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Classical polynomial interpolation

Given f; := f(t;), 1 =0,...,n, we would like to find a polynomial

P € P, such that "P\‘\_H’_//
P(t;) = fi.

| I { _.‘_
Interpolation is thus a map from R*"*! — P,,. "2 & 4 .

Theorem: Given nodes (t;, f;), 0 < i < n, with pairwise distinct
nodes t;, then there exists a unique interpolating polynomial
PeP,.
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To compute that polynomial, we have to choose a basis in Pn'_——“bl‘#
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Classical polynomial interpolation

Monomial basis: 1,¢,t2... leads to system with Vandermonde
matrix V,. ‘?Q\t Qot Qb+ <.t QMJ-‘A[ we wadk fp@\')z &
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> det(V,) =117, H;L:i_u(ti —t;) #0
> For larger n, this can be a poorly conditioned system.



Classical polynomial interpolation

Lagrange basis L; defined by L;(t;) = d;;. ,G\
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» Simple interpolant: P(t) = >_""  fiLi(t)
» Not always practical.

» Lagrange polynomials form an orthogonal basis in P, w.r. to
the inner product

(P,Q) =Y P(t:)Q(t:) = SLJ(H(P(H &)
i=0
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Classical polynomial interpolation

The Newton basis wy, . ..,wy, is given by
i—1
wi(t) = [J (¢t —t;) € Ps.
§=0

This polynomials are linearly independent as their degree increases.

WA= 0@ G w(B= GG,

?JAjmm(a,Q 1%\909,&)11@. a W@+ a w@ +.. t A
and. Huls an oel way o arpule @0, - Q.

The coefficients in this basis can be computed efficiently (more
later).



Classical polynomial interpolation
Tow (slightly) different perspectives

Interpolation can be seen as map between
¢ :R"M— P,
or as map between functions:

@ : C([a,b]) — Py.

® is function evaluation at the nodes, followed by .
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Classical polynomial interpolation
Conditioning

Theorem: Let a <ty < ... <t, < b be pairwise distinct and L; be
the corresponding Lagrange polynomials. Then the absolute
condition number of the polynomial interpolation:

e e < 4
& : C([a,b]) = Py, ;S:‘fﬂmmcsu e
XteL

w.r. to the supremum norm is the Lebesgue constant

a5 = A = Li(t)].
Fiab trél[gfg};! (®)]

Note that the Lebesgue constant depends on n and the location of
the ¢;.



Classical polynomial |nterpolat|on
Conditioning ,!,EC a\\a-J)
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Classical polynomial interpolation
Conditioning

Lebesgue constants for different orders:

[+ttt

———
n | A,, for equidistant nodes l A,, for Chebyshev nodes
5 3.106292 2.104398
10 29.890695 2.489430
15 512.052451 2.727778
20 10986.533993 2.900825

Chebyshev nodes are the roots of the Chebyshev polynomials:

2t + 1
tizcos<2;i2ﬂ>, fori=0,...,n
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Classical polynomial interpolation
Conditioning

Lebesgue constant for n = 10, uniform vs. Chebyshev nodes:

10 Chebyshev points  Lambda = 2.36

-1 -08 -06 -04 -0.2 1) 02 0.4 06 08 1

10 equispaced points Lambda = 17.85
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Classical polynomial interpolation
Conditioning
Lebesgue constant for n = 40, uniform vs. Chebyshev nodes:

40 Chebyshev points  Lambda = 3.29
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Hermite interpolation

t ] [
— 1

I
I 3

Assume
a=tg<t; <...<t,=0b

with possibly duplicated nodes. If the node ¢; occurs k times, the
corresponding node values correspond to f(t;), f'(t;), ..., fF71(t;).

The Hermite interpolation polynomial p(x) is a polynomial of order
n, which coincides with the nodal values (and, for duplicated
nodes, derivatives at nodal values) at the nodes.

12/31



Hermite interpolation

Theorem: (somewhat loosely formulated version) Given n + 1
nodes and nodal values (possibly of derivatives), then there exists a
unique interpolating Hermite polynomial p € P,,.

