
Advanced Topics in Numerical Analysis:
High Performance Computing

MATH-GA 2012.001 & CSCI-GA 2945.001

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

Spring 2017, Thursday, 5:10–7:00PM, WWH #512

March 30, 2017

1 / 22

stadler@cims.nyu.edu


Outline

Summary of previous class

MPI Collectives

Submitting jobs through a scheduler

2 / 22



Parallelism and locality

I Moving data (through network or memory hierarchy) is slow

I Real world problems often have parallelism and locality, e.g.,
I objects move independently from each other (“embarrassingly

parallel”)
I objects mostly influence other objects nearby
I dependence on distant objects can be simplified
I Partial differential equations have locality properties

I Applications often exhibit parallelism at multiple levels

3 / 22



Parallelism and locality—examples

Examples from last class:

I Conway’s game of life—parallelism through domain
decomposition

I Particle systems (background forces, neighbor forces, far-field
forces) — domain decomposition

I Sparse/dense matrix-vector multiplication–row-wise storage

I PDE solution (elliptic/hyperbolic/parabolic)

4 / 22



What should (not) be added to a repository?

Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!

I .tex files YES!

I .aux, .out, .dvi. . . files NO!

I compiled files, object files NO! (large, no diffs possible,
conflicts)

I .pdf files YES/NO!

I large data files NO. . . sometimes maybe

I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

5 / 22



Some of my git wisedom

Should I have a few large repositories or many small ones?

I I recommend many small ones (like I use for this class).

I Easier to manage, commit messages easier to monitor.

I Small memory footprint and faster!

I It’s easy to link two repositories (e.g., code libraries) using git
submodules (look it up)!

How often should you commit?

I As often as you like (in case of doubt, more often)

I Makes it easier to monitor changes, track down bugs

I If you collaborate, better to avoid conflicts

I For me: feels like a (small) achievement, supports
clean/systematic working style (always look at diff before
committing)

6 / 22



Some of my git wisedom

Should I have a few large repositories or many small ones?

I I recommend many small ones (like I use for this class).

I Easier to manage, commit messages easier to monitor.

I Small memory footprint and faster!

I It’s easy to link two repositories (e.g., code libraries) using git
submodules (look it up)!

How often should you commit?

I As often as you like (in case of doubt, more often)

I Makes it easier to monitor changes, track down bugs

I If you collaborate, better to avoid conflicts

I For me: feels like a (small) achievement, supports
clean/systematic working style (always look at diff before
committing)

6 / 22



Graphical interface to git

Provided by bitbucket/github/gitlab. Locally, I use

$ gitk (--all)

7 / 22



Outline

Summary of previous class

MPI Collectives

Submitting jobs through a scheduler

8 / 22



MPI Collectives

Recommended online resource:

http://mpitutorial.com/

Recommended reading: Chapter 5 in

9 / 22

http://mpitutorial.com/


Non-blocking MPI Send/Recv
I Non-blocking communication allows interlacing

communication and computation.

MPI ISend(..., MPI Request *request)

MPI IRecv(..., MPI Request *request))

I Must check status to ensure that communication has finished.

MPI Wait(MPI Request *request, MPI Status *status)

Comparison with mailing a letter:
I Blocking Send: drop off letter at the mail box (copied to MPI

buffer)
I Nonblocking Send: letter on kitchen table is ready to be taken

to the mail box (MPI starts taking care of message)
I Blocking Recv: Letter has arrived (it’s in the desired memory

location)
I Nonblocking Recv: I’m expecting a letter (keep checking till it

arrives using MPI Wait() )
10 / 22



MPI Barrier

Synchronizes all processes. Other collective functions implicitly act
as a synchronization. Used for instance for timing.

MPI Barrier(MPI Comm communicator)

11 / 22



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype

datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

12 / 22



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype

datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

12 / 22



MPI Reduce

Reduces data from all to one processors. Every processor calls
same function.

MPI Reduce(void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, int root, MPI Comm

communicator)

Possible Reduce operators:
MPI MAX: Returns the maximum element.

MPI MIN: Returns the minimum element.

MPI SUM: Sums the elements.

MPI PROD: Multiplies all elements.

MPI LAND: Performs a logical and across the elements.

MPI LOR: Performs a logical or across the elements.

MPI BAND: Performs a bitwise and across the bits of the elements.

MPI BOR: Performs a bitwise or across the bits of the elements.

MPI MAXLOC: Returns the maximum value and the rank of the process that owns it.

MPI MINLOC: Returns the minimum value and the rank of the process that owns it.

MPI Allreduce(): Provides result of reduction too all processors.

13 / 22



MPI Scatter
Broadcasts different data from one to all processors. Every
processor calls same function.

MPI Scatter(void* sendbuff, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, int root, MPI Comm

communicator)

Send arguments must be provided on all processors, but sendbuf
can be NULL. Send/recv count are per processor.

14 / 22



MPI Gather

Gathers different data from all to one processors. Every processor
calls same function.

MPI Gather(void* sendbuff, int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm communicator)

Variant:
MPI Allgather() gathers from all processors to all processors.

15 / 22



MPI Bcast comparison

Let’s compare a naive implementation of MPI Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

. . . and let’s do it on Stampede!

16 / 22

https://github.com/NYU-HPC17/lecture8


MPI Bcast comparison

Let’s compare a naive implementation of MPI Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

. . . and let’s do it on Stampede!

16 / 22

https://github.com/NYU-HPC17/lecture8


Outline

Summary of previous class

MPI Collectives

Submitting jobs through a scheduler

17 / 22



Submitting jobs on Stampede
Overview of HPC cluster

18 / 22



Submitting jobs on Stampede

Stampede user guide:
https://portal.tacc.utexas.edu/user-guides/stampede

Batch facilities: SGE, LSF, SLURM. Stampede uses SLURM, and
these are some of the basic commands:

I submit/start a job: sbatch jobscript

I see status of my job: squeue -u USERNAME

I cancel my job: scancel JOBID

I see all jobs on machine: showq | less

19 / 22

https://portal.tacc.utexas.edu/user-guides/stampede


Submitting jobs on Stampede

Some basic rules:

I Don’t run on the login node!

I Don’t abuse the shared file system.

20 / 22



Submitting jobs on Stampede
Available queues on Stampede

21 / 22



Submitting jobs on Stampede
Example job script (in git repo for lecture5)

#!/bin/bash

#SBATCH -J myMPI \# job name

#SBATCH -o myMPI.o \# output and error file name

#SBATCH -n 32 \# total number of mpi tasks

#SBATCH -p development \# queue -- normal, development, etc.

#SBATCH -t 01:30:00 \# run time (hh:mm:ss) - 1.5 hours

#SBATCH --mail-user=username@tacc.utexas.edu

#SBATCH --mail-type=begin \# email me when the job starts

#SBATCH --mail-type=end \# email me when the job finishes

ibrun ./a.out \# run the MPI executable

22 / 22


	Summary of previous class
	MPI Collectives
	Submitting jobs through a scheduler

