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Organization

» Homework 4 due next week.

» Have you logged into Stampede and tried to run there?
Please try asap (to give us time to work out issues).

» Final projects: Expect individual feedback for your projects in
the next couple of days.

» Final project presentations: May 10/11 (most likely). Recall
that you've to give a 10 minute presentation.

» And please come to your colleagues' presentations.
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Organization

Planned material for remainder of course (you are welcome to give
input!):

>

>

Hybrid computing (MPI + OpenMP; today)

GPU computing with OpenCL; possibly Intel Xeon Phi
accelerators

Algorithms: Multigrid (?) FMM (?)

Tools: Some debugging; Visualization with paraview; load
balancing tools (?)

Homeworks: Expect either two more short homeworks, or one
longer one.
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MPI Barrier

Synchronizes all processes. Other collective functions implicitly act
as a synchronization. Used for instance for timing.

MPI Barrier (MPI_Comm communicator)

MPI_Barrier() MPI_Barrier()
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MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)
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Actual implementation depends on MPI library.
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MPI Reduce

Reduces data from all to one processors. Every processor calls
same function.

MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
communicator)

Possible Reduce operators:
MPI_MAX: Returns the maximum element.
MPI_MIN: Returns the minimum element.
MPI_SUM: Sums the elements.
MPI_PROD: Multiplies all elements.
MPI_LAND: Performs a logical and across the elements.
MPI_LOR: Performs a logical or across the elements.
MPI_BAND: Performs a bitwise and across the bits of the elements.
MPI_BOR: Performs a bitwise or across the bits of the elements.
MPI_MAXLOC: Returns the maximum value and the rank of the process that owns it.
MPI_MINLOC: Returns the minimum value and the rank of the process that owns it.

MPI_Allreduce(): Provides result of reduction too all processors.
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MPI Scatter

Broadcasts different data from one to all processors. Every
processor calls same function.

MPI_Scatter(void* sendbuff, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm
communicator)
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Send arguments must be provided on all processors, but sendbuf
can be NULL. Send/recv count are per processor.
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MPI Gather

Gathers different data from all to one processors. Every processor
calls same function.
MPI _Gather(void* sendbuff, int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm communicator)

Variant:
MPI_Allgather() gathers from all processors to all processors.
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MPI_Bcast comparison

Let's compare a naive implementation of MPI_Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8
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MPI_Bcast comparison

Let's compare a naive implementation of MPI_Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

...and let's do it on Stampede!
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Submitting jobs on Stampede

Overview of HPC cluster

Login Nodes

Batch Scheduler

Shared
Filesystem

Compute Nodes
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Submitting jobs on Stampede

Stampede user guide:
https://portal.tacc.utexas.edu/user-guides/stampede

Batch facilities: SGE, LSF, SLURM. Stampede uses SLURM, and
these are some of the basic commands:

> submit/start a job: sbatch jobscript
> see status of my job: squeue -u USERNAME
» cancel my job: scancel JOBID

> see all jobs on machine: showq | less
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https://portal.tacc.utexas.edu/user-guides/stampede

Submitting jobs on Stampede

Some basic rules:
» Don't run on the login node!

» Don't abuse the shared file system.
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Submitting jobs on Stampede

Available queues on Stampede

Queue Name

Max Runtime

Max Nodes/Procs

Max Jobs in Queue

SU Charge Rate

Purpose

normal 48 hrs 256 / 4K 50 1 normal production

development |2 hrs 16/ 256 1 1 development nodes

largemem 48 hrs 4/128 4 2 large memory 32 cores/node

serial 12 hrs 1/16 8 1 serial/shared_memory

large 24 hrs 1024 / 16K 50 1 large core counts (access by request l)
request 24 hrs - 50 1 special requests

normal-mic |48 hrs 256 / 4k 50 1 production MIC nodes

normal-2mic |24 hrs 12812k 50 1 production MIC nodes with two co-processors
gpu 24 hrs 32/512 50 1 GPU nodes

gpudev 4 hrs 4/64 5 1 GPU development nodes

vis 8hrs 32/512 50 1 GPU nodes + VNC service

visdev 4 hrs 4/64 5 1 Vis development nodes (GPUs + VNC)
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Submitting jobs on Stampede

Example job script (in git repo for lectureb)

#!/bin/bash

#SBATCH -J myMPI \# job name

#SBATCH -o myMPI.o \# output and error file name
#SBATCH -n 32 \# total number of mpi tasks

#SBATCH -p development \# queue -- normal, development, etc.
#SBATCH -t 01:30:00 \# run time (hh:mm:ss) - 1.5 hours

#SBATCH --mail-user=username@tacc.utexas.edu

#SBATCH --mail-type=begin \# email me when the job starts
#SBATCH --mail-type=end \# email me when the job finishes
ibrun ./a.out \# run the MPI executable
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Outline

Coding and running code time!
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1D MPI Jacobi

> Blocking Send/Recv

» Nonblocking Send/Recv; overlapping computation and
communication

» MPI-OpenMP hybrid on Stampede
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