Numerical Methods I: Eigenvalues and eigenvectors

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 2, 2017

Overview

Conditioning

For a matrix $A \in \mathbb{C}^{n \times n}$ (potentially real), we want to find $\lambda \in \mathbb{C}$ and $\boldsymbol{x} \neq 0$ such that

$$
A \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Most relevant problems:

- A symmetric (and large)
- A spd (and large)
- A stochastic matrix, i.e., all entries $0 \leq a_{i j} \leq 1$ are probabilities, and thus $\sum_{j} a_{i j}=1$.
- This is a nonlinear problem.
- How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix. Thus, for matrices larger than 4×4, eigenvalues cannot be computed analytically.
- Must use an iterative algorithm.
- Example: Google's page rank algorithms is at its core a very big eigenvector computation with a stochastic matrix, where each webpage corresponds to a row/column, and the entries are computed from the links between web pages.
- Original page rank paper is by Google founders Page and Brin (10,000 citations, 500 billion value)
- SIAM Review paper from 2006: The $\$ 25,000,000,000$ Eigenvector: The linear Algebra behind Google. http://dx.doi.org/10.1137/050623280

Consider an algebraically simple eigenvalue λ_{0} of A :

$$
A \boldsymbol{x}_{0}=\lambda_{0} \boldsymbol{x}_{0}
$$

Then, there exists a continuously differentiable map

$$
\lambda(\cdot): A \rightarrow \lambda(A)
$$

in a neighborhood of A such that $\lambda(A)=\lambda_{0}$. The derivative is

$$
\lambda^{\prime}(A) C=\frac{\left(C \boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)}{\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)}
$$

where \boldsymbol{y}_{0} is an eigenvector of A^{T} for the eigenvalue λ_{0}.
Why is λ_{0} abs ar eigenvalue of A^{\top} ? Because char. polynomial of A and A^{\top} are the Same:

$$
\begin{aligned}
& \text { ynomial of } A \text { and } A^{\prime} \text { are the Same : } \\
& \left.X_{A}(\lambda)=\operatorname{det}(\lambda I-A)=\operatorname{det}(\lambda I-A)^{T}\right)=\operatorname{det}\left(\lambda I-A^{\top}\right)=X_{A^{\top}}(\lambda)
\end{aligned}
$$

Conditioning Went to show: $\lambda^{\prime}(A) C=\frac{\left(C x_{0}, y_{0}\right)}{\left(x_{0}, y_{0}\right)}$ Sketch of proof
Consider par ar bations of $A: A+t C, t$ small,
implicit function theorem $\Rightarrow \lambda(t), x(t)$: $C \in \mathbb{R}^{\text {hen }}$ fixed
$\rightarrow(A+t C) \times(f)=\lambda(f) \times(f)$ for t small, was hat λ_{0} is single eghivalue.
for $t=0: A x_{0}=\lambda_{0} x_{0}$
$\frac{\partial}{\partial t}$ d $(A+t C) x^{\prime}(f)+C x(t)=\lambda^{\prime}(t) \times(t)+$
$t=0: A x^{\prime}(0)+C x_{0}=\lambda^{\prime}(0) x_{0}+\lambda \lambda_{0}(t) x^{\prime}(t)$
inn prod
with $y_{0} \underbrace{\left(A x^{\prime}(0), y_{0}\right)}_{\left(x^{\prime}(0), A^{\top} y_{0}\right)}+\left(C_{x_{0}}^{\left(x^{\prime}(0), 10 y_{0}\right)}=\lambda^{\prime}(0)\left(x_{0}, y_{0}\right)+\lambda_{0}\left(x^{\prime}(0), y_{8}\right)\right.$
$\operatorname{rank}\left(\left[, A-x_{1}\right)=n\right.$

$$
\begin{gathered}
\longrightarrow\left(C x_{0}, y_{0}\right)=\lambda^{\prime}(0)\left(x_{0}, y_{0}\right) \longrightarrow \lambda^{\prime}(0) \frac{\left(C x_{0}, y_{0}\right)}{\left(x_{0}, y_{0}\right)}=\lambda_{\lambda^{\prime}}^{\prime}(A) C \\
\lambda(t) \neq A+t C \rightarrow \lambda(A+t C), \lambda^{\prime}(t)=\lambda^{\prime}(A+t C) C
\end{gathered}
$$

