Numerical Methods I: Eigenvalues and eigenvectors

Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu

November 2, 2017

Conditioning

Eigenvalues and eigenvectors

How hard are they to find?

For a matrix $A \in \mathbb{C}^{n \times n}$ (potentially real), we want to find $\lambda \in \mathbb{C}$ and $x \neq 0$ such that

$$A\boldsymbol{x} = \lambda \boldsymbol{x}.$$

Most relevant problems:

- A symmetric (and large)
- A spd (and large)
- A stochastic matrix, i.e., all entries 0 ≤ a_{ij} ≤ 1 are probabilities, and thus ∑_j a_{ij} = 1.

Eigenvalues and eigenvectors

How hard are they to find?

• This is a **nonlinear** problem.

How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix. Thus, for matrices larger than 4 × 4, eigenvalues cannot be computed analytically.

Must use an iterative algorithm.

Eigenvalues and eigenvectors Why useful?

- Example: Google's page rank algorithms is at its core a very big eigenvector computation with a stochastic matrix, where each webpage corresponds to a row/column, and the entries are computed from the links between web pages.
- Original page rank paper is by Google founders Page and Brin (10,000 citations, 500 billion value)
- SIAM Review paper from 2006: The \$25,000,000,000 Eigenvector: The linear Algebra behind Google. http://dx.doi.org/10.1137/050623280

Conditioning

Consider an algebraically simple eigenvalue λ_0 of A:

 $A\boldsymbol{x}_0 = \lambda_0 \boldsymbol{x}_0.$

Then, there exists a continuously differentiable map

 $\lambda(\cdot):A\to\lambda(A)$

in a neighborhood of A such that $\lambda(A) = \lambda_0$. The derivative is

$$\lambda'(A)C = rac{(C \boldsymbol{x}_0, \boldsymbol{y}_0)}{(\boldsymbol{x}_0, \boldsymbol{y}_0)},$$

where y_0 is an eigenvector of A^T for the eigenvalue λ_0 . Why is λ_0 also an eigenvalue of A^T ? Because char. Polynomial of A and A^T are the same: $\chi_A(\lambda) = dut(\lambda T - A) = dut((\lambda T - A)^T) = dut(\lambda T - A^T) = \chi_A^T(\lambda)$ _{6/}

Conditioning Want to phous:
$$\lambda'(A) C = (C \times_{0}, Y_{0})$$

Sketch of proof
Consider patra badiens of A : $A+tC$, t small
implied function theorem $D \lambda(t), x(t)$: $C \in \mathbb{K}^{h \times n}$ fixed
 $(A+tC) \times (t) = \lambda(t) \times (t)$ for t small, uses that he is single
for $t = 0$: $A \times_{0} = \lambda_{0} \times_{0}$
 $P + Q$ $(A+tC) \times (t) + C \times (t) = \lambda(t) \times (t) + \lambda_{0} \times (t)$
 $t = 0$: $A \times_{0} = \lambda_{0} \times_{0}$
 $\lambda(t) \times (t) = \lambda(0) (X_{0}, Y_{0}) + \lambda_{0} \times (t)$
 $\lambda(t) \oplus (X_{0}, Y_{0}) = \lambda'(0) (X_{0}, Y_{0}) + \lambda_{0} (C \times_{0}, Y_{0}) = \lambda(A+tC) - \lambda(A+tC) - \lambda(A+tC) - \lambda(t) = \lambda(A+tC) - \lambda(t) = \lambda(A+tC) - \lambda(t) = \lambda(t) = \lambda(t) - \lambda(t) = \lambda(t) = \lambda(t) = \lambda(t) - \lambda(t) = \lambda(t$

2ank ([x:A-1])=h

When is the implicit function theorem applicable? look et $F(x,\lambda) = Ax - \lambda x$ $\frac{\partial}{\partial \lambda} F(x_i) = x$ $\mathcal{F}(x,\lambda) - (A - \lambda T)$ -> Jecubian [x, A-)I] E K If I is single enjavalue, the null-space of A-XI is one - ohmen stonal, and spanned by X. Thus, nome ([x, A-II]) = n, i.e. the name is maximal and the implicit function theorem can be applied. If I has higher multiplicity, the corresponding mill space of A-II can have dimension >1, and rank ([x, A-XI]) < n. Thus the implicit function theorem cannot be applied.

