
Shared Memory and OpenMP

• Background

• Shared Memory Hardware

• Shared Memory Languages

• OpenMP

Parallel Hardware

Shared Memory Machines global memory can be acessed by all
processors or cores. Information exchanged between threads using
shared variables written by one thread and read by another. Need to
coordinate access to shared variables.

Interconnection Network

P PP

M M M

Interconnection Network

P PP

M M M

Parallel Hardware

Distributed Memory Machines private memory for each processor,
only accessible this processor, so no synchronization for memory
accesses needed. Information exchanged by sending data from one
processor to another via an interconnection network using explicit
communication operations.

Interconnection Network

P PP

M M M

Interconnection Network

P PP

M M M

Hybrid approach increasingly common

Shared Memory Systems
Symmetric Multiprocessors (SMP): processors all connected to a large
shared memory. Examples are processors connected by crossbar, or
multicore chips. Key characteristic is uniform memory access (UMA)

C

P PP

Bus

Shared Memory

C C C

Caches are a problem - need to be kept coherent = when one CPU
changes a value in memory, then all other CPUs will get the same
value when they access it.

Shared Memory Systems
Distributed Shared Memory Memory is logically shared but physically
distributed. Has non-uniform memory access (NUMA)

• Any processor can access any address in memory

• Cache lines (or pages) passed around machine. Difficulty is
cache coherency protocols.

• CC-NUMA architecture (if network is cache-coherent)

Interconnection Network

P PP

M M M

C C C

(SGI Altix at NASA Ames - had 10,240 cpus of Itanium 2 nodes connected by
Infiniband, was ranked 84 in June 2010 list, ranked 3 in 2008. Expensive!)

Parallel Programming Models

Programming model gives an abstract view of the machine
describing

• Control
• how is parallelism created?
• what ordering is there between operations?

• Data
• What data is private or shared?
• How is logically shared data accessed or communicated?

• Synchronization
• What operations are used to coordinate parallelism
• What operations are atomic (indivisible)?

Shared Memory Programming Model

Program consists of threads of control with

• shared variables

• private variables

• threads communicate implicitly by writing and reading
shared variables

• threads coordinate by synchronizing on shared variables

Threads can be dynamically created and destroyed.

Other programming models: distributed memory, hybrid, data
parallel programming model (single thread of control), shared
address space,

What’s a thread? A process?
Processes are independent execution units that contain their
own state information and their own address space. They
interact via interprocess communication mechanisms (generally
managed by the operating system). One process may contain
many threads. Processes are given system resources.

All threads within a process share the same address space,
and can communicate directly using shared variables. Each
thread has its own stack but only one data section, so global
variables and heap-allocated data are shared (this can be
dangerous).

What is state?
• instruction pointer
• Register file (one per thread)
• Stack pointer (one per thread)

Multithreaded Processors

• Both the above (SMP and Distributed Shared Memory
Machines) are shared address space platforms.

• Also can have multithreading on a single processor.
Switch between threads for long-latency memory
operations

• multiple thread contexts without full processors

• Memory and some other state is shared

• Can combine multithreading and multicore, e.g. Intel
Hyperthreading, more generally SMT (simultaneous
multithreading).

• Cray MTA (MultiThreaded Architecture, hardware support
for context switching every cycle), and Eldorado
processors. Sun Niagra processors (multiple FPU and ALU
per chip, 8 cores handle up to 8 threads per core)

Shared Memory Languages

• pthreads - POSIX (Portable Operating System Interface for
Unix) threads; heavyweight, more clumsy

• PGAS languages - Partitioned Global Address Space
UPC, Titanium, Co-Array Fortran; not yet popular enough,
or efficient enough

• OpenMP - newer standard for shared memory parallel
programming, lighter weight threads, not a programming
language but an API for C and Fortran

OpenMP Overview

OpenMP is an API for multithreaded, shared memory parallelism.

• A set of compiler directives inserted in the source program

• pragmas in C/C++ (pragma = compiler directive external to
prog. lang. for giving additional info., usually non-portable,
treated like comments if not understood)

• (specially written) comments in fortran

• Library functions

• Environment variables

Goal is standardization, ease of use, portability. Allows incremental
approach. Significant parallelism possible with just 3 or 4 directives.
Works on SMPs and DSMs.

Allows fine and coarse-grained parallelism; loop level as well as
explicit work assignment to threads as in SPMD.

What is OpenMP?

