
MATH-UA.0252 (Georg Stadler, NYU Courant)

Spring 2017: Numerical Analysis
Assignment 5 (due April 13, 2017)

2 extra credit points will be given for cleanly plotted and labeled figures (see also rules
on the first assignment). Use a legend and different line styles to label multiple graphs in one
plot (no colors needed). Do not export figures using raster graphics (.jpg, .png) but use vector
graphics (.eps, .pdf, .dxf) that do not mess up lines. Label axes and use titles. Use help

plot, help legend, help xlabel to better understand MATLAB’s plotting capabilities.

1. [Eigenvalue/vector properties, 4pts] Prove the following statements, using the basic
definition of eigenvalues and eigenvectors, or give a counterexample showing the statement
is not true. Assume A ∈ Rn×n, n ≥ 1.

(a) If λ is an eigenvalue of A and α ∈ R, then λ+ α is an eigenvalue of A+ αI, where
I is the identity matrix.

(b) If λ is an eigenvalue of A and α ∈ R, then αλ is an eigenvalue of αA.

(c) If λ is an eigenvalue of A, then for any positive integer k, λk is an eigenvalue of Ak.

(d) If B is “similar” to A, which means that there is a nonsingular matrix S such that
B = SAS−1, then if λ is an eigenvalue of A, it is also an eigenvalue of B. How do
the eigenvectors of B relate to the eigenvectors of A?

(e) Every matrix with n ≥ 2 has at least two distinct eigenvalues, say λ and µ, with
λ 6= µ.

(f) Every real matrix has a real eigenvalue.

(g) If A is singular, then it has an eigenvalue equal to zero.

(h) If all the eigenvalues of a matrix A are zero, then A = 0.

2. [Space of polynomials Pn, 1+2+2pts] Let Pn be the space of functions defined on
[−1, 1] that can be described by polynomials of degree less of equal to n with coefficients
in R. Pn is a linear space in the sense of linear algebra, in particular, for p, q ∈ Pn and
a ∈ R, also p+ q and ap are in Pn. Since the monomials {1, x, x2, . . . , xn} are a basis for
Pn, the dimension of that space is n+ 1.

(a) Show that for pairwise distinct points x0, x1, . . . , xn ∈ [−1, 1], the Lagrange polyno-
mials Lk(x) are in Pn, and that they are linearly independent, that is, for a linear
combination of the zero polynomial with Lagrange polynomials with coefficients αk,
i.e.,

n∑
k=0

αkLk(x) = 0 (the zero polynomial)

necessarily follows that α0 = α1 = . . . = αn = 0. Note that this implies that the
(n+ 1) Lagrange polynomials also form a basis of Pn.
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(b) Since both the monomials and the Lagrange polynomials are a basis of Pn, each p ∈ Pn

can be written as linear combination of monomials as well as Lagrange polynomials,
i.e.,

p(x) =
n∑

k=0

αkLk(x) =
n∑

k=0

βkx
k, (1)

with appropriate coefficients αk, βk ∈ R. As you know from basic matrix theory, there
exists a basis transformation matrix that converts the coefficients α = (α0, . . . , αn)

T

to the coefficients β = (β0, . . . , βn)
T . Show that this basis transformation matrix is

given by the so-called Vandermonde matrix V ∈ Rn+1×n+1 given by

V =


1 x0 x20 · · · xn−10 xn0
1 x1 x21 · · · xn−11 xn1
...

...
...

. . .
...

...
1 xn x2n · · · xn−1n xnn

 ,

i.e., the relation between α and β in (1) is given by α = V β. An easy way to see
this is to choose appropriate x in (1).

(c) Note that since V transforms one basis into another basis, it must be an invertible
matrix. Let us compute the condition number of V numerically.1 Compute the 2-
based condition number κ2(V ) for n = 5, 10, 20, 30 with uniformly spaced nodes
xi = −1 + (2i)/n, i = 0, . . . , n. Based on the condition numbers, can this basis
transformation be performed accurately?

3. [Polynomial interpolation versus least squares fitting, 3+1pts] Recall how Q8 in
HW3 required you to find the cubic best fit to six given data points. This led to a least
squares optimization problem. We are given the same points as in HW3:

i 0 1 2 3 4 5

X 0.0 0.5 1.0 1.5 2.0 2.5
Y 0.0 0.20 0.27 0.30 0.32 0.33

(a) Write down the least squares problem associated to finding the cubic best fit using
(i) all six points, (ii) only the data for i = 0, 1, 2, 3, 4, and (iii) i = 0, 1, 2, 3. In each
case solve the system and plot both the data and the polynomial. Why is case (iii)
not a least squares problem?

