Numerical Methods I: Polynomial Interpolation

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 16, 2017

Classical polynomial interpolation

Given $f_{i}:=f\left(t_{i}\right), i=0, \ldots, n$, we would like to find a polynomial $P \in \boldsymbol{P}_{n}$ such that

$$
P\left(t_{i}\right)=f_{i}
$$

Interpolation is thus a map from $\mathbb{R}^{n+1} \rightarrow \boldsymbol{P}_{n}$.

Theorem: Given nodes $\left(t_{i}, f_{i}\right), 0 \leq i \leq n$, with pairwise distinct nodes t_{i}, then there exists a unique interpolating polynomial $P \in \boldsymbol{P}_{n}$.
$P \in P_{n}$.
Profs $\left(\mathbb{R}^{n+1}\right)=n+1, \quad \operatorname{dim}\left(\mathbb{P}_{n}\right)=M+1, ~$
$\operatorname{map} \phi:\left(\begin{array}{l}f^{p} \\ \dot{g}^{n} \\ n^{n}\end{array}\right) \rightarrow P_{n}$ infupodating polynomial., Sufficient to
that ϕ is ingectiv: Ref $f, q \in \mathbb{R}^{n+1}: \phi(f)=\phi(g)$
$\Longrightarrow \phi(f-g)=0, \quad \phi(f-q)$ is tow polynomial, $\phi(f)\left(l_{i}\right)=\phi(g)\left(t_{1}\right)$ To compute that polynomial, we have to choose a basis in $\boldsymbol{P}_{n} \xlongequal{\Rightarrow} \Rightarrow f_{f}=q$

$$
\begin{aligned}
& \phi(f+g)=\phi(f)+\phi(g) \\
& \phi(\alpha f)=\alpha \phi(f)
\end{aligned}
$$

Classical polynomial interpolation

Monomial basis: $1, t, t^{2} \ldots$ leads to system with Vandermonde matrix $V_{n} . \quad P(f)=a_{0}+a_{1} t+\ldots+a_{n} f^{h}$, we want $P\left(f^{\prime}\right)=f_{i}$

$$
\begin{aligned}
& -1 \quad a_{0}+a_{1} t_{i}+\ldots+a_{n} t_{i}^{n}=f_{1} \quad i=0, \ldots n \\
& {\left[\begin{array}{ccccc}
1 & t_{1} & d_{1}^{2} & \cdots & f_{1}^{n} \\
\vdots & & & \vdots \\
1 & t_{n} & t_{n}^{2} & \ldots & t_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{n}
\end{array}\right]}
\end{aligned}
$$

$V_{n} \ldots$ Vandermonde matrix for to, ..., the

- $\operatorname{det}\left(V_{n}\right)=\prod_{i=0}^{n} \prod_{j=i+1}^{n}\left(t_{i}-t_{j}\right) \neq 0$
- For larger n, this can be a poorly conditioned system.

Classical polynomial interpolation

Lagrange basis L_{i} defined by $L_{i}\left(t_{j}\right)=\delta_{i j}$.
$L_{i}(d)=\frac{\prod_{j \neq i}\left(t-t_{j}\right)}{\prod_{i}\left(t_{j}\right)}$

- Simple interpolant: $P(t)=\sum_{i=0}^{n} f_{i} L_{i}(t)$
- Not always practical.
- Lagrange polynomials form an orthogonal basis in \boldsymbol{P}_{n} w.r. to the inner product

$$
\begin{gathered}
(P, Q):=\sum_{i=0}^{n} P\left(t_{i}\right) Q\left(t_{i}\right)=\int_{0}^{b} W(\alpha) P(t) Q(\alpha)^{d t} \\
W(t)=\sum_{i=0}^{n} \delta_{t=t_{i}} \text { (Dirac dit funchens) }
\end{gathered}
$$

Classical polynomial interpolation

The Newton basis $\omega_{0}, \ldots, \omega_{n}$ is given by

$$
\omega_{i}(t):=\prod_{j=0}^{i-1}\left(t-t_{j}\right) \in \boldsymbol{P}_{i}
$$

This polynomials are linearly independent as their degree increases.

$$
w_{0}(f)=1, w_{1}(f)<\left(f-t_{0}\right), w_{2}(f)=(1-\alpha)\left(\downarrow-t_{1}\right)_{l}
$$

polynomial intupolatien $a_{0} \omega_{0}(f)+a_{1} w_{1}\left(H+\ldots+a_{n} \omega_{n}(f)\right.$ and there's an efficient way to compute $a_{0}, a_{1}, \ldots a_{n}$.