• http://www.openmp.org
• Maintained by the OpenMP Architecture Review Board

(ARB) (non-profit group of organizations that interpret and
update OpenMP, write new specs, etc. Includes
Compaq/Digital, HP, Intel, IBM, KAI, SGI, Sun, DOE.
(Endorsed by software and application vendors).

• Individuals also participate through cOMPunity, which
participates in ARB, organizes workshops, etc.

• Started in 1997. OpenMP 3.0 just recently released.
• For Fortran (77,90,95), C and C++, on Unix, Windows NT

and other platforms.

OpenMP = Open specifications for MultiProcessing

Basic Idea
Explicit programmer control of parallelization using fork-join
model of parallel execution

• all OpenMP programs begin as single process, the master
thread, which executes until a parallel region construct
encountered

• FORK: master thread creates team of parallel threads
• JOIN: When threads complete statements in parallel

region construct they synchronize and terminate, leaving
only the master thread. (similar to fork-join of Pthreads)

fork join joinfork

parallel region parallel region

Basic Idea

• User inserts directives telling compiler how to execute
statements

• which parts are parallel
• how to assign code in parallel regions to threads
• what data is private (local) to threads
• #pragma omp in C and !$omp in Fortran

• Compiler generates explicit threaded code

• Rule of thumb: One thread per core (2 or 4 with
hyperthreading)

• Dependencies in parallel parts require synchronization
between threads

Simple Example

Compile line:
gcc -fopenmp helloWorld.c
icc -openmp helloWorld.c

Simple Example
Sample Output:

MacBook-Pro% a.out
Hello world from thread 1
Hello world from thread 0
Hello world from thread 2
Hello world from thread 3

MacBook-Pro% a.out
Hello world from thread 0
Hello world from thread 3
Hello world from thread 2
Hello world from thread 1

(My laptop has 2 cores)
(Demos)

Setting the Number of Threads

Environment Variables:
setenv OMP_NUM_THREADS 2 (cshell)
export OMP_NUM_THREADS=2 (bash shell)

Library call:
omp_set_num_threads(2)

Parallel Construct

#include <omp.h>

int main(){
int var1, var2, var3;

...serial Code

#pragma omp parallel private(var1, var2) shared (var3)
{

...parallel section
}

...resume serial code

}

Parallel Directives

• When a thread reaches a PARALLEL directive, it becomes
the master and has thread number 0.

• All threads execute the same code in the parallel region
(Possibly redundant, or use work-sharing constructs to
distribute the work)

• There is an implied barrier∗ at the end of a parallel section.
Only the master thread continues past this point.

• If a thread terminates within a parallel region, all threads
will terminates, and the result is undefined.

• Cannot branch into or out of a parallel region.

barrier - all threads wait for each other; no thread proceeds until all threads
have reached that point

Parallel Directives

• If program compiled serially, openMP pragmas and
comments ignored, stub library for omp library routines

• easy path to parallelization

• One source for both sequential and parallel helps
maintenance.

Work-Sharing Constructs

• work-sharing construct divides work among member
threads. Must be dynamically within a parallel region.

• No new threads launched. Construct must be encountered
by all threads in the team.

• No implied barrier on entry to a work-sharing construct;
Yes at end of construct.

3 types of work-sharing construct (4 in Fortran - array
constructs):
• for loop: share iterates of for loop (“data parallelism”)

iterates must be independent
• sections: work broken into discrete section, each executed

by a thread (“functional parallelism”)
• single: section of code executed by one thread only

FOR directive schedule example

FOR directive schedule example

for loop with 20 iterations and 8 threads:

icc: 4 threads get 3 iterations and 4 threads get 2
gcc: 6 threads get 3 iterations, 1 thread gets 2, 1 gets none

OMP Directives
All directives:

#pragma omp directive [clause ...]
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

Directives are:
• Case sensitive (not for Fortran)
• Only one directive-name per statement
• Directives apply to at most one succeeding statement,

which must be a structured block.
• Continue on succeeding lines with backslash ("\")

FOR directive
#pragma omp for [clause ...]

schedule (type [,chunk])
private (list)
firstprivate(list)
lastprivate(list)
shared (list)
reduction (operator: list)
nowait

SCHEDULE: describes how to divide the loop iterates

• static = divided into pieces of size chunk, and statically assigned to
threads. Default is approx. equal sized chunks (at most 1 per thread)

• dynamic = divided into pieces of size chunk and dynamically scheduled
as requested. Default chunk size 1.

