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Classical polynomial interpolation

Given fi := f(ti), i = 0, . . . , n, we would like to find a polynomial
P 2 P n such that

P (ti) = fi.

Interpolation is thus a map from Rn+1 ! P n.

Theorem: Given nodes (ti, fi), 0  i  n, with pairwise distinct
nodes ti, then there exists a unique interpolating polynomial
P 2 P n.

To compute that polynomial, we have to choose a basis in P n.
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Classical polynomial interpolation

Monomial basis: 1, t, t2 . . . leads to system with Vandermonde
matrix Vn.

I det(Vn) =
Qn

i=0

Qn
j=i+1(ti � tj) 6= 0

I For larger n, this can be a poorly conditioned system.
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Classical polynomial interpolation

Lagrange basis Li defined by Li(tj) = �ij .

I Simple interpolant: P (t) =
Pn

i=0 fiLi(t)

I Not always practical.

I Lagrange polynomials form an orthogonal basis in P n w.r. to
the inner product

(P,Q) :=

nX

i=0

P (ti)Q(ti)

4 / 31



Classical polynomial interpolation

The Newton basis !0, . . . ,!n is given by

!i(t) :=

i�1Y

j=0

(t� tj) 2 P i.

This polynomials are linearly independent as their degree increases.

The coe�cients in this basis can be computed e�ciently (more
later).
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Classical polynomial interpolation
Tow (slightly) di↵erent perspectives

Interpolation can be seen as map between

¯

� : Rn+1 7! P n

or as map between functions:

� : C([a, b]) 7! P n.

� is function evaluation at the nodes, followed by ¯

�.
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Classical polynomial interpolation
Conditioning

Theorem: Let a  t0 < . . . < tn  b be pairwise distinct and Li be
the corresponding Lagrange polynomials. Then the absolute
condition number of the polynomial interpolation:

� : C([a, b]) ! P n

w.r. to the supremum norm is the Lebesgue constant

abs = ⇤n = max

t2[a,b]

nX

i=1

|Li(t)|.

Note that the Lebesgue constant depends on n and the location of
the ti.
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Classical polynomial interpolation
Conditioning
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Classical polynomial interpolation
Conditioning

Lebesgue constants for di↵erent orders:

184 7. Interpolation and Approximation 

any choice of nodes. For comparison, Table 7.1 also shows the Lebesgue 
constants for the Chebyshev nodes (see Section 7.1.4) 

ti = cos --7[" for z = 0, ... ,n ( 2i + 1) . 
2n+ 2 

(where the maximum was taken over [-1,1]). They grow only very slowly. 

Table 7.1. Lebesgue constant An for equidistant and for Chebyshev nodes. 

n 

5 
10 
15 
20 

An for equidistant nodes 
3.106292 

29.890695 
512.052451 

10986.533993 

An for Chebyshev nodes 
2.104398 
2.489430 
2.727778 
2.900825 

7.1.2 Hermite Interpolation and Divided Differences 
If one is only interested in the interpolating polynomial P at a single po-
sition t, then the recursive computation of P(t) turns out to be the most 
effective method. It is based on the following simple observation, the Aitken 
lemma. 

Lemma 7.4 The interpolating polynomial P = P(f I to,· .. , tn) satisfies 
the recurrence relation 

P(f I ) = (to - t)P(f I tl,·.·, tn) - (tn - t)P(f I to,.··, tn-d to, . .. , tn . 
to - tn 

(7.3) 

Proof. Let <p(t) be defined as the expression on the right-hand side of (7.3). 
Then <p E P n , and 

(t .) - (to - ti)fi - (tn - ti)!; - f. C • - 1 - 1 <p t - - t lOr z - , ... , n . 
to - tn 

Similarly, it is simple to conclude that <p(to) = fa and <p(tn) = fn, and the 
statement therefore follows. 0 

The interpolation polynomials for only one single node are nothing else 
than the constants 

P(f I ti) = fi for i = 0, ... ,n. 

If we simplify the notation for fixed t by 

Chebyshev nodes are the roots of the Chebyshev polynomials:

ti = cos

✓
2i+ 1

2n+ 2

⇡

◆
, for i = 0, . . . , n
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Classical polynomial interpolation
Conditioning

Lebesgue constant for n = 10, uniform vs. Chebyshev nodes:
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Classical polynomial interpolation
Conditioning

Lebesgue constant for n = 40, uniform vs. Chebyshev nodes:
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Hermite interpolation

Assume
a = t0  t1  . . .  tn = b

with possibly duplicated nodes. If the node ti occurs k times, the
corresponding node values correspond to f(ti), f

0
(ti), . . . , f

k�1
(ti).

The Hermite interpolation polynomial p(x) is a polynomial of order
n, which coincides with the nodal values (and, for duplicated
nodes, derivatives at nodal values) at the nodes.
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Hermite interpolation

Theorem: (somewhat loosely formulated version) Given n+ 1

nodes and nodal values (possibly of derivatives), then there exists a
unique interpolating Hermite polynomial p 2 P n.