The coefficients in this basis can be computed efficiently (more later).

Interpolation can be seen as map between

$$
\bar{\Phi}: \mathbb{R}^{n+1} \mapsto \boldsymbol{P}_{n}
$$

or as map between functions:

$$
\Phi: C([a, b]) \mapsto \boldsymbol{P}_{n} .
$$

Φ is function evaluation at the nodes, followed by $\bar{\Phi}$.

Classical polynomial interpolation

Theorem: Let $a \leq t_{0}<\ldots<t_{n} \leq b$ be pairwise distinct and L_{i} be the corresponding Lagrange polynomials. Then the absolute condition number of the polynomial interpolation:

$$
\Phi: C([a, b]) \rightarrow \boldsymbol{P}_{n}
$$

w.r. to the supremum norm is the Lebesgue constant

$$
\kappa_{\mathrm{abs}}=\Lambda_{n}=\max _{t \in[a, b]} \sum_{i=1}^{n}\left|L_{i}(t)\right| .
$$

Note that the Lebesgue constant depends on n and the location of the t_{i}.

Classical polynomial interpolation
Conditioning $\quad f \in C([a, b])$

$$
\begin{aligned}
& \text { Conditioning } \begin{array}{ll}
\text { Prof: } \quad t \in[a, b]: \quad|\phi(f)(t)|=\left|\sum_{i=0}^{n} f\left(t_{i}\right) L_{i}(t)\right| \\
\quad \leq \sum_{i=0}^{n}|f(f)|\left\|L_{i}(f) \mid \leq\right\| f \|_{\infty} \underbrace{\sum_{i=0}^{n}\left|L_{i}(t)\right|}_{i=0} \\
\Rightarrow\|\phi(f)\|_{\infty} \leq\|f\|_{\infty} \Lambda_{n} & \frac{\max _{t \in[a, b]} \sum_{i=0}^{n}\left|L_{i}(t)\right|}{=\Lambda_{n}}
\end{array}
\end{aligned}
$$

$$
\Longrightarrow k_{a b s} \leq \Lambda_{n}
$$

Show that this ustimak is shows: $g \in([a, b])$, target is to find τ with $\phi(g)(\tau)=\|g\|_{\infty} \Lambda_{n}$; choose τ where the maximum in the Lebesgue constant is obtained, i.e. $\sum_{i=0}^{n}\left|L_{i}(\tau)\right|=\Lambda_{n}$, choose g with $\|g\|_{\infty}=1, g\left(l_{i}\right)=\operatorname{sgn}_{n} L_{i}(\tau)^{i=0}$

$$
\begin{aligned}
& \Rightarrow|\phi(g)(\tau)|=\left|\sum_{i=0}^{n} g\left(\alpha_{i}\right) L_{i}(\tau)\right|=\sum_{i=0}^{n}\left|L_{i}(\tau)\right|=\Lambda_{n}^{+} \\
& \Rightarrow \text { Kobs }_{n} \geqslant \Lambda_{n} \Longrightarrow \rightarrow \operatorname{Lass}^{n}=\Lambda_{n}
\end{aligned}
$$

Classical polynomial interpolation

Lebesgue constants for different orders:

n	Λ_{n} for equidistant nodes	Λ_{n} for Chebyshev nodes
5	3.106292	2.104398
10	29.890695	2.489430
15	512.052451	2.727778
20	10986.533993	2.900825

Chebyshev nodes are the roots of the Chebyshev polynomials:

$$
t_{i}=\cos \left(\frac{2 i+1}{2 n+2} \pi\right), \text { for } i=0, \ldots, n
$$

Classical polynomial interpolation

Conditioning
Lebesgue constant for $n=10$, uniform vs. Chebyshev nodes:

Classical polynomial interpolation

Conditioning
Lebesgue constant for $n=40$, uniform vs. Chebyshev nodes:

Assume

$$
a=t_{0} \leq t_{1} \leq \ldots \leq t_{n}=b
$$

with possibly duplicated nodes. If the node t_{i} occurs k times, the corresponding node values correspond to $f\left(t_{i}\right), f^{\prime}\left(t_{i}\right), \ldots, f^{k-1}\left(t_{i}\right)$.