• guided = size of chunk decreases over time. (Init. size proportional to
the number of unassigned iterations divided by number of threads,
decreasing to chunk size)

• runtime=schedule decision deferred to runtime, set by environment
variable OMP SCHEDULE.

FOR example

#pragma omp parallel shared(n,a,b,x,y), private(i)
{ // start parallel region

#pragma omp for nowait
for (i=0;i<n;i++)

b[i] = += a[i];

#pragma omp for nowait
for (i=0;i<n;i++)

x[i] = 1./y[i];

} // end parallel region (implied barrier)

Spawning tasks is expensive: reuse if possible.
nowait clause: minimize synchronization.

SECTIONS directive

#pragma omp sections [clause ...]
private (list)
firstprivate(list)
lastprivate(list)
reduction (operator: list)
nowait

{
#pragma omp section

structured block
#pragma omp section

structured block
}

• implied barrier at the end of a SECTIONS directive, unless a
NOWAIT clause used

• for different numbers of threads and SECTIONS some threads
get none or more than one

• cannot count on which thread executes which section
• no branching in or out of sections

Sections example

#pragma omp parallel shared(n,a,b,x,y), private(i)
{ // start parallel region

#pragma omp sections nowait
{

#pragma omp section
for (i=0;i<n;i++)

b[i] = += a[i];

#pragma omp section
for (i=0;i<n;i++)

x[i] = 1./y[i];

} // end sections
} // end parallel region

SINGLE directive

#pragma omp single [clause ...]
private (list)
firstprivate(list)
nowait

structured block

• SINGLE directive says only one thread in the team executes the
enclosed code

• useful for code that isn’t thread-safe (e.g. I/O)

• rest of threads wait at the end of enclosed code block (unless
NOWAIT clause specified)

• no branching in or out of SINGLE block

firstprivate example

What is wrong with this code snippet?

#pragma omp parallel for
for (i=0;i<n;i++){

x = i*dx
y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

By default, x is shared variable (i is private).

Could have: Thread 0 set x for some i.
Thread 1 sets x for different i.
Thread 0 uses x but it is now incorrect.

firstprivate example

What is wrong with this code snippet?

#pragma omp parallel for
for (i=0;i<n;i++){

x = i*dx
y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

By default, x is shared variable (i is private).

Could have: Thread 0 set x for some i.
Thread 1 sets x for different i.
Thread 0 uses x but it is now incorrect.

firstprivate example

Instead use:

#pragma omp parallel for private(x)
for (i=0;i<n;i++){

x = i*dx
y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

What about i,dx,y?

By default dx,n,y shared.
dx,n used but not changed. y changed, but independently for
each i

firstprivate example

Instead use:

#pragma omp parallel for private(x)
for (i=0;i<n;i++){

x = i*dx
y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

What about i,dx,y?

By default dx,n,y shared.
dx,n used but not changed. y changed, but independently for
each i

firstprivate example
What is wrong with this code?

dx = 1/n.;
#pragma omp parallel for private(x,dx)
for (i=0;i<n;i++){

x = i*dx
y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

Specifying dx private creates a new private variable for each
thread, but it is not initialized.

firstprivate clause creates private variables and initializes to the
value from the master thread before the loop.

lastprivate copies last value computed by a thread (for i=n) to
the maser thread copy to continue execution.

firstprivate example
What is wrong with this code?

dx = 1/n.;
#pragma omp parallel for private(x,dx)
for (i=0;i<n;i++){

x = i*dx
y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

Specifying dx private creates a new private variable for each
thread, but it is not initialized.

firstprivate clause creates private variables and initializes to the
value from the master thread before the loop.

lastprivate copies last value computed by a thread (for i=n) to
the maser thread copy to continue execution.

Clauses

These clauses not strictly necessary but may be convenient
(and may have performance penalties too).
• lastprivate private data is undefined after parallel construct.

this gives it the value of last iteration (as if sequential) or
sections construct (in lexical order).

• firstprivate pre-initialize private vars with value of variable
with same name before parallel construct.

• default (none | shared). In fortran can also have private.
Then only need to list exceptions. (none is better habit).

• nowait suppress implicit barrier at end of work sharing
construct. Cannot ignore at end of parallel region. (But no
guarantee that if have 2 for loops where second depends
on data from first that same threads execute same iterates)

More Clauses

• if (logical expr) true = execute parallel region with team of threads; false
= run serially (loop too small, too much overhead)

• reduction for assoc. and commutative operators compiler helps out;
reduction variable is shared by default (no need to specify).

