynn:

SISD: Single instruction, single data. This is the conventional
sequential model.

SIMD: Single instruction, multiple data. Multiple processing units
with identical instructions, each one working on different data.
Useful when a lot of completely identical tasks are needed.

MIMD: Multiple instructions, multiple data. Multiple processing units
with separate (but often similar) instructions and
data/memory access (shared or distributed). We will mainly
use this approach.

MISD: Multiple instructions, single data. Not practical.
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Programming model must reflect architecture

Example: Inner product between two (very long) vectors: aT b:

I Where are a, b stored? Single memory or distributed?

I What work should be done by which processor?

I How do they coordinate their result?
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Shared memory programming model

I Program is a collection of
control threads, that are
created dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than 1 processor
core reads/writes to a memory
location: race condition

Programming model must manage different threads and avoid race
conditions.
OpenMP: Open Multi-Processing is the application interface (API)
that supports shared memory parallelism: www.openmp.org
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Distributed memory programming model

I Program is run by a collection
of named processes; fixed at
start-up

I Local address space; no shared
data

I logically shared data is
distributed (e.g., every
processor only has direct access
to a chunk of rows of a matrix)

I Explicit communication through
send/receive pairs

Programming model must accommodate communication.

MPI: Massage Passing Interface (different implementations: LAM,
Open-MPI, Mpich, Mvapich), http://www.mpi-forum.org/
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Hybrid distributed/shared programming model

I Pure MPI approach splits the memory of a multicore processor
into independent memory pieces, and uses MPI to exchange
information between them.

I Hybrid approach uses MPI across processors, and OpenMP for
processor cores that have access to the same memory.

I A similar hybrid approach is also used for hybrid architectures,
i.e., computers that contain CPUs and accelerators (GPGPUs,
MICs).
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Other parallel programming approaches

I Grid computing: loosely coupled problems, most famous
example was SETI@Home.

I MapReduce: Introduced by Google; targets large data sets
with parallel, distributed algorithms on a cluster.

I WebCL

I Pthreads

I CUDA

I Cilk

I . . .
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Shared memory programming model

I Program is a collection of
control threads, that are
created dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than 1 processor
core reads/writes to a memory
location: race condition

Only one process is running, which can fork into shared memory
threads.
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Threads versus process

I A process is an independent execution unit, which contains
their own state information (pointers to instruction and
stack). One process can contain several threads.

I Threads within a process share the same address space, and
communicate directly using shared variables. Seperate stack
but shared heap memory.

I Stack memory: Used for temporarily storing data; fast;
last-in-first-out principle. Examples int a=2; double

b=2.11; etc; no deallocation necessary; small size; static.

I Heap memory: Not managed automatically, manually
allocate/de-allocate/re-allocate; slower; larger;

I Using several threads can also be useful on a single processor
(“multithreading”), depending on the memory latency.
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Shared memory programming

I POSIX Threads (Pthreads) library; more intrusive than
OpenMP.

I PGAS languages: partitioned global address space: logically
partitioned but can be programmed like a global memory
address space (communication is taken care of in the
background)

I OpenMP: open multi-processing is a light-weight application
interface (API), that supports shared memory parallelism.
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Shared memory programming—Literature

OpenMP standard online:
www.openmp.org

Very useful online course:
www.youtube.com/user/OpenMPARB/

Recommended reading:

Chapter 6 in Chapter 7 in
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