
MATH-GA 2012.001/CSCI-GA 2945.001, Georg Stadler (NYU Courant)

Spring 2016: Advanced Topics in Numerical Analysis:
Computational and Variational Methods for Inverse Problems

Assignment 3 (due Mar. 31, 2016)

The assignment requires/uses some FEniCS files, which you can find in the directory http:

//math.nyu.edu/~stadler/inv16/assignment3/. As reference for both, basics of the finite el-
ement method as well as FEniCS, I recommend the FEniCS Tutorial http://hplgit.github.io/
fenics-tutorial/doc/web/index.html.

1. [Minimal surfaces] We consider a minimal surface problem over a bounded domain Ω ⊂ R2 with
boundary Γ (see also Figure 1). This amounts to finding minimizers u? of the energy functional

Π(u) =

∫
Ω

√
1 + |∇u|2 dx. (1)

over all functions u = u(x) : Ω → R from a space X of sufficiently smooth1 functions, which
satisfy the boundary condition u(x) = u0(x) for all x ∈ Γ.

(a) Compute the first variation δΠ(u)(û) in directions û ∈ X0 := {u ∈ X,u = 0 on Γ}.
(b) From the Euler-Lagrange equations, we know that δΠ(u?)(û) = 0 for all û ∈ X0. Use

integration by parts to derive the nonlinear partial differential equation a minimizer u? must
satisfy.

(c) Compute the second variations of Π and give the Newton system at a point uk ∈ X in weak
form, i.e., find ũ ∈ X0 such that

δ2Π(uk)(û, ũ) = −δΠ(uk)(û) for all û ∈ X0. (2)

Note that the corresponding Newton update with unit step length is then uk+1 = uk + ũ.

(d) Use integration by parts to derive the strong (i.e., PDE) form of the Newton system (2).

Figure 1: Already Richard Courant (left) was fascinated by the shapes of soap film surfaces. Soap films are surfaces with
minimal area. For complex wires, this minimization problem can have multiple local minimia u?, corresponding to different
soap film configurations. For simplicity, in our setting, we use simple “wire frames” described by the Dirichlet boundary
data u0, and find minimal surfaces that are functions over the domain Ω.

1The proper space here is the space of functions of bounded variations.
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2. [Minimal surfaces, cont’d] Modify the provided FEniCS example code MinPiNonLin.py to solve
a minimal surface problem with Ω ⊂ R2 the unit circle and

u0(x) = u0(x, y) = x4 − y2. (3)

To specify the boundary nodes of the circle mesh provided with the 2nd homework assignment,
you can use (due to round-off some of the boundary nodes have a radius slightly smaller than 1):

d e f D i r i c h l e t b d r y ( x , on boundary )
i f ( x [ 0 ] ∗ x [ 0 ] + x [ 1 ] ∗ x [ 1 ] ) > 0 . 9 9 :

r e t u r n True
e l s e :

r e t u r n F a l s e

Adapt the FEniCS nonlinear solver, and the infinite-dimensional Newton step solver from the
example problem to solve this minimal surface problem.2

3. [Total variation image denoising] The problem of removing noise from an image without blurring
sharp edges can be formulated as an infinite-dimensional minimization problem. Given a possibly
noisy image u0(x, y) defined within a square domain Ω, we would like to find the image u(x, y)
that is closest in the L2 sense, i.e. we want to minimize

FLS :=

∫
Ω

(u− u0)2 dx,

while also removing noise, which is assumed to comprise very “rough” components of the image.
This latter goal can be incorporated as an additional term in the objective, in the form of a penalty,
i.e.,

RTN :=
1

2

∫
Ω
k(x)∇u ·∇u dx,

where k(x) acts as a “diffusion” coefficient that controls how strongly we impose the penalty, i.e.
how much smoothing occurs. Unfortunately, if there are sharp edges in the image, this so-called
Tikhonov (TN) regularization will blur them. Instead, in these cases we prefer the so-called total
variation (TV) regularization,

RTV :=

∫
Ω
k(x)

√
(∇u ·∇u) dx

where (we will see that) taking the square root is the key to preserving edges. Since RTV is not
differentiable when ∇u = 0, it is usually modified to include a positive parameter ε as follows:

Rε
TV :=

∫
Ω
k(x)
√
∇u ·∇u+ ε dx.