Examples:

I All t0 = . . . = tn.

I Cubic Hermite interpolation: Nodes: t0 = t1 < t2 = t3,
Values: f(t0), f

0
(t0), f(t1), f

0
(t1).

I locally cubic Hermite interpolation.
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Classical polynomial interpolation
Newton polynomial basis

The Newton basis !0, . . . ,!n is given by

!i(t) :=

i�1Y

j=0

(t� tj) 2 P i.

The leading coe�cient an of the interpolation polynomial of f

P (f |t0, . . . , tn) = anx
n
+ . . .

is called the n-th divided di↵erence, [t0, . . . , tn]f := an.
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Classical polynomial interpolation
Newton polynomial basis

Theorem: For f 2 Cn, the interpolation polynomial
P (f |t0, . . . , tn) is given by

P (t) =

nX

i=0

[t0, . . . , ti]f !i(t).

If f 2 Cn+1, then

f(t) = P (t) + [t0, . . . , tn, t]f !n+1(t).

This property allows to estimate the interpolation error.
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Classical polynomial interpolation
Newton polynomial basis

16 / 31



Classical polynomial interpolation
Divided di↵erences

The divided di↵erences [t0, . . . , tn]f satisfy the following
properties:

I
[t0, . . . , tn]P = 0 for all P 2 P n�1.

I If t0 = . . . = tn:

[t0, . . . , tn]f =

f (n)
(t0)

n!

nodes.
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Classical polynomial interpolation
Divided di↵erences

I The following recurrence relation holds for ti 6= tj (nodes with
a hat are removed):

[t0, . . . , tn]f =

�
[t0, . . . , ˆti, . . . , tn]f � [t0, . . . , ˆtj , . . . , tn]f

�

tj � ti

I If f 2 Cn
[t0, . . . , tn]f =

1
n!f

(n)
(⌧) with an a  ⌧  b, and

the divided di↵erences depend continuously on the nodes.
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Classical polynomial interpolation
Divided di↵erences

Let us use divided di↵erences to compute the coe�cients for the
Newton basis for the cubic interpolation polynomial p that satisfies
p(0) = 1, p(0.5) = 2, p(1) = 0, p(2) = 3.

ti
0 [t0]f = 1

0.5 [t1]f = 2 [t0t1]f =

[t1]f�[t0]f
t1�t0

= 2

1 [t2]f = 0 [t1t2]f =

[t2]f�[t1]f
t2�t1

= �4 [t0t1t2]f = �6

2 [t3]f = 3 [t2t3]f =

[t3]f�[t2]f
t3�t2

= 3 [t1t2t3]f =

14
3

16
3

Thus, the interpolating polynomial is

p(t) = 1 + 2t+ (�6)t(t� 0.5) +
16

3

t(t� 0.5)(t� 1).
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Classical polynomial interpolation
Divided di↵erences

Let us now use divided di↵erences to compute the coe�cients for
the Newton basis for the cubic interpolation polynomial p that
satisfies p(0) = 1, p0(0) = 2, p00(0) = 1, p(1) = 3.

ti
0 [t0]f = 1

0 [t0]f = 1 [t0t1]f = p0(0) = 2

0 [t0]f = 1 [t1t2]f = p0(0) = 2 [t0t1t2]f =

p00(0)
2! =

1
2

1 [t3]f = 3 [t2t3]f =

[t3]f�[t0]f
t3�t0

= 2 0 � 1
2

Thus, the interpolating polynomial is

p(t) = 1 + 2t+
1

2

t2 + (�1

2

)t3
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Classical polynomial interpolation
Approximation error

If f 2 C(n+1), then

f(t)� P (f |t0, . . . , tn)(t) =
f (n+1)

(⌧)

(n+ 1)!

!n+1(t)

for an appropriate ⌧ = ⌧(t), a < ⌧ < b.

In particular, the error depends on the choice of the nodes.

For Taylor interpolation, i.e., t0 = . . . = tn, this results in:

f(t)� P (f |t0, . . . , tn)(t) =
f (n+1)

(⌧)

(n+ 1)!

(t� t0)
n+1
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Classical polynomial interpolation
Approximation error

Consider functions

{f 2 Cn+1
([a, b]) : sup

⌧2[a,b]
|fn+1

(⌧)|  M(n+ 1)!}

for some M > 0, then the approximation error depends on !n(t),
and thus on t0, . . . , tn.

Thus, one can try to minimize

max

atb
|!n+1(t)|,

which is achieved by choosing the nodes as the roots of the
Chebyshev polynomial of order (n+ 1).
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Classical polynomial interpolation
Approximation error

Summary on pointwise convergence:

I If an interpolating polynomial is close/converges to the
original function depends on the regularity of the function and
the choice of interpolation nodes

I For a good choice of interpolation nodes, fast convergence
can be obtained for almost all functions
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Classical polynomial interpolation
Interpolation/Least square approximation/Splines

I Polynomial interpolation

I Least squares with polynomials

I Splines (i.e., piecewise polynomial interpolation):
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