Conditioning

Compute norm of $\lambda'(A)$ as linear mapping that maps

$$C \mapsto \frac{(C\boldsymbol{x}_0, \boldsymbol{y}_0)}{(\boldsymbol{x}_0, \boldsymbol{y}_0)}. \qquad \qquad \|A\| = \sup_{\boldsymbol{x} \neq 0} \underbrace{\|A\|}_{\boldsymbol{x} \neq 0}$$

Use as norm for C the norm induced by the Euclidean norm:

$$\|\lambda'(A)\| = \sup_{C
eq 0} rac{|(Cm{x}_0,m{y}_0)/(m{x}_0,m{y}_0)|}{\|C\|} = rac{\|m{x}_0\|\|m{y}_0\|}{|(m{x}_0,m{y}_0)|},$$

i.e., the inverse cosine of the angle between x_0, y_0 . $(C_{x_0, y_0} \leq \|x_0\| \|y_0\|)$ $(C_{x_0, y_0} \leq \|x_0\| \|y_0\|)$ $(C_{x_0, y_0} \leq \|x_0\| \|y_0\|)$

LL A

Conditioning

Theorem: The absolute and relative condition numbers for computing a simple eigenvalue λ_0 are

$$\kappa_{\mathsf{abs}} = \|\lambda'(A)\| = \frac{1}{|\cos(\sphericalangle(\boldsymbol{x}_0, \boldsymbol{y}_0))|},$$

and

$$\kappa_{\mathsf{rel}} = \frac{\|A\|}{|\lambda_0 \cos(\sphericalangle(\boldsymbol{x}_0, \boldsymbol{y}_0))|}.$$

In particular, for normal matrices, $\kappa_{abs} = 1$. Note that finding non-simple eigenvalues is ill-posed (but can still be done).

Power method and variants

The power method

Choose starting point $oldsymbol{x}^0$ and iterate

$$\boldsymbol{x}^{k+1} := A \boldsymbol{x}^k,$$

Idea: Eigenvector corresponding to largest (in absolute norm) eigenvalue will start dominating, i.e., x^k converges to eigenvector direction for largest eigenvalue x. Normalize to length 1: $y^k := x^k / ||x^k||$.

Convergence speed depends on eigenvalues

• Only finds largest eigenvalue $\lambda_{\max} = \log^T A_{\text{ty}}$ upon convergence Raylugh coeff: $\frac{y^T A y}{y^T y}$ if y is eigenvector, $y^T A y = y^T A y = \lambda y^T y$

The power method

Convergence

Thm: Let $A \in \mathbb{R}^{n \times n}$ be symmetric and λ_1 be a simple eigenvalue with

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|.$$

If χ° is not orthogonal to the eigenspace of λ_1 , then the power method converges to a normalized eigenvector of A corresponding to λ_1 .

Prod: A symmetric, J basis of experiedos
$$\mathcal{M}_{1}, \dots, \mathcal{M}_{n}$$
,
 $\chi^{\circ} = \sum_{j=1}^{n} \alpha_{i} \mathcal{M}_{j}, \quad \alpha_{i} \in \mathbb{R}, \quad \alpha_{i} \neq 0$
 $\chi^{k} = A\chi^{k-1} = A^{k}\chi^{\circ} = \sum_{i=1}^{n} \alpha_{i} A^{k} \mathcal{M}_{i} = \sum_{i=1}^{n} \alpha_{i} A^{i} \mathcal{M}_{i}$
 $= \kappa_{i} \lambda_{i}^{k} \left(\mathcal{M}_{i} + \sum_{i=2}^{n} \frac{\alpha_{i}}{\kappa_{i}} \left(\lambda_{i} \right)^{k} \mathcal{M}_{i} \right)$

The power method Zh convugisto M as h-200 since 1/2/< Convergence $= D \frac{x^{k}}{\|x^{k}\|} = \pm \frac{Z_{k}}{\|Z_{k}\|} \longrightarrow \pm M_{l}$ Convergence spead depends on $\left[\frac{\lambda_i}{\lambda_i}\right] < 1$, if $\left[\frac{\lambda_e}{\lambda_i}\right]$ - is close to 1 -> Slow convergence - is << 1 -> fail conjugace

The power method—variants

Inverse power method: Having an estimate $\bar{\lambda}$ for an eigenvalue λ_i , consider the $(A - \bar{\lambda}I)^{-1}$ which has the eigenvalues

$$(\lambda_i - \bar{\lambda})^{-1}, \quad i = 1, \dots, n.$$

Consider the inverse power iteration

$$(A - \bar{\lambda}I)\mathbf{x}^{k+1} = \mathbf{x}^k, \quad \mathbf{y}^{k+1} = \mathbf{x}^{k+1} / \|\mathbf{x}^{k+1}\|$$

- Requires matrix-solve in every iteration
- Same matrix, different right hand sides (single LU or Choleski factorization)
- Convergence speed depends on how close $\overline{\lambda}$ is to λ_i .

The power method—variants

Rayleigh quotient iteration: Accelerated version of the inverse power method using of changing shifts:

• Choose starting vector \boldsymbol{x}^0 with $\|\boldsymbol{x}^0\| = 1$. Compute $\lambda_0 = (\boldsymbol{x}^0)^T A \boldsymbol{x}^0$.

$$\blacktriangleright \ {\rm For} \ i=0,1,\dots \ {\rm do}$$

$$(A - \bar{\lambda}_k I) \boldsymbol{x}^{k+1} = \boldsymbol{x}^k, \quad \boldsymbol{y}^{k+1} = \boldsymbol{x}^{k+1} / \| \boldsymbol{x}^{k+1} \|.$$

• Compute $\lambda_{k+1} = (\boldsymbol{y}^{k+1})^T A \boldsymbol{y}^{k+1}$, and go back.