#pragma omp parallel for default(none) \
shared(n,a) \
reduction(+:sum)

for (i=0;i<n;i++)
sum += a[i]

/* end of parallel reduction */

Also other arithmetic and logical ops., min,max instrinsics in Fortan
only.

• copyprivate only with single direction. one thread reads and initializes
private vars. which are copied to other threads before they leave barrier.

• threadprivate variables persist between different parallel sections
(unlike private vars). (applies to global vars. must have dynamic false)

Race Condition* Example

*race condition= 2 or more threads access shared variable without
synchronization and at least one is a write.

Synchronization

• Implicit barrier synchronization at end of parallel region (no
explicit support for synch. subset of threads). Can invoke
explicitly with #pragma omp barrier. All threads must see
same sequence of work-sharing and barrier regions .

• critical sections: only one thread at a time in critical region with
the same name. #pragma omp critical [(name)]

• atomic operation: protects updates to individual memory loc.
Only simple expressions allowed. #pragma omp atomic

• locks: low-level run-time library routines (like mutex vars.,
semaphores)

• flush operation - forces the executing thread to make its values
of shared data consistent with shared memory

• master (like single but not implied barrier at end), ordered, ...

At all these (implicit or explicit) synchronization points OpenMP
ensures that threads have consistent values of shared data.

Critical Example
#pragma omp parallel sections
{

#pragma omp section
{

task = produce_task();
#pragma omp critical (task_queue)
{

insert_into_queue(task);
}

}
#pragma omp section
{

#pragma omp critical (task_queue)
{

task = delete_from_queue(task);
}
consume_task(task);

}
}

Atomic Examples

#pragma omp parallel shared(n,ic) private(i)
for (i=0;i<n;i++){

#pragma omp atomic
ic = ic +1;

}

ic incremented atomically

#pragma omp parallel shared(n,ic) private(i)
for (i=0;i<n;i++){
#pragma omp atomic

ic = ic + bigfunc();
}

bigfunc not atomic, only ic update

allowable atomic operations:
x binop= expr x++ or ++x x-- or --x

Atomic Example
int sum = 0;
#pragma omp parallel for shared(n,a,sum)
{
for (i=0; i<n; i++){
#pragma omp atomic

sum = sum + a[i];
}

}

Better to use a reduction clause:

int sum = 0;
#pragma omp parallel for shared(n,a) \

reduction(+:sum)
{
for (i=0; i<n; i++){

sum += a[i];
}

}

Locks

Locks control access to shared resources. Up to
implementation to use spin locks (busy waiting) or not.

• Lock variables must be accessed only through locking
routines:
omp_init_lock omp_destroy_lock
omp_set_lock omp_unset_lock omp_test_lock

• In C, lock is a type omp lock t or omp nest lock t
(In Fortran lock variable is integer)

• initial state of lock is unlocked.
• omp set lock(omp lock t *lock) forces calling

thread to wait until the specified lock is available.
(Non-blocking version is omp test lock

Examing and setting a lock must be uninterruptible operation.

Lock Example

Deadlock
Runtime situation that occurs when a thread is waiting for a resource
that will never be available. Common situation is when two (or more)
actions are each waiting for the other to finish (for example, 2 threads
acquire 2 locks in different order)

work1() { /* do some work */
#pragma omp barrier

}
work2(){ /* do some work */
}
main(){

#pragma omp parallel sections
{
#pragma omp section

work1();

#pragma omp section
work2();

}
} /* end main */

Also livelock: state changes but no progress is made.

Nested Loops
Which is better (assuming m ≈ n)?

#pragma omp parallel for private(i)
for (j=0;j<m;j++)

for (i=0;i<n;i++)
a[j][i] = 0.;

or

for (j=0;j<m;j++)
pragma omp parallel for

for (i=0;i<n;i++)
a[jk][i] = 0.;

First has less overhead: threads created once instead of m times.
What about order of indices?

Nested Loops
Which is better (assuming m ≈ n)?

#pragma omp parallel for private(i)
for (j=0;j<m;j++)

for (i=0;i<n;i++)
a[j][i] = 0.;

or

for (j=0;j<m;j++)
pragma omp parallel for

for (i=0;i<n;i++)
a[jk][i] = 0.;

First has less overhead: threads created once instead of m times.
What about order of indices?

