
Advanced Topics in Numerical Analysis:
High Performance Computing

MATH-GA 2012.001 & CSCI-GA 2945.001

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

Spring 2017, Thursday, 5:10–7:00PM, WWH #512

April 6, 2017

1 / 18

stadler@cims.nyu.edu


Outline

Organization

Summary from last class

Coding and running code time!

2 / 18



Organization

I Homework 4 due next week.

I Have you logged into Stampede and tried to run there?
Please try asap (to give us time to work out issues).

I Final projects: Expect individual feedback for your projects in
the next couple of days.

I Final project presentations: May 10/11 (most likely). Recall
that you’ve to give a 10 minute presentation.

I And please come to your colleagues’ presentations.

3 / 18



Organization

Planned material for remainder of course (you are welcome to give
input!):

I Hybrid computing (MPI + OpenMP; today)

I GPU computing with OpenCL; possibly Intel Xeon Phi
accelerators

I Algorithms: Multigrid (?) FMM (?)

I Tools: Some debugging; Visualization with paraview; load
balancing tools (?)

I Homeworks: Expect either two more short homeworks, or one
longer one.

4 / 18



Outline

Organization

Summary from last class

Coding and running code time!

5 / 18



MPI Barrier

Synchronizes all processes. Other collective functions implicitly act
as a synchronization. Used for instance for timing.

MPI Barrier(MPI Comm communicator)

6 / 18



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype

datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

7 / 18



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype

datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

7 / 18



MPI Reduce

Reduces data from all to one processors. Every processor calls
same function.

MPI Reduce(void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, int root, MPI Comm

communicator)

Possible Reduce operators:
MPI MAX: Returns the maximum element.

MPI MIN: Returns the minimum element.

MPI SUM: Sums the elements.

MPI PROD: Multiplies all elements.

MPI LAND: Performs a logical and across the elements.

MPI LOR: Performs a logical or across the elements.

MPI BAND: Performs a bitwise and across the bits of the elements.

MPI BOR: Performs a bitwise or across the bits of the elements.

MPI MAXLOC: Returns the maximum value and the rank of the process that owns it.

MPI MINLOC: Returns the minimum value and the rank of the process that owns it.

MPI Allreduce(): Provides result of reduction too all processors.

8 / 18



MPI Scatter
Broadcasts different data from one to all processors. Every
processor calls same function.

MPI Scatter(void* sendbuff, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, int root, MPI Comm

communicator)

Send arguments must be provided on all processors, but sendbuf
can be NULL. Send/recv count are per processor.

9 / 18



MPI Gather

Gathers different data from all to one processors. Every processor
calls same function.

MPI Gather(void* sendbuff, int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm communicator)

Variant:
MPI Allgather() gathers from all processors to all processors.

10 / 18



MPI Bcast comparison

Let’s compare a naive implementation of MPI Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

. . . and let’s do it on Stampede!

11 / 18

https://github.com/NYU-HPC17/lecture8


MPI Bcast comparison

Let’s compare a naive implementation of MPI Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

. . . and let’s do it on Stampede!

11 / 18

https://github.com/NYU-HPC17/lecture8


Submitting jobs on Stampede
Overview of HPC cluster

12 / 18



Submitting jobs on Stampede

Stampede user guide:
https://portal.tacc.utexas.edu/user-guides/stampede

Batch facilities: SGE, LSF, SLURM. Stampede uses SLURM, and
these are some of the basic commands:

I submit/start a job: sbatch jobscript

I see status of my job: squeue -u USERNAME

I cancel my job: scancel JOBID

I see all jobs on machine: showq | less

13 / 18

https://portal.tacc.utexas.edu/user-guides/stampede


Submitting jobs on Stampede

Some basic rules:

I Don’t run on the login node!

I Don’t abuse the shared file system.

14 / 18



Submitting jobs on Stampede
Available queues on Stampede

15 / 18



Submitting jobs on Stampede
Example job script (in git repo for lecture5)

#!/bin/bash

#SBATCH -J myMPI \# job name

#SBATCH -o myMPI.o \# output and error file name

#SBATCH -n 32 \# total number of mpi tasks

#SBATCH -p development \# queue -- normal, development, etc.

#SBATCH -t 01:30:00 \# run time (hh:mm:ss) - 1.5 hours

#SBATCH --mail-user=username@tacc.utexas.edu

#SBATCH --mail-type=begin \# email me when the job starts

#SBATCH --mail-type=end \# email me when the job finishes

ibrun ./a.out \# run the MPI executable

16 / 18



Outline

Organization

Summary from last class

Coding and running code time!

17 / 18



1D MPI Jacobi

I Blocking Send/Recv

I Nonblocking Send/Recv; overlapping computation and
communication

I MPI-OpenMP hybrid on Stampede

18 / 18


	Organization
	Summary from last class
	Coding and running code time!