The Hermite interpolation polynomial $p(x)$ is a polynomial of order n, which coincides with the nodal values (and, for duplicated nodes, derivatives at nodal values) at the nodes.

Theorem: (somewhat loosely formulated version) Given $n+1$ nodes and nodal values (possibly of derivatives), then there exists a unique interpolating Hermite polynomial $p \in \boldsymbol{P}_{n}$.

Examples:

- All $t_{0}=\ldots=t_{n}$.
- Cubic Hermite interpolation: Nodes: $t_{0}=t_{1} \begin{aligned} & t_{0}=t_{1}=-t_{n} \\ & <t_{2}=t_{3},\end{aligned}$ Values: $f\left(t_{0}\right), f^{\prime}\left(t_{0}\right), f\left(t_{1}\right), f^{\prime}\left(t_{1}\right)$.
- locally cubic Hermite interpolation.

cubic Hermite on each interval

Classical polynomial interpolation

Newton polynomial basis

The Newton basis $\omega_{0}, \ldots, \omega_{n}$ is given by

$$
\omega_{i}(t):=\prod_{j=0}^{i-1}\left(t-t_{j}\right) \in \boldsymbol{P}_{i}
$$

The leading coefficient a_{n} of the interpolation polynomial of f

$$
P\left(f \mid t_{0}, \ldots, t_{n}\right)=a_{n} x^{n}+\ldots
$$

is called the n-th divided difference, $\left[t_{0}, \ldots, t_{n}\right] f:=a_{n}$.

Classical polynomial interpolation

Newton polynomial basis

Theorem: For $f \in C^{n}$, the interpolation polynomial $P\left(f \mid t_{0}, \ldots, t_{n}\right)$ is given by

$$
P(t)=\sum_{i=0}^{n}\left[t_{0}, \ldots, t_{i}\right] f \omega_{i}(t)
$$

If $f \in C^{n+1}$, then

$$
f(t)=P(t)+\left[t_{0}, \ldots, t_{n}, t\right] f \omega_{n+1}(t)
$$

This property allows to estimate the interpolation error.

Classical polynomial interpolation
Newton polynomial basis
Proof: $n=0 \checkmark$ Let $n>0$, the for $n-1$ fie.

$$
\begin{aligned}
P_{n-1} & =P\left(f \mid t_{0}, \ldots, t_{n-1}\right)
\end{aligned}=\sum_{i=0}^{n-1} \underbrace{\left[d_{1}, \ldots t i\right] f}_{\in \mathbb{R},} \text {, with divided dh. }
$$

interpolates f at t_{0}, \ldots, the $=1$ because $P\left(f_{i}\right]=f_{i}$

$$
\omega_{n}\left(H_{i}\right)=0
$$

we Month
remaining claim: use that
$P_{n}(t)+\left[t_{0}, \ldots, t_{n}, t\right] f \omega_{n+1}$ intappodates at to $, \ldots, t_{n}, t$

The divided differences $\left[t_{0}, \ldots, t_{n}\right] f$ satisfy the following properties:

- $\left[t_{0}, \ldots, t_{n}\right] P=0$ for all $P \in \boldsymbol{P}_{n-1}$.
(def. of divided difenao)
- If $t_{0}=\ldots=t_{n}$:

$$
\begin{aligned}
& \text { (Taylor expansion) } \\
& {\left[t_{0}, \ldots, t_{n}\right] f=\frac{f^{(n)}\left(t_{0}\right)}{n!}}
\end{aligned}
$$

nodes.

Classical polynomial interpolation

Divided differences

- The following recurrence relation holds for $t_{i} \neq t_{j}$ (nodes with a hat are removed):

$$
\left[t_{0}, \ldots, t_{n}\right] f=\frac{\left(\left[t_{0}, \ldots, \hat{t_{i}}, \ldots, t_{n}\right] f-\left[t_{0}, \ldots, \hat{t_{j}}, \ldots, t_{n}\right] f\right)}{t_{j}-t_{i}}
$$

- If $f \in C^{n}\left[t_{0}, \ldots, t_{n}\right] f=\frac{1}{n!} f^{(n)}(\tau)$ with an $a \leq \tau \leq b$, and the divided differences depend continuously on the nodes.

