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Organization issues

I Final projects! Pitch your final project. I am available Friday
(tomorrow) 1:30-2:30pm and Monday 1-2pm if you want to
discuss your plans.

I I posted suggestions for final projects last weekend, and added
more this morning (see Piazza).

I Final project presentations (max 10min each) in the week May
8–12.

I Short homework assignment posted by tomorrow.
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Parallelism and locality

I Moving data (through network or memory hierarchy) is slow

I Real world problems often have parallelism and locality, e.g.,
I objects move independently from each other (“embarrassingly

parallel”)
I objects mostly influence other objects nearby
I dependence on distant objects can be simplified
I Partial differential equations have locality properties

I Applications often exhibit parallelism at multiple levels
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Example I: Conway’s game of life
https://www.youtube.com/watch?v=C2vgICfQawE

I Played on a board of “cells”; simple rules decide on if a cell is
alive or dead in the next generation

I Is an example of a cellular automaton

I Amounts to checking the 8 neighbor cells in every generation

I How to parallelize? Decompose domain into subdomains. . .
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Example II: Particle systems

A particle system has a finite number of particles which move
according to Newton’s law (F = ma); particles can be stars
subject to gravity, atoms in a molecule, swimming fish, . . .
Force on each particle:

Foverall = Fexternal + Fnearby + Ffar

I external: background flow/ocean current/external electric field

I nearby attraction; collision force, Van der Waals forces

I far field: gravity, electrostatics
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Example II: External and nearby forces

External force: independent, “embarrassingly parallel”: evenly
distribute particles amongst processors.
Nearby force: requires neighbor communication; assume, for
instance collisions; need to check in “ghost layer” for particles on
neighboring processes

I interaction of particles near processor boundary

I load imbalance if particles cluster; must be adjusted
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Example II: Far field forces

Far field forces involve all-to-all communication
Simple algorithm: O(n2), where n is the number of particles.
More clever algorithms:

I Particle-mesh methods: interpolate particle force to nearest
grid point; solve far field PDE (e.g., FFT); interpolate force
back to particles

I Use tree construction; each node contains an approximation of
descendants: Fast multipole method (FMM)
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Example III: Sparse matrix-vector multiplication

Compressed sparse row (CSR) format:

CS267 Lecture 2 11 

01/29/2015! CS267 Lecture 4! 41!

Matrix-vector multiply kernel: y(i) ! y(i) + A(i,j)⋅x(j) Matrix-vector multiply kernel: y(i) ! y(i) + A(i,j)⋅x(j) 
 
for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 

SpMV in Compressed Sparse Row (CSR) Format 

Matrix-vector multiply kernel: y(i) ! y(i) + A(i,j)⋅x(j) 
 
for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 

A y 

x Representation of A 

SpMV: y = y + A*x,       only store, do arithmetic, on nonzero entries 
CSR format is simplest one of many possible data structures for A 

01/29/2015! CS267 Lecture 4! 42!

Parallel Sparse Matrix-vector multiplication 
•  y = A*x, where A is a sparse  n x n matrix 

•  Questions 
•  which processors store 

•  y[i], x[i], and A[i,j] 
•  which processors compute 

•  y[i] = sum (from 1 to n) A[i,j] * x[j] 
            = (row i of A) * x          … a sparse dot product 

•  Partitioning 
•  Partition index set {1,…,n} = N1 ∪ N2 ∪ … ∪ Np. 
•  For all i in Nk, Processor k stores y[i], x[i], and row i of A  
•  For all i in Nk, Processor k computes y[i] = (row i of A) * x 

•  �owner computes��rule: Processor k compute the y[i]s it owns. 

x 

y 

P1 

P2 

P3 

P4 

May require 
communication 
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Matrix Reordering via Graph Partitioning 
•  �Ideal� matrix structure for parallelism: block diagonal 

•  p (number of processors) blocks, can all be computed locally. 
•  If no non-zeros outside these blocks, no communication needed 

• Can we reorder the rows/columns to get close to this? 
•  Most nonzeros in diagonal blocks, few outside 

P0!

P1!