When is the impliat function theorem applicable?

$$
\begin{aligned}
& \text { loon at }^{F(x, \lambda)=A x-\lambda x} \\
& \frac{\partial}{\partial \lambda} F(x, \lambda)=x \\
& \frac{\partial}{\partial x} F(x, \lambda)=(A-\lambda I) \\
& \rightarrow \text { Jeabion }[x, A-\lambda I] \in \mathbb{R}^{n \times n+1}
\end{aligned}
$$

If λ is single eigavalue, the null-space of $A-\lambda I$ is one - dimensional, and spanned by x. Thus, $\operatorname{rank}([x, A-\lambda I])=n$, i.e. the rank is maximal and the impliat function theorem can be applied.
If λ has higher multiphiky, the corresponding null space of $A-\lambda I$ can have dimension >1, and $\operatorname{rank}([x, A-\lambda I])<n$. Thus the implicit function the dem cannot be applied.

Conditioning

Compute norm of $\lambda^{\prime}(A)$ as linear mapping that maps

$$
C \mapsto \frac{\left(C \boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)}{\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)}
$$

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

Use as norm for C the norm induced by the Euclidean norm:

$$
\left\|\lambda^{\prime}(A)\right\|=\sup _{C \neq 0} \frac{\left|\left(C \boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) /\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right|}{\|C\|}=\frac{\left\|\boldsymbol{x}_{0}\right\|\left\|\boldsymbol{y}_{0}\right\|}{\left|\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right|},
$$

i.e., the inverse cosine of the angle between $x_{0}, \boldsymbol{y}_{0} \cdot \frac{\left(C x_{0}, y_{0}\right)}{\|C\|} \leq\left\|x_{0}\right\|\left\|y_{0}\right\|$
choore C as $y_{0} x_{0}^{\top} \in \mathbb{R}^{n \times n}$

Theorem: The absolute and relative condition numbers for computing a simple eigenvalue λ_{0} are

$$
\kappa_{\mathrm{abs}}=\left\|\lambda^{\prime}(A)\right\|=\frac{1}{\left|\cos \left(\varangle\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right)\right|},
$$

and

$$
\kappa_{\text {rel }}=\frac{\|A\|}{\left|\lambda_{0} \cos \left(\varangle\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right)\right|}
$$

In particular, for normal matrices, $\kappa_{\mathrm{abs}}=1$. Note that finding non-simple eigenvalues is ill-posed (but can still be done).

Overview

Power method and variants

Choose starting point \boldsymbol{x}^{0} and iterate

$$
\boldsymbol{x}^{k+1}:=A \boldsymbol{x}^{k}
$$

Idea: Eigenvector corresponding to largest (in absolute norm) eigenvalue will start dominating, ie., \boldsymbol{x}^{k} converges to eigenvector direction for largest eigenvalue \boldsymbol{x}. Normalize to length 1 : $\boldsymbol{y}^{k}:=\boldsymbol{x}^{k} /\left\|\boldsymbol{x}^{k}\right\|$.

- Convergence speed depends on eigenvalues
- Only finds largest eigenvalue $\lambda_{\max }=$ of $^{T} A$ go upon convergence

Raylugh coff: $\quad \frac{y^{\top} A y}{y^{\top} y}$ if y is engenrecha, $\quad y^{\top} A y=y^{\top} \lambda y=\lambda y^{\top} y$

The power method
Convergence
Thm: Let $A \in \mathbb{R}^{n \times n}$ be symmetric and λ_{1} be a simple eigenvalue with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|
$$

If χ^{0} is not orthogonal to the eigenspace of λ_{1}, then the power method converges to a normalized eigenvector of A corresponding to λ_{1}.
Proof: A symmethe, \exists basis of eigavectas $\eta_{1}, \ldots, \eta_{n}$,

$$
\begin{aligned}
x^{0} & =\sum_{i=1}^{n} \alpha_{i} \eta_{i}, \alpha_{i} \in \mathbb{R}, \alpha_{1} \neq 0 \\
x^{k} & =A x^{k-1}=A^{k} x^{0}=\sum_{i=1}^{n} \alpha_{i} A^{k} \eta_{i}=\sum_{i=1}^{n} \alpha_{1} \lambda_{i}^{k} \eta_{i} \\
& =\alpha_{1} \lambda_{1}^{k} \underbrace{\left.\eta_{1}+\sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \eta_{i}\right)}_{z_{k}}
\end{aligned}
$$