Let us use divided differences to compute the coefficients for the Newton basis for the cubic interpolation polynomial p that satisfies $p(0)=1, p(0.5)=2, p(1)=0, p(2)=3$.

| t_{i} | | | |
| :---: | :--- | :--- | :--- | :--- |
| 0 | $\left[t_{0}\right] f=1$ | | $2-1$ |
| 0.5 | $\left[t_{1}\right] f=2$ | $\left[t_{0} t_{1}\right] f=\frac{\left[t_{1}\right] f-\left[t_{0}\right] f}{t_{1}-t_{0}}=2$ | $\frac{[2-5-0}{0.5}=2$ |
| 1 | $\left[t_{2}\right] f=0$ | $\left[t_{1} t_{2}\right] f=\frac{\left[t_{2}\right]-\left[t_{0}\right] f}{t_{2}-t_{1}}=-4$ | $\left[t_{0} t_{1} t_{2}\right] f=-6=-\frac{4-2}{1-0}=-6$ |
| 2 | $\left[t_{3}\right] f=3$ | $\left[t_{2} t_{3}\right] f=\frac{\left.\left[t_{3}\right] f-t_{2}\right] f}{t_{3}-t_{2}}=3$ | $\left[t_{1} t_{2} t_{3}\right] f=\frac{14}{3} \quad \frac{16}{3}$ |

Thus, the interpolating polynomial is

$$
p(t)=1+2 t+(-6) t(t-0.5)+\frac{16}{3} t(t-0.5)(t-1)
$$

Let us now use divided differences to compute the coefficients for the Newton basis for the cubic interpolation polynomial p that satisfies $p(0)=1, p^{\prime}(0)=2, p^{\prime \prime}(0)=1, p(1)=3$.

t_{i}			
0	$\left[t_{0}\right] f=1$		
0	$\left[t_{0}\right] f=1$	$\left[t_{0} t_{1}\right] f=p^{\prime}(0)=2$	
0	$\left[t_{0}\right] f=1$	$\left[t_{1} t_{2}\right] f=p^{\prime}(0)=2$	$\left[t_{0} t_{1} t_{2}\right] f=\frac{p^{\prime \prime}(0)}{2!}=\frac{1}{2}$
1	$\left[t_{3}\right] f=3$	$\left[t_{2} t_{3}\right] f=\frac{\left[t_{3}\right] t_{-}\left[t_{0}\right] f}{t_{3}-t_{0}}=2$	0

Thus, the interpolating polynomial is

$$
p(t)=1+2 t+\frac{1}{2} t^{2}+\left(-\frac{1}{2}\right) t^{3} \uparrow_{\omega_{1}(t)} \hat{\omega}_{\omega_{2}(t)}(t)
$$

If $f \in C^{(n+1)}$, then

$$
f(t)-P\left(f \mid t_{0}, \ldots, t_{n}\right)(t)=\frac{f^{(n+1)}(\tau)}{(n+1)!} \omega_{n+1}(t)
$$

for an appropriate $\tau=\tau(t), a<\tau<b$.
In particular, the error depends on the choice of the nodes.

For Taylor interpolation, i.e., $t_{0}=\ldots=t_{n}$, this results in:

$$
f(t)-P\left(f \mid t_{0}, \ldots, t_{n}\right)(t)=\frac{f^{(n+1)}(\tau)}{(n+1)!}\left(t-t_{0}\right)^{n+1}
$$

Classical polynomial interpolation

Approximation error

Consider functions

$$
\left\{f \in C^{n+1}([a, b]): \sup _{\tau \in[a, b]}\left|f^{n+1}(\tau)\right| \leq M(n+1)!\right\}
$$

for some $M>0$, then the approximation error depends on $\omega_{n}(t)$, and thus on t_{0}, \ldots, t_{n}.

Thus, one can try to minimize

$$
\max _{a \leq t \leq b}\left|\omega_{n+1}(t)\right|
$$

which is achieved by choosing the nodes as the roots of the Chebyshev polynomial of order $(n+1)$.

Classical polynomial interpolation

Summary on pointwise convergence:

- If an interpolating polynomial is close/converges to the original function depends on the regularity of the function and the choice of interpolation nodes
- For a good choice of interpolation nodes, fast convergence can be obtained for almost all functions

Classical polynomial interpolation

Interpolation/Least square approximation/Splines

- Polynomial interpolation
- Least squares with polynomials
- Splines (i.e., piecewise polynomial interpolation):