Memory Model

• By default data is shared among all thread.

• Private data - each thread has its own copy (e.g.loop variables);
reduces hot spots, avoid race conditions and synchronizations,
increases memory (need larger stack).

• OpenMP rule: shared objects must be made available to all
threads at synchronization points (relaxed consistency model)

• Between synch., may keep values in local cache, so threads
may see different values for shared objects. If one thread needs
another’s value, must insert synch. point.

• flush operation synchronizes values for shared objects. (a.k.a.
memory fence). Writes to shared vars. must be committed to
memory; all refs. to shared vars. after a fence must be read from
memory. #pragma omp flush [varlist]. Default is all
shared vars.

Memory Model

OpenMP provides relaxed- consistency view of thread memory.
Threads can cache their data and are not required to maintain
exact consistency with real memory all the time.

A thread is allowed to have its own temporary view of memory
(incuding cache, registers) to avoid having to go to memory for
every reference to a variable.

Memory Consistency Problem
A quick aside to present the issue. More discussion later.

In uniprocessor, when new value computed it is written back to
cache, where either

• whenever a write is performed the cache is updated and a
write to main memory is issued (write-through). This maintains
cache coherence - cache accurately reflects the contents of
main memory. (But main memory is slow; may writes slows
down reads; try to buffer the writes - postpone until done
working on that memory location)

• new value stays in cache until cache line needed for other
data. Before evicted it is written back to main memory
(write-back). More complicated- need flag to indicate
cleanliness for each cache entry; dirty indicates value at that
location has changed; and before eviction needs to be written
back to memory. If there are dirty cache entries; cache is not
coherent with that memory location..

Memory Consistency Problem

• In SMP, suppose one processor has an updated result in
private cache. Second processor wants to access that
memory location - but a read from memory will get the old
value since original data not yet written back. When is new
value available?

• What if old value in second processor’s cache? How do
other processors know to invalidate the cache? (There are
snoopy cache protocols and directory-based protocols to
tell a processor when this is necessary).

OpenMP Overhead
Results (selected) of running epcc micro-benchmarks on one
node of Union Square

0 2 4 6 8
Number of Threads

0

1

2

3

4

5

Ti
m

e
in

 m
ic

ro
se

co
nd

s

parallel
for
parallel for
barrier
atomic
reduction

OpenMP Overhead

Conditional Compilation

Maintain single source for sequential and parallel code even
with runtime functions.

#ifdef _OPENMP
#include <omp.h>

#else
#define omp_get_thread_num() 0

#endif

int tid = omp_get_thread_num();

Compilers that support openMP define OPENMP for testing.

Runtime Environment

Can set runtime vars (or query from within program) to control:

• OMP NUM THREADS - sets number of threads to use.
(omp set num threads(pos. integer) at runtime)

• OMP DYNAMIC true/false - to permit or disallow system to
dynamically adjust number of threads used in future parallel
regions. (omp set dynamic(flag) at runtime)

• OMP NESTED to find out if parallel nesting allowed
(omp set nested or omp get nested at runtime)

• OMP SCHEDULE to set default scheduling type for parallel
loops of type runtime

Also runtime calls omp get num threads(), omp in parallel(),
omp get thread num(), omp get num procs()

May need to change stack size limit stacksize unlimited

(default on Gauss is 8M)

Dynamic/Nested Threads

If supported, dynamic threads set by

• the omp set dynamic() library routine
• setting the OMP DYNAMIC environment variable TRUE

Allows number of threads to be controlled at runtime using
num threads clause or omp set num threads() function.

Same for Nested Threads (omp set nested() or
OMP NESTED) API also provides for (but implementation may
not support)
• Nested parallelism (parallel constructs inside other parallel

constructs)
• dynamically altering number of threads in different parallel

regions
Standard says nothing about parallel I/O.

Number of Threads

The number of threads is determined in order of precedence
by:
• Evaluation of if clause (if evaluates to zero - false- serial

execution)
• Setting the num threads clause
• the omp set num threads() library function
• the OMP NUM THREADS environment variable
• Implementation default

Threads numbers from 0 (master thread) to N-1.

False Sharing

False Sharing = when two threads update different data
elements in the same cache line.

• Side effect of cache line granularity.
• Can be problem on shared memory machines
• Any time cache line is modified, cache coherence mech.

notifies other caches with copies that cache line has been
modified elsewhere. Local cache line invalidated, even if
different bytes modified. Cache line hops from one cache
to the other.