(b) What is the degree of the polynomial you would have to use so that the solution
interpolates (i.e., goes through) all six data points?

4. [Polynomial interpolation and error estimation, 2+2+2+2pt] Let us interpolate the
function f : [0, 1] → R defined by f(x) = exp(3x) using the nodes xi = i/2, i = 0, 1, 2
by a quadratic polynomial p2 ∈ P 2.

1MATLAB provides the function vander, which can be used to assemble V (actually, the transpose of V ).
Alternatively, one can use a simple loop to construct V .
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(a) Use the monomial basis 1, x, x2 and compute (numerically) the coefficients cj ∈ R
such that p2(x) =

∑2
j=0 cjx

j. Plot p2 and f in the same graph.

(b) Give an alternative form for p2 using Lagrange interpolation polynomials L0(x), L1(x)
and L2(x). Plot the three Lagrange basis polynomials in the same graph.

(c) Compare the exact interpolation error Ef (x) := f(x) − p2(x) at x = 3/4 with the
estimate

|Ef (x)| ≤
Mn+1

(n+ 1)!
|πn+1(x)|,

where Mn+1 = maxz∈[0,1] |f (n+1)(z)|, f (n+1) is the (n + 1)st derivative of f , and
πn+1(x) = (x− x0)(x− x1)(x− x2).

(d) Find a (Hermite) polynomial p3 ∈ P 3 that interpolates f and f ′ in x0, x1. Give the
polynomial p3 in the Hermite basis, plot f and p3 in the same graph, and plot the
four Hermite basis functions in another graph.

5. [QR-algorithm, 1+1+2+2pts] Let A be a symmetric, tridiagonal matrix. You learned
that the matrices Ak defined by the QR-algorithm converge to a diagonal matrix that is
similar to (and thus has the same eigenvalues as) A. The convergence speed depends on
the absolute value of the ratio of consecutive eigenvalues. Let r ∈ (0, 1) and

A =

[
1 r
r 1

]
(a) Calculate the eigenvalues of A as a function of r (by hand).

(b) Implement the QR-algorithm using MATLAB’s (or Python’s) implementation of the
QR-factorization, qr(). Your code should run for a quadratic matrix of any size.

(c) Now define a tolerance, e.g., τ = 10−10. Introduce a stopping criterion in your code,
causing it to stop when the maximal difference between the true eigenvalues of A and
the diagonal entries of Ak is smaller than τ .2

(d) Use your code with the matrix given for at least five values of r ∈ (0, 1) and make
a plot with r versus the number of iterations needed to achieve the given tolerance.
Explain your findings by examining the ratio between the eigenvalues of A using (a).

Please also hand in your code.

6. [Inverse Iteration and Rayleigh Quotient, 2+2pts] Given x ∈ Rn and a symmetric
matrix A ∈ Rn×n. Then the Rayleigh Quotient R(x) is defined by

R(x) =
xTAx

xTx

(a) Let {v1,v2, . . . ,vn} be an orthonormal basis of eigenvectors of A corresponding to
the eigenvalues λ1, λ2, . . . , λn, and x =

∑n
j=1 αjvj. Show that

R(x) =

∑n
j=1 α

2
jλj∑n

j=1 α
2
j

.

2You might want to sort the true and numerically computed eigenvalues before comparing them using sort.
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(b) You already implemented the inverse iteration in HW4. Remember that it uses an
initial eigenvalue guess, θ ∈ R. In class we discussed that given an approximation of an
eigenvector v, the Rayleigh Quotient is an estimate for the corresponding eigenvalue.
Let

A =

−2 1 4
1 1 1
4 1 −2

 .
Start with your code from Q2(c), HW4. However, instead of fixing θ, calculate
θk = R(xk) at each iteration and use it for the shift θ (this method is called the
Rayleigh Quotient Iteration). Using the starting vector x0 = (1, 2,−1)T compare
the first three iterates of your original implementation using a fixed θ = 2 with the
implementation using the Rayleigh Quotient. Which method converges faster? Please
also hand in your code.
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