The QR algorithm

è

The QR algorithm

The QR algorithm for finding eigenvalues is as follows ($A^0 := A$), and for k = 0, 1, ...:

• Compute QR decomposition of A^k , i.e., $A^k = QR$.

•
$$A^{k+1} := RQ$$
, $k := k + 1$ and go back.

Why should that converge to something useful?

The QR algorithm

Similarity transformations do not change the eigenvalues, i.e., if B is invertible, then

A and
$$P^{-1}AP$$

have the same eigenvalues.

- ► QA^{k+1}Q^T = QRQQ^T = QR = A^k, i.e., the iterates A^k in the QR algorithm have the same eigenvalues.
- The algorithm is closely related to the Rayleigh coefficient method.
- The algorithms is expensive (QR-decomposition is $O(n^3)$).
- Convergence can be slow.

QR algorithm and Hessenberg matrices

Find a matrix form that is invariant under the QR algorithm: Let's try using allogonal transformations (Givens rotations) much that $O^T A O = \Lambda = diag (\lambda_1, \dots, dn)$ $Q_1 A Q_1^T$ $\begin{bmatrix} X \times X \times X \\ X \times X \times X \\ X \times X \times X \end{bmatrix} \xrightarrow{Q_1} \begin{bmatrix} X \times X \\ O \times X \\ O \times X \end{bmatrix} \xrightarrow{Q_1} \begin{bmatrix} X \times X \\ X \times X \times X \\ X \times X \times X \end{bmatrix}$ How about: ã A Ã $Q_{1}^{(1)}$ $Q_{1}^{(1)}$

QR algorithm and Hessenberg matrices

Idea: Find a matrix format that is preserved in the QR-algorithm. Hessenberg matrices H are matrices for which $H_{i,j} = 0$ if i > j + 1.

- Hessenberg matrices remain Hessenberg in the QR algorithm.
- ► An iteration of the QR-algorithm with a Hessenberg matrix requires O(n²) flops.

Algorithm:

- 1. Use Givens rotations to transfer A into Hessenberg form. Use transpose operations on right hand side (similarity transformation).
- 2. Use QR algorithm for the Hessenberg matrix.

The QR algorithm for symmetric matrices

QR algorithm for symmetric matrices

Let's consider symmetric matrices A. Then the Hessenberg form (after application of Given rotations from both sides) is tridiagonal. Theorem: For a symmetric matrix with distinct eigenvalues

$$|\lambda_1| > \dots |\lambda_n| > 0, \quad \Lambda = \mathsf{diag}(\lambda_1, \dots, \lambda_n)$$

holds:

1.
$$\lim_{k\to\infty} Q_k = I$$
,
2. $\lim_{k\to\infty} R_k = \Lambda$,
3. $a_{ij}^k = O\left(\left|\frac{\lambda_i}{\lambda_j}\right|^k\right)$ for $i > j$.

QR algorithm for symmetric matrices

- ► The method also converges in the presence of multiple eigenvalues. Only when \u03c6_i = -\u03c6_{i+1}, the corresponding block does not become diagonal.
- One can speed up the method by introducing a shift operator:

$$A_k - \sigma_k I = QR. A_{k+1} = RQ + \sigma_k I.$$

Again, the shift can be updated during the iteration.

QR algorithm for symmetric matrices Summary

A symmetric : Algorithm:
(1) Make A tridiagonal using Givens robotions, i.e.
find P orthogonal such that

$$A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & x & x \end{bmatrix}$$
 Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_1 = PAP^T = \begin{bmatrix} x & x & 0 \\ x & & x \\ 0 & & x \end{bmatrix}$ Apply at algorithm
 $A_2 = A_1 = A_1 = A_1 = A_2 = A_2$

QR algorithm for symmetric matrices Summary $e_{\mu}vedon$; $\Lambda = \Omega A_1 \Omega^{T} = \Omega P A P \Omega^{T}$ $= \frac{1}{Q} A Q$

 $\rightarrow A a = a A$, i.e. $A q_i = \lambda_i q_i$

9; are the columns of Q

=> QTAQ= A

QR algorithm for symmetric matrices Summary

Complexity: Convert to Hessenberg form using Givens rotations: $4/3n^3$ flops; each QR iteration: $O(n^2)$ flops. Overall, convergence is dominated by the reduction to tridiagonal form.

This method finds all eigenvalues (of a symmetric matrix).

The corresponding eigenvectors can be found from the algorithm as well:

$$\Omega A_1 \Omega^T \sim \Lambda$$

with products of Givens rotations Ω . If the original transformation to tridiagonal form was $A_1 = PAP^T$, then the approximative eigenvectors are the columns of $(\Omega P)^T$

Why is each ituation of the QR algorithm only $\Theta(n^2)^2$ <u>Claim</u>: Symmetric triduagement matrices remain tridiagement in the QR algorithm.

Since & is symmetric, all the Delemits mut be

all ituales are tridice foral, and each OR step requires $O(n^2)$ flops.