For ex., parallel for loop updating an array with chunk size 1.
Suppose 8 threads want to update a[0] to a[7]. Thread 0
updates a[0], invalidating cache line for threads 1 through 7.

Scalability

OpenMP so far for loop level parallelism

• Can use as with MPI - explicitly divide up work between
threads. Need to logically partition data and associate with
each thread (SPMD). (typically work sharing based on
distributing major data structures among threads, most of
the data usually private).

• Can use in hybrid programming model - MPI between
nodes in a cluster of SMPS, OpenMP for the SMP. Also
nested OpenMP.

Memory Placement

• Data allocation controlled by operating system
• On cc-numa architectures, pages of data may be

distributed across nodes of a system
• Common allocation policy is First Touch: the thread

initializing a data objects get the page with that data in its
local memory. Threads then follow owner computes rule.
Need to disallow thread migration (threads suspended,
when resume are on different cpus) .

• If changing memory access patterns, round robin
placement might mitigate bottlenecks. Also could
investigate migrate on next touch support. (some systems
can migrate memory pages during different program
phases via library routines or compiler directives - can be
expensive).

Typical Bugs ∗

Data race conditions: hard to find, not reproducible, answer
varies with number of threads.

for (i=0; i<n-1; i++) a[i] = a[i] + b[i]

Iterations of above loop are completely independent of order of
execution.

for (i=0; i<n-1; i++) a[i] = a[i+1] + b[i]

This loop has loop-carried dependence, destroys parallelism.

Use checksum approach to insure answers don’t change.
(How much do answers change when rearranging order of
operations?)

∗Examples from Using OpenMP, by Chapman, Jost and Van Der Pas

Typical Bugs
Default behavior for parallel variables is shared.

void compute(int n){
int i;
double h,x,sum;

h = 1.0/(double)/n;
sum = 0.0;

#pragma omp for reduction (+:sum) shared(h)
for (i=1; i<=n; i++){
x = h*((double)i - 0.5);
sum += (1.0)/(1.0+x*x));

}
pi = h * sum;

}

Race condition due to forgetting to declare x as private.

Typical Bugs

Default for index variables of parallel for loops is private, but not
for loops at a deeper nesting level.

int i,j;
#pragma omp parallel for
for (i=0;i<n;i++)
for (j=0;j<m;j++){
a[i][j] = compute(i,j)

}

Loop variable j shared by default – data race. Explicitly declare
private or use for (int j (Different rules in Fortran -
always private) (changed in 3.0?)

Typical Bugs
Problems with private variables:

void main (){
. . .
#pragma omp parallel for private(i,a,b)
for (i=0;i<n;i++){

b++;
a = b+i;

} /* end parallel for */
c = a + b;

• Remember that value of a private copy is uninitialized on
entry to parallel region (unless use firstprivate(b))

• the value of the original variable is undefined on exit from
the parallel region (unless use lastprivate(a,b))

Good habit to use default(none) clause

Typical Bugs
Problems with master construct:

void main (){
int Xinit, Xlocal;

. . .
#pragma omp parallel shared(Xinit) private(Xlocal)
{
#pragma omp master
{Xinit = 10;}

Xlocal = Xinit;
} /* end parallel region */

master doesn’t have implied barrier, so Xinit might not be
available or might be flushed to memory when another thread
reaches it.

Typical Bugs
nowait causes problems:

#pragma omp parallel
{
#pragma omp for schedule(static) nowait
for (i=0;i<n;i++)
b[i] = (a[i]+a[i-1])/2.0;

#pragma omp for schedule(static) nowait
for (i=0;i<n;i++)
z[i] = sqrt(b[i]);

}

cannot assume which thread executes which loop iterations. If
n not a multiple of # threads several algs. exist for distributing
the remaining iterations. There is no requirement that the same
alg. has to be used in different loops. Second loop might read
values of b not yet written in first loop. (changed in 3.0?)

Typical Bugs

Illegal use of barrier:

#pragma omp parallel
{
if (omp_get_thread_num()==0)
{ ...
#pragma omp barrier
}
else
{ ...
#pragma omp barrier
}

} /* end parallel region */

Each barrier must be encountered by all threads in a team. The
runtime behavior of this is undefined.