P2!

P3!

P4!

= * 

P0    P1   P2   P3  P4  !

01/29/2015! CS267 Lecture 4! 44!

Goals of Reordering 

• Performance goals 
•  balance load (how is load measured?). 

•  Approx equal number of nonzeros (not necessarily rows) 
•  balance storage (how much does each processor store?). 

•  Approx equal number of nonzeros 
•  minimize communication (how much is communicated?). 

•  Minimize nonzeros outside diagonal blocks 
•  Related optimization criterion is to move nonzeros near diagonal 

•  improve register and cache re-use 
•  Group nonzeros in small vertical blocks so source (x) elements 

loaded into cache or registers may be reused (temporal locality) 
•  Group nonzeros in small horizontal blocks so nearby source (x) 

elements in the cache may be used (spatial locality) 

• Other algorithms reorder for other reasons 
•  Reduce # nonzeros in matrix after Gaussian elimination 
•  Improve numerical stability 

Matrix multiplication kernel: y = y +Ax:
for each row i

for k = ptr[i] to ptr[i+ 1]− 1 do
y[i] = Aval[k]x[ind[k]]

10 / 27
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Goals of Reordering 

• Performance goals 
•  balance load (how is load measured?). 
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•  improve register and cache re-use 
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• Other algorithms reorder for other reasons 
•  Reduce # nonzeros in matrix after Gaussian elimination 
•  Improve numerical stability 

Partition into index sets, and distribute to different processes.
Requires communication if x is distributed as well.
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Goals of Reordering 

• Performance goals 
•  balance load (how is load measured?). 
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•  balance storage (how much does each processor store?). 
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•  Minimize nonzeros outside diagonal blocks 
•  Related optimization criterion is to move nonzeros near diagonal 

•  improve register and cache re-use 
•  Group nonzeros in small vertical blocks so source (x) elements 

loaded into cache or registers may be reused (temporal locality) 
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• Other algorithms reorder for other reasons 
•  Reduce # nonzeros in matrix after Gaussian elimination 
•  Improve numerical stability 

Communication can be reduced with proper ordering of
rows/columns of A.
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Example III: Sparse matrix-vector multiplication

How parallelize? Which processes compute/store which part of A,
x, y?

CS267 Lecture 2 12 
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Graph Partitioning and Sparse Matrices  

1    1                     1      1 

2           1     1       1      1 
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5    1     1                      1      1 
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• Relationship between matrix and graph 

•  Edges in the graph are nonzero in the matrix: here the matrix is 
symmetric (edges are unordered) and weights are equal (1) 

•  If divided over 3 procs, there are 14 nonzeros outside the diagonal 
blocks, which represent the 7 (bidirectional) edges 

4

01/29/2015! CS267 Lecture 4! 46!

Summary: Common Problems 

•  Load Balancing 
•  Statically - Graph partitioning 

•  Discrete systems 
•  Sparse matrix vector multiplication 

•  Dynamically – if load changes significantly during job 
•  Linear algebra 

•  Solving linear systems (sparse and dense) 
•  Eigenvalue problems will use similar techniques 

• Fast Particle Methods 
•  O(n log n) instead of O(n2) 

01/29/2015!

Motif/Dwarf: Common Computational Methods    
(Red Hot → Blue Cool) 
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PC Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What  do commercial and CSE applications have in common? 

CS267 Lecture 4! 47!

Reordering and Graph Partitioning: Edges in graph correspond to
nonzeros in matrix. Graph partitioning ↔ minimizing
communication in parallel matrix-vector multiplication.
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Example IV: Partial differential equations

Types of PDEs influence parallelism

I Elliptic PDE (gravitation,elasticity,. . . ): Steady-state, global
dependence in space

I Hyperbolic PDE: (acoustic/electromagnetic waves,. . . ):
Time-dependent, local dependence in space

I Parabolic PDE (heat flow, diffusion,. . . ): Time-dependent,
global space dependence

Many PDEs (e.g., Navier-Stokes equation) combine properties of
these basic types.
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Example IV: Partial differential equations: elliptic

−∆u = f on Ω

+ bdry cond.