The power method Convergence
z_{k} convugasto η_{1} as $k \rightarrow \infty$ since $\left|\frac{\lambda_{i}}{\lambda_{1}}\right|<1$

$$
\Longrightarrow \frac{x^{k}}{\left\|x^{k}\right\|}= \pm \frac{z_{k}}{\left\|z_{u}\right\|} \longrightarrow \pm \eta_{1} \quad \square .
$$

Convergence speed depends on $\left|\frac{\lambda_{i}}{\lambda_{1}}\right|<1$, if $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$ L is chore to $1 \rightarrow$ slow convergence

- is $\ll 1 \rightarrow$ farl convergence

Inverse power method: Having an estimate $\bar{\lambda}$ for an eigenvalue λ_{i}, consider the $(A-\bar{\lambda} I)^{-1}$ which has the eigenvalues

$$
\left(\lambda_{i}-\bar{\lambda}\right)^{-1}, \quad i=1, \ldots, n
$$

Consider the inverse power iteration

$$
(A-\bar{\lambda} I) x^{k+1}=x^{k}, \quad \psi^{k+1}=x^{k+1} /\left\|x^{k+1}\right\|
$$

- Requires matrix-solve in every iteration
- Same matrix, different right hand sides (single LU or Choleski factorization)
- Convergence speed depends on how close $\bar{\lambda}$ is to λ_{i}.

Rayleigh quotient iteration: Accelerated version of the inverse power method using of changing shifts:

- Choose starting vector \boldsymbol{x}^{0} with $\left\|\boldsymbol{x}^{0}\right\|=1$. Compute $\lambda_{0}=\left(\boldsymbol{x}^{0}\right)^{T} A \boldsymbol{x}^{0}$.
- For $i=0,1, \ldots$ do

$$
\left(A-\bar{\lambda}_{k} I\right) \boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}, \quad \boldsymbol{y}^{k+1}=\boldsymbol{x}^{k+1} /\left\|\boldsymbol{x}^{k+1}\right\|
$$

- Compute $\lambda_{k+1}=\left(\boldsymbol{y}^{k+1}\right)^{T} A \boldsymbol{y}^{k+1}$, and go back.

Overview

The QR algorithm

The QR algorithm for finding eigenvalues is as follows $\left(A^{0}:=A\right)$, and for $k=0,1, \ldots$:

- Compute QR decomposition of A^{k}, i.e., $A^{k}=Q R$.
- $A^{k+1}:=R Q, k:=k+1$ and go back.

Why should that converge to something useful?

The QR algorithm

- Similarity transformations do not change the eigenvalues, i.e., if B is invertible, then

$$
A \text { and } P^{-1} A P
$$

have the same eigenvalues.

- $Q A^{k+1} Q^{T}=Q R Q Q^{T}=Q R=A^{k}$, i.e., the iterates A^{k} in the QR algorithm have the same eigenvalues.
- The algorithm is closely related to the Rayleigh coefficient method.
- The algorithms is expensive (QR-decomposition is $O\left(n^{3}\right)$).
- Convergence can be slow.

QR algorithm and Hessenberg matrices

Find a matrix form that is invariant under the QR algorithm:
Lat's thy using athogonal framfamation (Givens rotation) neck that $Q^{\top} A Q=\Lambda=\operatorname{dinig}_{Q_{1} A}\left(\lambda_{1}, \ldots, d_{n}\right) \quad Q_{1} A Q_{1}^{\top}$

$$
\left[\begin{array}{llll}
x & A & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right] \xrightarrow{Q_{1}}\left[\begin{array}{cc}
Q_{1} & A^{d} \\
x & x \\
0 & x \\
0 & x \\
0 & x
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
x & 0 & 0 & 0 \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right]
$$

How about:

$$
\left[\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right] \xrightarrow{\widetilde{Q_{1}}}\left[\begin{array}{c}
\tilde{Q}_{1} A \\
x \\
x \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{c}
\tilde{Q}_{1} A \tilde{Q}_{1}^{\top} \\
0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
x & x & 0 \\
x \\
0 & * & 0 \\
0 & x
\end{array}\right]
$$

Idea: Find a matrix format that is preserved in the QR -algorithm. Hessenberg matrices H are matrices for which $H_{i, j}=0$ if $i>j+1$.