Typical Bugs

Missing curly braces:

#pragma omp parallel
{

work1(); /* executed in parallel */
work2(); /* executed in parallel */

}

#pragma omp parallel
work1(); /* executed in parallel */
work2(); /* executed sequentially */

Need curly brackets for parallel region more than a single
statement. (Fortran has explicit mark at end of parallel region)

Typical Bugs

Library or function call must be thread-safe (= able to be
accessed concurrently by multiple flows of control.

• Global data isn’t thread-safe (and if meant to have global
data then the code must be written to protect it from
concurrent writes.)

• Indirect accesses through pointers
• Library routines in Fortran must allocate local data on the

stack for thread-safety. (no SAVE statement). In C no
volatile variables. No shared class objects in C++)

Also called re-entrant code: code can be partially executed by
one task, reentered by another task, and then resumed from the
original task. State info. and local variables saved on the stack.

Typical Bugs

How many times is the alphabet printed in each block?

int i;
#pragma omp parallel for
for (i=’a’; i<= ’z’; i++)
printf ("%c",i);

int i;
#pragma omp parallel
for (i=’a’; i<=’z’;i++)
printf("%c",i);

Typical Bugs

int i;
#pragma omp parallel for
for (i=’a’; i<= ’z’; i++)
printf ("%c",i);

Typical Bugs

int i;
#pragma omp parallel
for (i=’a’; i<= ’z’; i++)
printf ("%c",i);

Memory Model

When are new values of shared data guaranteed to be available to
other threads besides the one that did the update? (i.e. when should
the updating thread write back to memory or invalidate other copies
of data). In what order should the updates be performed?

Sequential consistency (Lamport): multiprocessor is sequentially
consistent if

(1) the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and

(2) the operations of each individual processor appear in this
sequence in the order specified by its program.

Other models of relaxed consistency have been proposed. (i.e. a
read can complete before an earlier write to a different address, but a
read cannot return the value of a write by another processor unless
all processors see the write (but it returns the value of its own write
before others see it).

Memory Model

When are new values of shared data guaranteed to be available to
other threads besides the one that did the update? (i.e. when should
the updating thread write back to memory or invalidate other copies
of data). In what order should the updates be performed?

Sequential consistency (Lamport): multiprocessor is sequentially
consistent if

(1) the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and

(2) the operations of each individual processor appear in this
sequence in the order specified by its program.

Other models of relaxed consistency have been proposed. (i.e. a
read can complete before an earlier write to a different address, but a
read cannot return the value of a write by another processor unless
all processors see the write (but it returns the value of its own write
before others see it).

Memory Model

When are new values of shared data guaranteed to be available to
other threads besides the one that did the update? (i.e. when should
the updating thread write back to memory or invalidate other copies
of data). In what order should the updates be performed?

Sequential consistency (Lamport): multiprocessor is sequentially
consistent if

(1) the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and

(2) the operations of each individual processor appear in this
sequence in the order specified by its program.

Other models of relaxed consistency have been proposed. (i.e. a
read can complete before an earlier write to a different address, but a
read cannot return the value of a write by another processor unless
all processors see the write (but it returns the value of its own write
before others see it).

Memory Model

Both threads can end up with old values, which violates
sequential consistency.

Processor P1 Processor P2

x = new; y = new;
y_copy = y; x_copy = x;

In any serialization at least one of the processors should end
up with a new value.

Very readable summary ”Shared Memory Consistency Models: A Tutorial”,
by Adve and Gharachorloo, in IEEE Computer, Dec., 1996.

Memory Model

OpenMP defines points in program at which data in shared
memory must be made current and at which each thread must
make its modifications available to all other threads. The
threads do not need to update data in any specific order. As
long as there are no race conditions there should be no impact
on resulting values.

OpenMP model: each thread has its own temporary view of the
values of shared data between explicit or implicit barrier
synchronization points. If shared variables accessed between
these points, user must take care to keep the temporary
memory view of the threads consistent.

Memory Model

Cache coherence not enough to prevent race conditions - is
only a protocol for updating cache lines, but does not specify
when and in what order results written back to memory - that is
specified by the memory consistency model. Relaxed
consistency does not guarantee that a write operation from one
thread finishes before another thread reads from same address.

CC triggers on a store. If variables kept in registers
modifications may not propagate back to memory without
explicit flush directives.

Compiler may reorder a flush operation relative to code that
does not affect the variables being flushed. Compilers may
move flush operations with respect to each other.

