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Spring 2016: Advanced Topics in Numerical Analysis:
Computational and Variational Methods for Inverse Problems

Assignment 4 (due April 18, 2016)

1. Frequency-domain inverse wave propagation problem. We formulate and solve an inverse
acoustic wave propagation problem in the frequency domain, which is governed by the Helmholtz
equation. Let Ω ⊂ Rn be bounded (n ∈ {2, 3}). The idea is to propagate harmonic waves from
multiple sources fj(x), 1 ≤ j ≤ Ns at multiple frequencies ωi, 1 ≤ i ≤ Nf into a medium and
measure the amplitude uij(x) of the reflected wave fields at points xk, 1 ≤ k ≤ Nd for each
source and frequency in order to infer the soundspeed c(x) of the medium. The inverse problem
of estimating the locally varying slowness (i.e., the inverse of the wave speed) is as follows:

min
m

J(m) : =
1

2

Nf∑
i

Ns∑
j

Nd∑
k

∫
Ω

(uij − uobsij )2δ(x− xk) dx+
α

2

∫
Ω
∇m · ∇mdx,

where uij depends on the medium parameter m(x), which equals 1/c(x)2, through the solution
of the Helmholtz problems

−∆uij(x)− k2
im(x)uij(x) = fj(x) in Ω, i = 1, . . . , Nf , j = 1, . . . , Ns,

uij = 0 on ∂Ω.

In the above problem, uobsij (x) denotes given measurements (for frequency i and source j), uij is
the amplitude of the acoustic wave field, and α > 0 is the regularization parameter. Moreover,
δ(x− xk) is the Dirac δ-distribution, i.e.,

∫
Ω f(x)δ(x− xk) dx = f(xk) for a continuous function

f .1

(a) Compute the gradient of J using the Lagrangian method for a single source and frequency,
i.e., for Nf = Ns = 1.

(b) Compute the application of the Hessian to a vector in the single source and frequency case.

(c) Compute the gradient for an arbitrary number of sources and frequencies2. How many state
and adjoint equations have to be solved for a single gradient computation?

2. Inverse elliptic advection-diffusion problem. We would like to solve the inverse problem for
the advection-diffusion equation on Ω = [0, 1]× [0, 1]:

min
a
J(m) :=

1

2

∫
Ω

(u− uobs)2 dx+
γ

2

∫
Ω
∇m · ∇mdx, (1)

where the field u(x) depends on the diffusivity m(x) through the solution of

−∇ · (m∇u) + v · ∇u = f in Ω,

u = 0 on ∂Ω,
(2)

with the advective velocity v = (v1, v2), regularization parameter γ > 0 and f(x) is a source
term. We synthesize the measurement data uobs(x), by solving the forward advection-diffusion

1Note that we assume that the solutions of the Helmholtz equation are continuous such that this point evaluation is
well defined. The δ-Dirac function is then just a notation for point evaluation.

2Every state equation with solution uij has a corresponding adjoint variable pij . The Lagrangian functional involves
the sum over all state equations.
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equation with m(x, y) = 4 for (x − 0.5)2 + (y − 0.5)2 ≤ 0.22 and m(x, y) = 8, and a source
f ≡ 1. Noise is added to this “data” to simulate actual instrumental noise.

We provide an implementation PoissonDeterministic-SD.py, which implements a steepest
descent method3 for this problem with advective velocity v = 0 (i.e., a pure diffusion problem).

(a) Report the solution of the inverse problem and the number of required iterations for the
following cases:

• Noise level of 0.01 (roughly 1% noise), and regularization γ = 5 · 10−10.

• Same, but with γ = 0, i.e., no regularization4.

• No noise, and use m ≡ 4 and m ≡ 8 as initialization for the paramter. Do you find the
same solution? Try to explain the behavior.

(b) Add the advective term with v = (30, 0) to the implementation and plot the resulting
reconstruction of m for a noise level of 0.01 and for a reasonably chosen regularization
parameter.

(c) Since the coefficient m is discontinuous, a better choice is to use total variation regularization
rather than Tikhonov regularization to prevent an overly smooth reconstruction. Modify the
implementation and plot the result for a reasonably chosen regularization parameter. Use
ε = 0.1 to regularize the non-differentiable TV regularization term (ε has the same meaning
as in the previous assignment). Do not forget to adjust the cost function, which is used in
the line search, properly.

3Note that we do not want to advocate the use of the steepest descent method for variational inverse problem since
its convergence can be very slow. For all tests, please use a maximum number of 300 iterations—you will need it! In the
next assignment, we will solve this problem using an inexact Newton-CG method, which is more efficient.

4Inverse problems can also be “iteratively regularized”, which means that iterative methods are terminated early in an
iterative process. This can allow a reasonable solution also without regularization. The basic idea is that iterative methods
such as the conjugate gradient method captures the most important modes, which are determined by the data in its initial
iterations. A critical issue in iterative regularization is to find appropriate termination criteria such that the important
information is found while the iterative method has not targeted the noisy modes yet. See for instance the book by Kaipio
and Somersalo for more on iterative regularization methods.
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