Advanced Topics in Numerical Analysis:

High Performance Computing
MATH-GA 2012.001 & CSCI-GA 2945.001

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

Spring 2017, Thursday, 5:10-7:00PM, WWH #512

April 6, 2017

1/18

stadler@cims.nyu.edu

Outline

Organization

/18

Organization

» Homework 4 due next week.

» Have you logged into Stampede and tried to run there?
Please try asap (to give us time to work out issues).

» Final projects: Expect individual feedback for your projects in
the next couple of days.

» Final project presentations: May 10/11 (most likely). Recall
that you've to give a 10 minute presentation.

» And please come to your colleagues' presentations.

18

Organization

Planned material for remainder of course (you are welcome to give
input!):

>

>

Hybrid computing (MPI + OpenMP; today)

GPU computing with OpenCL; possibly Intel Xeon Phi
accelerators

Algorithms: Multigrid (?) FMM (?)

Tools: Some debugging; Visualization with paraview; load
balancing tools (?)

Homeworks: Expect either two more short homeworks, or one
longer one.

Outline

Summary from last class

/18

MPI Barrier

Synchronizes all processes. Other collective functions implicitly act
as a synchronization. Used for instance for timing.

MPI Barrier (MPI_Comm communicator)

MPI_Barrier() MPI_Barrier()

O S
O] O,
no—— 5 ©

COOO:
QOO

T3 T4

18

MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

©
0X0JO0JOXOJO)XO

Actual implementation depends on MPI library.

18

MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).

MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

18

MPI Reduce

Reduces data from all to one processors. Every processor calls
same function.

MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
communicator)

Possible Reduce operators:
MPI_MAX: Returns the maximum element.
MPI_MIN: Returns the minimum element.
MPI_SUM: Sums the elements.
MPI_PROD: Multiplies all elements.
MPI_LAND: Performs a logical and across the elements.
MPI_LOR: Performs a logical or across the elements.
MPI_BAND: Performs a bitwise and across the bits of the elements.
MPI_BOR: Performs a bitwise or across the bits of the elements.
MPI_MAXLOC: Returns the maximum value and the rank of the process that owns it.
MPI_MINLOC: Returns the minimum value and the rank of the process that owns it.

MPI_Allreduce(): Provides result of reduction too all processors.

18

MPI Scatter

Broadcasts different data from one to all processors. Every
processor calls same function.

MPI_Scatter(void* sendbuff, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm
communicator)

u= [o[1] 2] 3[4 s[6] 7] s o[10]11]12[13][14]15]

| / Rank

Send arguments must be provided on all processors, but sendbuf
can be NULL. Send/recv count are per processor.

18

MPI Gather

Gathers different data from all to one processors. Every processor
calls same function.
MPI _Gather(void* sendbuff, int sendcount, MPI Datatype

sendtype, void* recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm communicator)

Variant:
MPI_Allgather() gathers from all processors to all processors.

10/18

MPI_Bcast comparison

Let's compare a naive implementation of MPI_Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

11/18

https://github.com/NYU-HPC17/lecture8

MPI_Bcast comparison

Let's compare a naive implementation of MPI_Bcast with the
system implementation:

https://github.com/NYU-HPC17/lecture8

...and let's do it on Stampede!

11/18

https://github.com/NYU-HPC17/lecture8

Submitting jobs on Stampede

Overview of HPC cluster

Login Nodes

Batch Scheduler

Shared
Filesystem

Compute Nodes

12/18

Submitting jobs on Stampede

Stampede user guide:
https://portal.tacc.utexas.edu/user-guides/stampede

Batch facilities: SGE, LSF, SLURM. Stampede uses SLURM, and
these are some of the basic commands:

> submit/start a job: sbatch jobscript
> see status of my job: squeue -u USERNAME
» cancel my job: scancel JOBID

> see all jobs on machine: showq | less

13/18

https://portal.tacc.utexas.edu/user-guides/stampede

Submitting jobs on Stampede

Some basic rules:
» Don't run on the login node!

» Don't abuse the shared file system.

14 /18

Submitting jobs on Stampede

Available queues on Stampede

Queue Name

Max Runtime

Max Nodes/Procs

Max Jobs in Queue

SU Charge Rate

Purpose

normal 48 hrs 256 / 4K 50 1 normal production

development |2 hrs 16/ 256 1 1 development nodes

largemem 48 hrs 4/128 4 2 large memory 32 cores/node

serial 12 hrs 1/16 8 1 serial/shared_memory

large 24 hrs 1024 / 16K 50 1 large core counts (access by request l)
request 24 hrs - 50 1 special requests

normal-mic |48 hrs 256 / 4k 50 1 production MIC nodes

normal-2mic |24 hrs 12812k 50 1 production MIC nodes with two co-processors
gpu 24 hrs 32/512 50 1 GPU nodes

gpudev 4 hrs 4/64 5 1 GPU development nodes

vis 8hrs 32/512 50 1 GPU nodes + VNC service

visdev 4 hrs 4/64 5 1 Vis development nodes (GPUs + VNC)

15/18

Submitting jobs on Stampede

Example job script (in git repo for lectureb)

#!/bin/bash

#SBATCH -J myMPI \# job name

#SBATCH -o myMPI.o \# output and error file name
#SBATCH -n 32 \# total number of mpi tasks

#SBATCH -p development \# queue -- normal, development, etc.
#SBATCH -t 01:30:00 \# run time (hh:mm:ss) - 1.5 hours

#SBATCH --mail-user=username@tacc.utexas.edu

#SBATCH --mail-type=begin \# email me when the job starts
#SBATCH --mail-type=end \# email me when the job finishes
ibrun ./a.out \# run the MPI executable

16 /18

Outline

Coding and running code time!

17/18

1D MPI Jacobi

> Blocking Send/Recv

» Nonblocking Send/Recv; overlapping computation and
communication

» MPI-OpenMP hybrid on Stampede

18/18

	Organization
	Summary from last class
	Coding and running code time!

