
Advanced Topics in Numerical Analysis:
High Performance Computing

MATH-GA 2012.001 & CSCI-GA 2945.001

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

Spring 2017, Thursday, 5:10–7:00PM, WWH #512

March 9, 2017

1 / 13

stadler@cims.nyu.edu

Outline

Organization issues

Programming Models

Debugging and profiling: valgrind

MPI Intro

2 / 13

Organization issues

I OpenMP homework! This time for real. . . Homework hand in
through a git repository. The repo should contain the code as
well as a description of the results (either as TXT or TEX
file). Also, include a Makefile

I Final projects! I’ve a list of proposed projects that I will post.
I would like to (more or less) finalize projects during the next
2 weeks. Please find me (end of) next week if you want to
discuss a project idea. Final projects are in groups of 1-2
people (2 preferred, 3 possible if needed for project)

I Final project presentations (max 10min each) in the week May
8–12.

3 / 13

Outline

Organization issues

Programming Models

Debugging and profiling: valgrind

MPI Intro

4 / 13

Programming models

I Flynn’s taxonomy:
I Single instruction–single data (SISD)
I Single instruction–multiple data (SIMD)
I Multiple instruction–multiple data (MIMD)

I Distributed memory vs. shared memory parallelism

I Programming models: OpenMP vs. Message passing interface
(MPI); and combinations thereof

5 / 13

Process vs. thread, stack vs. heap

I A process is an independent execution unit, which contains
their own state information (pointers to instruction and
stack). One process can contain several threads.

I Threads within a process share the same address space, and
communicate directly using shared variables. Seperate stack
but shared heap memory.

I Stack memory: Used for temporarily storing data; fast;
last-in-first-out principle. Examples int a=2; double

b=2.11; etc; no deallocation necessary; small size; static.

I Heap memory: Not managed automatically, manually
allocate/de-allocate/re-allocate; slower; larger;

6 / 13

Outline

Organization issues

Programming Models

Debugging and profiling: valgrind

MPI Intro

7 / 13

Debugging/profiling tools

I printf — fishing for bug, but sometimes useful

I gdb — GNU debugger: serial, but can also be attached to a
parallel task

I Totalview (commercial debugger/profiler, available on many
HPC resources)

I DDT (another commercial debugger/profiler; available on
Stampede)

I TAU: Tuning and Analysis Utility

I PAPI: Performance Application Programming Interface

I HPCtoolkit/perfexpert: Suite of (open source) analysis
and profiling tools

I valgrind (say: “val-grinned”) and cachegrind:
memory/cache debugger and profiler

8 / 13

Valgrind and cachegrind

Valgrind

I memory management tool and suite for debugging, also in
parallel

I profiles heap (not stack) memory access

I simulates a CPU in software

I running code with valgrind makes it slower by factor of 10-100

I not installed by default on only available on Mac OS; use for
MPI-parallel debugging on Mac limited

I Documentation: http://valgrind.org/docs/manual/

memcheck
finds leaks

inval. mem. access
uninitialize mem.

incorrect mem. frees

cachegrind
cache profiler

sources of cache
misses

callgrind
extension to
cachegrind

function call graph

9 / 13

http://valgrind.org/docs/manual/

Valgrind and cachegrind

Usage (see examples):

Run with valgrind (no recompile necessary!)
mpirun -np 2 valgrind --tool=memcheck [options]

./a.out [args]

Test examples for valgrind memcheck:

https://github.com/NYU-HPC17/lecture6

10 / 13

https://github.com/NYU-HPC17/lecture6

Valgrind and cachegrind

Run cachegrind profiler:
valgrind --tool=cachegrind [options] ./a.out [args]

Visualize results of cachegrind:
cg annotate --auto=yes cachegrind.out***

To illustrate the use of cachegrind, we used the vector
multiplication problem:

https://github.com/NYU-HPC17/lecture2

valgrind --tool=cachegrind

./inner-mem vec size no of reps skip

11 / 13

https://github.com/NYU-HPC17/lecture2

Outline

Organization issues

Programming Models

Debugging and profiling: valgrind

MPI Intro

12 / 13

Introduction to MPI

Use B. Gropp’s PPT slides

https://github.com/NYU-HPC15/lecture6

13 / 13

https://github.com/NYU-HPC15/lecture6

	Organization issues
	Programming Models
	Debugging and profiling: valgrind
	MPI Intro

