
Numerical Methods I: Eigenvalues and
eigenvectors

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 2, 2017

1 / 25

 



Overview

Conditioning

2 / 25



Eigenvalues and eigenvectors
How hard are they to find?

For a matrix A 2 Cn⇥n (potentially real), we want to find � 2 C
and x 6= 0 such that

Ax = �x.

Most relevant problems:

I A symmetric (and large)

I A spd (and large)

I A stochastic matrix, i.e., all entries 0  aij  1 are
probabilities, and thus

P
j aij = 1.
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Eigenvalues and eigenvectors
How hard are they to find?

I This is a nonlinear problem.

I How di�cult is this? Eigenvalues are the roots of the
characteristic polynomial. Also, any polynomial is the
characteristic polynomial of a matrix. Thus, for matrices
larger than 4⇥ 4, eigenvalues cannot be computed analytically.

I Must use an iterative algorithm.
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Eigenvalues and eigenvectors
Why useful?

I Example: Google’s page rank algorithms is at its core a very
big eigenvector computation with a stochastic matrix, where
each webpage corresponds to a row/column, and the entries
are computed from the links between web pages.

I Original page rank paper is by Google founders Page and Brin
(10,000 citations, 500 billion value)

I SIAM Review paper from 2006: The $25,000,000,000

Eigenvector: The linear Algebra behind Google.

http://dx.doi.org/10.1137/050623280
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Conditioning

Consider an algebraically simple eigenvalue �
0

of A:

Ax

0

= �
0

x

0

.

Then, there exists a continuously di↵erentiable map

�(·) : A ! �(A)

in a neighborhood of A such that �(A) = �
0

. The derivative is

�0
(A)C =

(Cx

0

,y
0

)

(x

0

,y
0

)

,

where y

0

is an eigenvector of AT for the eigenvalue �
0

.
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Conditioning
Sketch of proof
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Conditioning

Compute norm of �0
(A) as linear mapping that maps

C 7! (Cx

0

,y
0

)

(x

0

,y
0

)

.

Use as norm for C the norm induced by the Euclidean norm:

k�0
(A)k = sup

C 6=0

|(Cx

0

,y
0

)/(x
0

,y
0

)|
kCk =

kx
0

kky
0

k
|(x

0

,y
0

)| ,

i.e., the inverse cosine of the angle between x

0

,y
0

.
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Conditioning

Theorem: The absolute and relative condition numbers for
computing a simple eigenvalue �

0

are

abs = k�0
(A)k =

1

| cos(^(x
0

,y
0

))| ,

and

rel =
kAk

|�
0

cos(^(x
0

,y
0

))| .

In particular, for normal matrices, abs = 1. Note that finding
non-simple eigenvalues is ill-posed (but can still be done).
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Overview

Power method and variants
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The power method

Choose starting point x0 and iterate

x

k+1

:= Ax

k,

Idea: Eigenvector corresponding to largest (in absolute norm)
eigenvalue will start dominating, i.e., xk converges to eigenvector
direction for largest eigenvalue x. Normalize to length 1:
y

k
:= x

k/kxkk.
I Convergence speed depends on eigenvalues

I Only finds largest eigenvalue �
max

= x

TAx upon convergence
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The power method
Convergence

Thm: Let A 2 Rn⇥n be symmetric and �
1

be a simple eigenvalue
with

|�
1

| > |�
2

| � . . . � |�n|.

If x
0

is not orthogonal to the eigenspace of �
1

, then the power
method converges to a normalized eigenvector of A corresponding
to �

1

.
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The power method
Convergence
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The power method—variants

Inverse power method: Having an estimate ¯� for an eigenvalue �i,
consider the (A� ¯�I)�1 which has the eigenvalues

(�i � ¯�)�1, i = 1, . . . , n.

Consider the inverse power iteration

(A� ¯�I)xk+1

= x

k, x

k+1

= x

k+1/kxk+1k

I Requires matrix-solve in every iteration

I Same matrix, di↵erent right hand sides (single LU or Choleski
factorization)

I Convergence speed depends on how close ¯� is to �i.
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The power method—variants

Rayleigh quotient iteration: Accelerated version of the inverse
power method using of changing shifts:

I Choose starting vector x0 with kx0k = 1. Compute
�
0

= (x

0

)

TAx

0.

I For i = 0, 1, . . . do

(A� ¯�kI)x
k+1

= x

k, y

k+1

= x

k+1/kxk+1k.

I Compute �k+1

= (y

k+1

)

TAy

k+1, and go back.
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Overview

The QR algorithm
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The QR algorithm

The QR algorithm for finding eigenvalues is as follows (A0

:= A),
and for k = 0, 1, . . .:

I Compute QR decomposition of Ak, i.e., Ak
= QR.

I Ak+1

:= RQ, k := k + 1 and go back.

Why should that converge to something useful?
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The QR algorithm

I Similarity transformations do not change the eigenvalues, i.e.,
if B is invertible, then

A and P�1AP

have the same eigenvalues.

I QAk+1QT
= QRQQT

= QR = Ak, i.e., the iterates Ak in
the QR algorithm have the same eigenvalues.

I The algorithm is closely related to the Rayleigh coe�cient
method.

I The algorithms is expensive (QR-decomposition is O(n3

)).

I Convergence can be slow.
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QR algorithm and Hessenberg matrices

Find a matrix form that is invariant under the QR algorithm:
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QR algorithm and Hessenberg matrices

Idea: Find a matrix format that is preserved in the QR-algorithm.
Hessenberg matrices H are matrices for which Hi,j = 0 if
i > j + 1.

I Hessenberg matrices remain Hessenberg in the QR algorithm.

I An iteration of the QR-algorithm with a Hessenberg matrix
requires O(n2

) flops.

Algorithm:

1. Use Givens rotations to transfer A into Hessenberg form. Use
transpose operations on right hand side (similarity
transformation).

2. Use QR algorithm for the Hessenberg matrix.
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Overview

The QR algorithm for symmetric matrices
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QR algorithm for symmetric matrices

Let’s consider symmetric matrices A. Then the Hessenberg form
(after application of Given rotations from both sides) is tridiagonal.
Theorem: For a symmetric matrix with distinct eigenvalues

|�
1

| > . . . |�n| > 0, ⇤ = diag(�
1

, . . . ,�n)

holds:

1. limk!1Qk = I,

2. limk!1Rk = ⇤,

3. akij = O

✓��� �i
�j

���
k
◆

for i > j.
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QR algorithm for symmetric matrices

I The method also converges in the presence of multiple
eigenvalues. Only when �i = ��i+1

, the corresponding block
does not become diagonal.

I One can speed up the method by introducing a shift operator:

I Ak � �kI = QR.
I Ak+1 = RQ+ �kI.

Again, the shift can be updated during the iteration.
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QR algorithm for symmetric matrices
Summary
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QR algorithm for symmetric matrices
Summary
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QR algorithm for symmetric matrices
Summary

Complexity: Convert to Hessenberg form using Givens rotations:
4/3n3 flops; each QR iteration: O(n2

) flops. Overall, convergence
is dominated by the reduction to tridiagonal form.

This method finds all eigenvalues (of a symmetric matrix).

The corresponding eigenvectors can be found from the algorithm
as well:

⌦A
1

⌦

T ⇠ ⇤

with products of Givens rotations ⌦. If the original transformation
to tridiagonal form was A

1

= PAP T , then the approximative
eigenvectors are the columns of ⌦P .
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