We wish to study the performance of the two denoising functionals FTN and Fε
TV , where

FTN := FLS +RTN

2FEniCS’s nonlinear equation solver implements Newton’s method. FEniCS is able to symbolically linearize variational
forms and thus evaluates Hessians analytically. Even though the nonlinear solver works for many problems, it does not work
for every nonlinear system of PDEs, which is why it is often necessary to derive and implement Newton algorithms manually.
For instance, providing the weak form of the first variation, FEniCS does not know the underlying optimization problem,
which is useful to globalize algorithms through line search. Moreover, it does not enforce that the Hessian (approximation)
is positive definite as it also does not use that the variational problem origins from an energy minimization. As an example
where FEniCS’s nonlinear solver does not converge, try multiplying the boundary condition (3) by 5. This results in a more
nonlinear problem and the FEniCS solver does not converge anymore—try it!
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and
Fε
TV := FLS +Rε

TV .

We will prescribe the homogeneous Neumann condition ∇u ·n = 0 on the four sides of the square,
which amounts to assuming that the image intensity does not change normal to the boundary.

(a) For both FTN and Fε
TV , derive the first-order necessary condition for optimality using calculus

of variations, in both weak form and strong form. Use û to represent the variation of u.

(b) Show that when ∇u is zero, RTV is not differentiable, but Rε
TV is.

(c) For both FTN and Fε
TV , derive the infinite-dimensional Newton step, in both weak and

strong form. For consistency of notation, please use ũ as the differential of u (i.e., the
Newton step). The strong form of the second variation of Fε

TV will give an anisotropic
diffusion operator of the form −∇ · (A(u)∇ũ), where A(u) is an anisotropic tensor3 that
plays the role of the diffusivity coefficient4. (In contrast, you can think of the second variation
of FTN giving an isotropic diffusion operator, i.e. with A = αI for some α.)

(d) Derive expressions for the two eigenvalues and corresponding eigenvectors of A. Based on
these expressions, give an explanation of why Fε

TV is effective at preserving sharp edges in
the image, while FTN is not. Consider a single Newton step for this argument.

(e) Show that for large enough ε, Rε
TV behaves like RTN , and for ε = 0, the Hessian of Rε

TV is
singular. This suggests that ε should be chosen small enough that edge preservation is not
lost, but not too small that ill-conditioning occurs.

4. [Total variation image denoising, cont’d] Implement the denoising problem with Tikhonov
(TN) and total variation (TV) regularizations in FEniCS. To this end, set k(x) = α with small
α > 0 in RTV and RTN , choose small ε > 0 and zero Neumann boundary conditions for u5. The
file (tntv.py) contains lines to start the implementation.

(a) Compute a reconstruction using TN regularization. Since for TN regularization the first
variation is linear (in u), you can use FEniCS’s solver solve. Choose an α > 0 such that
you obtain a reasonable reconstruction6, i.e., a reconstruction that removes noise from the
image but also does not smooth the image too much.

(b) Compute a reconstruction using TV regularization. Since the first variation is nonlinear in u,
FEniCS would try to use its nonlinear solver within the solve function,7 but you will observe
that this solver does not converge. Use the InexactNewtonCG nonlinear solver provided in
the file unconstrainedMinimization.py. This solver uses the inexact Newton CG method
with Armijo backtracking line search. It uses FEniCS’s built-in CG algorithm, which does
not support early termination due to detection of negative curvature; this is appropriate
here since the image denoising objective functionals for both TN and TV result in positive

3Compare with problem 4 on the previous assignment.
4Hint: For vectors a, b, c ∈ Rn holds (a · b)c = (caT )b, where a · b ∈ R is the inner product and caT ∈ Rn×n is a matrix

of rank one.
5This amounts to minimizing over all H1 functions without restricting values at the boundary. Since this is the “natural”

boundary condition, you can simply not define any boundary condition.
6Either experiment manually with a few values for α or use the L-curve criterion.
7As discussed before, this function implements a Newton method, which uses symbolic variations of the weak form.
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definite Hessians.8 Find an appropriate value for α9. You will have to increase the number
of nonlinear iterations in InexactNewtonCG10 How does the number of nonlinear iterations
behave for decreasing ε (e.g., between 10 and 10−4)? Try to explain this behavior11.

(c) Compare the reconstructions obtained with TN and TV regularization using the results from
the previous problem.

8See the file energyMinimization.py for an example of how to use this nonlinear solver. Compared to FEniCS’s
build-in solver, implementing our own nonlinear solver allows us to globalize Newton’s method via an Armijo line search
based on knowledge of the cost functional.

9Try out a few different values for α. Using the L-curve or Morozov’s criterion in not justified here, since compared to
TN regularization, TV-regularization is not quadratic, which makes the automatic choice of α harder.

10Typing help(InexactNewtonCG) will show you solver options. You should set the relative tolerance rel tolerance

to 10−5 and increase the number of maxiter, which defaults to 20.
11There are more efficient, so called primal-dual Newton algorithms for TV-regularized problems (see, for instance, Chan-

Golub-Mulet, SIAM Journal on Scientific Computing, 20(6), 1999). The efficient solution of total variation problems is
still an active field of research.
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