Memory Model

Reasoning about flush directive is tricky.

signal = 0;
#pragma omp parallel default(none) shared(signal,newdata) \

private(TID,localdata)
{

TID = omp_get_thread_num();
if (TID == 0) {

newdata = 10;
signal = 1;

}
else {

while (signal == 0) {}
localdata = newdata;

}
} /* end parallel */

Memory Model
Wrong use of flush to synchronize! Compiler can reorder flush statements.

signal = 0;
#pragma omp parallel shared(signal,newdata) private(TID,localdata)
{

TID = omp_get_thread_num();
if (TID == 0) {

newdata = 10;
#pragma omp flush(newdata)

signal = 1;
#pragma omp flush(signal)
}
else {

#pragma omp flush(signal)
while (signal == 0) {

#pragma omp flush(signal)
}

#pragma omp flush(newdata)
localdata = newdata;

}
} /* end parallel */

Memory Model
Need fence with both items to prevent interchange of assignments.

signal = 0;
#pragma omp parallel shared(signal,newdata) private(TID,localdata)
{

TID = omp_get_thread_num();
if (TID == 0) {

newdata = 10;
#pragma omp flush(newdata,signal)

signal = 1;
#pragma omp flush(signal)
}
else {

#pragma omp flush(signal)
while (signal == 0) {

#pragma omp flush(signal)
}

#pragma omp flush(newdata)
localdata = newdata;

}
} /* end parallel */

Memory Model

Common Fortran technique:

program main
!$OMP PARALLEL DEFAULT(NONE) PRIVATE(...)

call mysubroutine()
!$OMP END PARALLEL
stop
end
subroutine mysubroutine()
implicit none
real, save :: a
real :: a_inv
logical, save :: first
data first/.true./

if (first) then
a = 10.0
first = .false.

end if
a_inv = 1.0/a
return
end

Need !$omp single and !$omp end single around initialization.

Performance Issues

• If data carefully mapped via First Touch placement use of
single construct could destroy performance. (e.g. say
data was initialized by master thread, then use master
construct instead. Or explicitly map work to individual
threads based on location of data.

• Use private data - allocated on stack, and stack in thread’s
local memory. This is not the case with shared data.
Shared data could be fetched and cached for reuse, but if
evicted from cache another expensive transfer from remote
memory will be needed, so private data better.

Performance Issues

Use profiling to show where program spends most of its time.

• state of a thread: waiting for work, synchronizing, forking,
joining, doing useful work.

• Time spent in parallel regions and work-sharing constructs
• time spent in user and system level routines
• hardware counter info: CPU cycles, instructions, cache

miches, tlb misses
• time spend in communcation, message length, number of

messages

Look at wall-clock time (=elapsed time) vs. CPU time (=user +
system time summed over all threads, so will not decrease, and
likely will increase due to overhead).

Speedup and Efficiency

• On p processors speedup S(p) = T1/Tp

• Linear (ideal) speedup: on p procs code is p times faster
• this doesn’t usually happen due to overhead, contention,

other bottlenecks
• however can sometimes observe superlinear speedup due

to cache effects (smaller problem fits more easily in cache)

• Efficiency E = S(p)/p
• Ideal speedup S = T1/Tp = T1/(T1/p) = p has 100%

efficiency
• Amdahl’s law for serial fraction of code f says

Tp = f + (1− f)/p so S < 1/f

E = S/p = T1/(Tp p) = 1/(f p)→ 0

Scaled Speedup
Strong scaling as above, run the same code using increasing
number of processors; the problem size stays constant.

Weak scaling increase size of the problem as increase # cpus.
• originally due to Gustafson to get around Amdahl’s law.

Keep problem size n constant on each processor, so total
problem size grows linearly with p

• Problem if time complexity of algorithm grows superlinearly
with problem size. For example,

for data size n, let T1 = n2

for data size pn, parallel time is Tp = p2n2/p = p · T1
so parallel time increases linearly with p even with ideal
scaling.

• Hard to measure fairly. Problem doesn’t all fit on 1 cpu.

See Dave Bailey’s article “Twelve Ways to Fool the Masses”
http://crd.lbl.gov/˜dhbailey/dhbpapers/twelve-ways.pdf

http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf

References

• http://computing.llnl.gov/tutorials/openMP/
very complete description of OpenMP for Fortran and C

• Rauber and Runger text
text has small OpenMP section in chapter 6.

• Using OpenMP
Portable Shared Memory Parallel Programming
by Chapman, Jost and Van Der Pas

• http://www.openmp.org