After discretization, this is becomes a system with a positive
definite, symmetric matrix. Efficient solvers include geometric or
algebraic multigrid or FFT (requires proper boundary conditions
and mesh). Parallel Gauss elimination allow limited parallelism.

Field governing mesh refinement (left). Mesh partitioning, each color

illustrates mesh portion owned by a different processor (right).
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Example IV: Partial differential equations: hyperbolic

utt −∆u = f on Ω

+ bdry cond.

+ initial cond.

Often, method of choice is explicit time stepping, which requires a
matrix-vector multiplication in each time step:

uk+1 = uk + δtAuk

Explicit time stepping is commonly used. CFL stability does not
restrict the size of the time step δt significantly.
Parallelization based on decomposition of mesh (leads to a similar
decomposition as for sparse matrices).
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Example IV: Partial differential equations: parabolic

ut −∆u = f on Ω

+ bdry cond.

+ initial cond.

Stability is a problem for explicit time stepping (requires very small
time step!). Thus, one usually uses implicit time stepping:

uk+1 = uk + δtAuk+1,

which requires to solve systems in every time step. These are
similar as in the case of an elliptic PDE (solvers: multigrid,
FMM,. . . ) Parallelization based on decomposition of mesh.
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Example IV: Partial differential equations: parallel-in-time
Parallelization-in-time is an active field of research. Basic idea:

I Use a fast and inaccurate serial time integration method Φ̄ as
starting guess

I Iterative local-in-time parallel correction with more accurate
time integration Φ
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Introduction to MPI

Use B. Gropp’s PPT slides

https://github.com/NYU-HPC15/lecture7
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Non-blocking MPI Send/Recv
I Non-blocking communication allows interlacing

communication and computation.

MPI ISend(..., MPI Request *request)

MPI IRecv(..., MPI Request *request))

I Must check status to ensure that communication has finished.

MPI Wait(MPI Request *request, MPI Status *status)

Comparison with mailing a letter:
I Blocking Send: drop off letter at the mail box (copied to MPI

buffer)
I Nonblocking Send: letter on kitchen table is ready to be taken

to the mail box (MPI starts taking care of message)
I Blocking Recv: Letter has arrived (it’s in the desired memory

location)
I Nonblocking Recv: I’m expecting a letter (keep checking till it

arrives using MPI Wait() )
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Version control

A Version Control System (VCS) is an integrated fool-proof
framework for

I Backup and Restore

I Short and long-term undo

I Tracking changes

I Synchronization

I Collaborating

I Sandboxing

... with minimal overhead.
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Git–a distributed Version Control Systems

Distributed VCSs keep a complete copy of database in every
working directory.

22 / 27



Git Basics - Working with remotes

In Git all remotes are equal.

A remote in Git is nothing more than a link to another git directory.

In particular: There is nothing special about github, bitbucket and
co—they only give you some storage space and the graphical
interface.
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Git Basics - Working with remotes

The easiest commands to get started working with a remote are

I clone: Cloning a remote will make a complete local copy.

I pull: Getting changes from a remote.

I push: Sending changes to a remote.
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Remote repositories

Initialize repository

$ git init (--bare)

Add remote repository

$ git remote add origin https://github.com/...
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What should (not) be added to a repository?

Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files

YES!

I .tex files YES!

I .aux, .out, .dvi. . . files NO!

I compiled files, object files NO! (large, no diffs possible,
conflicts)

I .pdf files YES/NO!

I large data files NO. . . sometimes maybe

I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.
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Some of my git wisedom

Should I have a few large repositories or many small ones?

I I recommend many small ones (like I use for this class).

I Easier to manage, commit messages easier to monitor.

I Small memory footprint and faster!

I It’s easy to link two repositories (e.g., code libraries) using git
submodules (look it up)!

How often should you commit?

I As often as you like (in case of doubt, more often)

I Makes it easier to monitor changes, track down bugs

I If you collaborate, better to avoid conflicts

I For me: feels like a (small) achievement, supports
clean/systematic working style (always look at diff before
committing)

. . . any others??
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