- Hessenberg matrices remain Hessenberg in the QR algorithm.
- An iteration of the QR-algorithm with a Hessenberg matrix requires $O\left(n^{2}\right)$ flops.
Algorithm:

1. Use Givens rotations to transfer A into Hessenberg form. Use transpose operations on right hand side (similarity transformation).
2. Use $Q R$ algorithm for the Hessenberg matrix.

The QR algorithm for symmetric matrices

Let's consider symmetric matrices A. Then the Hessenberg form (after application of Given rotations from both sides) is tridiagonal.
Theorem: For a symmetric matrix with distinct eigenvalues

$$
\left|\lambda_{1}\right|>\ldots\left|\lambda_{n}\right|>0, \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

holds:

1. $\lim _{k \rightarrow \infty} Q_{k}=I$,
2. $\lim _{k \rightarrow \infty} R_{k}=\Lambda$,
3. $a_{i j}^{k}=O\left(\left|\frac{\lambda_{i}}{\lambda_{j}}\right|^{k}\right)$ for $i>j$.

- The method also converges in the presence of multiple eigenvalues. Only when $\lambda_{i}=-\lambda_{i+1}$, the corresponding block does not become diagonal.
- One can speed up the method by introducing a shift operator:
- $A_{k}-\sigma_{k} I=Q R$.
- $A_{k+1}=R Q+\sigma_{k} I$.

Again, the shift can be updated during the iteration.

QR algorithm for symmetric matrices
Summary
A symmetric: Ahyouth:
©. Make A thidiagonal using Givens rotation, i.e. find P athogonal such that
(2.) Andy AR algorithm
A, has the same
eigavalues as A P 's are product of Givens rotations to A_{1} :

$$
\begin{equation*}
\Omega A_{1} \Omega^{\top} \simeq \Lambda=\operatorname{digg}\left(\lambda_{1}, \ldots, \lambda_{2}\right) \tag{3}
\end{equation*}
$$

product of $Q_{11} Q_{2} \ldots$ arising in QR alfaitm

QR algorithm for symmetric matrices
Summary
eifervecters:

$$
\begin{aligned}
& \Lambda=\Omega A_{1} \Omega^{\top}=\underbrace{\Omega P}_{Q^{\top}} A P^{\top} \Omega^{\top} \\
& =Q^{\top} A Q \\
& \Rightarrow Q^{\top} A Q=\Lambda \\
& \Longrightarrow A Q=Q \Lambda \text {, ide. } A q_{i}=\lambda_{i} q_{i} \\
& q_{i} \text { are the column of } Q
\end{aligned}
$$

QR algorithm for symmetric matrices

Summary

Complexity: Convert to Hessenberg form using Givens rotations: $4 / 3 n^{3}$ flops; each QR iteration: $O\left(n^{2}\right)$ flops. Overall, convergence is dominated by the reduction to tridiagonal form.

This method finds all eigenvalues (of a symmetric matrix).
The corresponding eigenvectors can be found from the algorithm as well:

$$
\Omega A_{1} \Omega^{T} \sim \Lambda
$$

with products of Givens rotations Ω. If the original transformation to tridiagonal form was $A_{1}=P A P^{T}$, then the approximative eigenvectors are the columns of $(\Omega P)^{\top^{\prime}}$

Why is each iferation of the $Q R$ abgoithen only $\theta\left(n^{2}\right)$?
Clain: Symatric tridnagonal matrices remain tridieyonal in the QR algoittm.

$$
A^{\prime}=R Q=Q^{\top} A Q
$$

Since A^{\prime} is symmetric, all the (4) elemub munt be zere.
all vuates are tu'diegonal, and each $Q R$ step requies $\theta\left(n^{2}\right)$ flops.

