Advanced Topics in Numerical Analysis:

High Performance Computing
MATH-GA 2012.001 & CSCI-GA 2945.001

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

Spring 2017, Thursday, 5:10-7:00PM, WWH #512

March 30, 2017

1/22

stadler@cims.nyu.edu

Outline

Summary of previous class

/22

Parallelism and locality

» Moving data (through network or memory hierarchy) is slow

> Real world problems often have parallelism and locality, e.g.,
» objects move independently from each other (“embarrassingly

parallel”)
» objects mostly influence other objects nearby
» dependence on distant objects can be simplified
» Partial differential equations have locality properties

» Applications often exhibit parallelism at multiple levels

3/22

Parallelism and locality—examples

Examples from last class:

» Conway's game of life—parallelism through domain
decomposition

» Particle systems (background forces, neighbor forces, far-field
forces) — domain decomposition

» Sparse/dense matrix-vector multiplication—row-wise storage

» PDE solution (elliptic/hyperbolic/parabolic)

What should (not) be added to a repository?

Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

> .c, .cpp, .ffiles YES!
> .tex files YES!

> .aux, .out, .dvi...files NO!

v

compiled files, object files NO! (large, no diffs possible,
conflicts)

.pdf files YES/NO!

large data files NO. ..sometimes maybe

v

v

» photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it's not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it's
avoidable only source/text files.

Some of my git wisedom

Should | have a few large repositories or many small ones?
» | recommend many small ones (like | use for this class).

» Easier to manage, commit messages easier to monitor.

v

Small memory footprint and faster!

v

It's easy to link two repositories (e.g., code libraries) using git
submodules (look it up)!

6 /22

Some of my git wisedom

Should | have a few large repositories or many small ones?

>

>

v

v

| recommend many small ones (like | use for this class).
Easier to manage, commit messages easier to monitor.
Small memory footprint and faster!

It's easy to link two repositories (e.g., code libraries) using git
submodules (look it up)!

How often should you commit?

>

>

>

As often as you like (in case of doubt, more often)
Makes it easier to monitor changes, track down bugs
If you collaborate, better to avoid conflicts

For me: feels like a (small) achievement, supports
clean/systematic working style (always look at diff before
committing)

6

22

Graphical interface to git

Provided by bitbucket/github/gitlab. Locally, | use

$ gitk (--all)

22

Outline

MPI Collectives

/22

MPI Collectives

Recommended online resource:

http://mpitutorial.com/

Recommended reading: Chapter 5 in

Thomas Rauber
Gudula Riinger

Parallel

Programming

for Multicore and Cluster Systems

Second Edition

9/22

http://mpitutorial.com/

Non-blocking MPI Send/Recv

> Non-blocking communication allows interlacing
communication and computation.

MPI_ISend(..., MPI_Request *request)
MPI_IRecv(..., MPI_Request *request))

» Must check status to ensure that communication has finished.
MPI_Wait (MPI_Request *request, MPI_Status *status)

Comparison with mailing a letter:

» Blocking Send: drop off letter at the mail box (copied to MPI
buffer)

» Nonblocking Send: letter on kitchen table is ready to be taken
to the mail box (MPI starts taking care of message)

» Blocking Recv: Letter has arrived (it's in the desired memory
location)

» Nonblocking Recv: I'm expecting a letter (keep checking till it
arrives using MPI Wait ())

10/22

MPI Barrier

Synchronizes all processes. Other collective functions implicitly act
as a synchronization. Used for instance for timing.

MPI Barrier (MPI_Comm communicator)

MPI_Barrier() MPI_Barrier()

O S
O] O,
no—— 5 ©

COOO:
QOO

T3 T4

11/22

MPI| Broadcast
Broadcasts data from one to all processors. Every processor calls

same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

©
0X0JO0JOXOJO)XO

Actual implementation depends on MPI library.

12 /22

MPI| Broadcast
Broadcasts data from one to all processors. Every processor calls

same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

12 /22

MPI Reduce

Reduces data from all to one processors. Every processor calls
same function.

MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
communicator)

Possible Reduce operators:
MPI_MAX: Returns the maximum element.
MPI_MIN: Returns the minimum element.
MPI_SUM: Sums the elements.
MPI_PROD: Multiplies all elements.
MPI_LAND: Performs a logical and across the elements.
MPI_LOR: Performs a logical or across the elements.
MPI_BAND: Performs a bitwise and across the bits of the elements.
MPI_BOR: Performs a bitwise or across the bits of the elements.
MPI_MAXLOC: Returns the maximum value and the rank of the process that owns it.
MPI_MINLOC: Returns the minimum value and the rank of the process that owns it.

MPI_Allreduce(): Provides result of reduction too all processors.

MPI Scatter

Broadcasts different data from one to all processors. Every
processor calls same function.

MPI_Scatter(void* sendbuff, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm
communicator)

u= [o[1] 2] 3[4 s[6] 7] s o[10]11]12[13][14]15]

| / Rank

Send arguments must be provided on all processors, but sendbuf
can be NULL. Send/recv count are per processor.

14 /22

MPI Gather

Gathers different data from all to one processors. Every processor
calls same function.
MPI _Gather(void* sendbuff, int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm communicator)

Variant:
MPI_Allgather() gathers from all processors to all processors.

15 /22

MPI_Bcast comparison

Let's compare a naive implementation of MPI_Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

16 /22

https://github.com/NYU-HPC17/lecture8

MPI_Bcast comparison

Let's compare a naive implementation of MPI_Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

...and let's do it on Stampede!

16 /22

https://github.com/NYU-HPC17/lecture8

Outline

Submitting jobs through a scheduler

17/22

Submitting jobs on Stampede

Overview of HPC cluster

Login Nodes

Batch Scheduler

Shared
Filesystem

Compute Nodes

18 /22

Submitting jobs on Stampede

Stampede user guide:
https://portal.tacc.utexas.edu/user-guides/stampede

Batch facilities: SGE, LSF, SLURM. Stampede uses SLURM, and
these are some of the basic commands:

> submit/start a job: sbatch jobscript
> see status of my job: squeue -u USERNAME
» cancel my job: scancel JOBID

> see all jobs on machine: showq | less

19 /22

https://portal.tacc.utexas.edu/user-guides/stampede

Submitting jobs on Stampede

Some basic rules:
» Don't run on the login node!

» Don't abuse the shared file system.

20 /22

Submitting jobs on Stampede

Available queues on Stampede

Queue Name

Max Runtime

Max Nodes/Procs

Max Jobs in Queue

SU Charge Rate

Purpose

normal 48 hrs 256 / 4K 50 1 normal production

development |2 hrs 16/ 256 1 1 development nodes

largemem 48 hrs 4/128 4 2 large memory 32 cores/node

serial 12 hrs 1/16 8 1 serial/shared_memory

large 24 hrs 1024 / 16K 50 1 large core counts (access by request l)
request 24 hrs - 50 1 special requests

normal-mic |48 hrs 256 / 4k 50 1 production MIC nodes

normal-2mic |24 hrs 12812k 50 1 production MIC nodes with two co-processors
gpu 24 hrs 32/512 50 1 GPU nodes

gpudev 4 hrs 4/64 5 1 GPU development nodes

vis 8hrs 32/512 50 1 GPU nodes + VNC service

visdev 4 hrs 4/64 5 1 Vis development nodes (GPUs + VNC)

21/22

Submitting jobs on Stampede

Example job script (in git repo for lectureb)

#!/bin/bash

#SBATCH -J myMPI \# job name

#SBATCH -o myMPI.o \# output and error file name
#SBATCH -n 32 \# total number of mpi tasks

#SBATCH -p development \# queue -- normal, development, etc.
#SBATCH -t 01:30:00 \# run time (hh:mm:ss) - 1.5 hours

#SBATCH --mail-user=username@tacc.utexas.edu

#SBATCH --mail-type=begin \# email me when the job starts
#SBATCH --mail-type=end \# email me when the job finishes
ibrun ./a.out \# run the MPI executable

	Summary of previous class
	MPI Collectives
	Submitting jobs through a scheduler