Examples: <ol
> All tg = = ty. —

» Cubic Hermite interpolation: Nodes: tg =t <ty =

t3,
Values: f(to), f'(to), f (1), f'(t1). e Hupsh
. L . twlaapp -
> locally cubic Hermite interpolation. R
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Classical polynomial interpolation

Newton polynomial basis

The Newton basis wy, . ..,wy, is given by
i—1
wi(t) = [J(t—t;) € Ps.
j=0

The leading coefficient a,, of the interpolation polynomial of f
P(flto,....tn) = ana" + ...

is called the n-th divided difference, [to, ..., tn|f = an.
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Classical polynomial interpolation

Newton polynomial basis

Theorem: For f € C™, the interpolation polynomial
P(flto,...,tn) is given by

n

P(t) = [to,. .., til f wi(t).
=0

If fe O™t then

f(t) = P(t) + [t07 . 7tmt]f wnJrl(t)'

This property allows to estimate the interpolation error.
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Classical polynomial interpolation
Newton polynomial basis
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Classical polynomial interpolation
Divided differences

The divided differences [to, ..., t,]f satisfy the following
properties:

> [to,...,tp]P =0 forall P € P,_;.

(. o diidud difus.)

> |ft0=...=tn2 (_/TQAK&V Wguﬁw.}

f(n) (to)

[to, ... to]f = o

nodes.
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Classical polynomial interpolation
Divided differences

» The following recurrence relation holds for ¢; # t; (nodes with
a hat are removed):

([to, - - o tiy oo tn) f = [tos -ty ) )

to,...,¢ =
[0 n]f tj—tz‘

> If f€C [to,... talf = 5™ (r) with an a < 7 < b, and
the divided differences depend continuously on the nodes.
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Classical polynomial interpolation

Divided differences

Let us use divided differences to compute the coefficients for the
Newton basis for the cubic interpolation polynomial p that satisfies

p(0) =1, p(0.5) =2, p(1) = 0, p(2) =

t;

0 | ltolf =1

05 | []f=2 [toti]f = 7“11:’ —lulf

L | [tlf =0 [tt]f = 7“2” B
tslf =3 [tats]f = 7”37 Ll

tz—t2

Thus, the interpolating polynomial is

p(t) = 1+ 2t + (—6)¢(t — 0.5)

4 ?t(t —0.5)(t—1).
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Classical polynomial interpolation
Divided differences

Let us now use divided differences to compute the coefficients for
the Newton basis for the cubic interpolation polynomial p that
satisfies p(0) =1, p'(0) = 2, p”(0) =1, p(1) = 3.

t; \

0| [tolf=1

0| [tolf=1 [tota]f =p'(0) =2

0| [tolf=1 [atlf=p(0)=2  [totsto]f =250 =1

1| [ts]f =3 [tats]f = effell =2 0 -3

Thus, the interpolating polynomial is

1 1
p(t) =1+2t+ 5t2 + (—§)t3

) l@' ’\ W'Lq—w "\h@?
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Classical polynomial interpolation

Approximation error

If f e CtD then

(1) (7
0 - Pl i) = 1200

wn1(t)

for an appropriate 7 = 7(t), a < T < b.

In particular, the error depends on the choice of the nodes.

For Taylor interpolation, i.e., tg = ... = t,, this results in:
f(nJrl)(T) +1
t)— P(flto,...,tn)(t) = ———2(t — tx)"
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Classical polynomial interpolation

Approximation error

Consider functions

{f eC™([a,0]) : sp [fPHH)] < M(n+ 1)1
TE€[a,b

for some M > 0, then the approximation error depends on w,, (%),
and thus on tg,...,t,.

Thus, one can try to minimize

t
gggb\wnﬂ( B

which is achieved by choosing the nodes as the roots of the
Chebyshev polynomial of order (n + 1).
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Classical polynomial interpolation

Approximation error

Summary on pointwise convergence:

» If an interpolating polynomial is close/converges to the
original function depends on the regularity of the function and
the choice of interpolation nodes

» For a good choice of interpolation nodes, fast convergence
can be obtained for almost all functions
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Classical polynomial interpolation

Interpolation/Least square approximation/Splines

> Polynomial interpolation

> Least squares with polynomials

» Splines (i.e., piecewise polynomial interpolation):
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