Numerical Methods I: Interpolation (cont'ed)

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 30, 2017

- Lagrange vs. Hermite interpolation
- Conditioning of interpolation
- Uniform vs. non-uniform points, Lebesgue constant
- Polynomial bases: Lagrange, Newton, Monomial

Classical polynomial interpolation

Newton polynomial basis

The Newton basis $\omega_{0}, \ldots, \omega_{n}$ is given by

$$
\omega_{i}(t):=\prod_{j=0}^{i-1}\left(t-t_{j}\right) \in \boldsymbol{P}_{i}
$$

The leading coefficient a_{n} of the interpolation polynomial of f

$$
P\left(f \mid t_{0}, \ldots, t_{n}\right)=a_{n} x^{n}+\ldots
$$

is called the n-th divided difference, $\left[t_{0}, \ldots, t_{n}\right] f:=a_{n}$.

Classical polynomial interpolation

Newton polynomial basis

Theorem: For $f \in C^{n}$, the interpolation polynomial $P\left(f \mid t_{0}, \ldots, t_{n}\right)$ is given by

$$
P(t)=\sum_{i=0}^{n}\left[t_{0}, \ldots, t_{i}\right] f \omega_{i}(t)
$$

If $f \in C^{n+1}$, then

$$
f(t)=P(t)+\left[t_{0}, \ldots, t_{n}, t\right] f \omega_{n+1}(t)
$$

This property allows to estimate the interpolation error.

The divided differences $\left[t_{0}, \ldots, t_{n}\right] f$ satisfy the following properties:

- $\left[t_{0}, \ldots, t_{n}\right] P=0$ for all $P \in \boldsymbol{P}_{n-1}$.
- If $t_{0}=\ldots=t_{n}$:

$$
\left[t_{0}, \ldots, t_{n}\right] f=\frac{f^{(n)}\left(t_{0}\right)}{n!}
$$

nodes.

Classical polynomial interpolation

Divided differences

- The following recurrence relation holds for $t_{i} \neq t_{j}$ (nodes with a hat are removed):

$$
\left[t_{0}, \ldots, t_{n}\right] f=\frac{\left(\left[t_{0}, \ldots, \hat{t_{i}}, \ldots, t_{n}\right] f-\left[t_{0}, \ldots, \hat{t_{j}}, \ldots, t_{n}\right] f\right)}{t_{j}-t_{i}}
$$

- If $f \in C^{n}\left[t_{0}, \ldots, t_{n}\right] f=\frac{1}{n!} f^{(n)}(\tau)$ with an $a \leq \tau \leq b$, and the divided differences depend continuously on the nodes.

Classical polynomial interpolation

Divided differences

Let us use divided differences to compute the coefficients for the Newton basis for the cubic interpolation polynomial p that satisfies $p(0)=1, p(0.5)=2, p(1)=0, p(2)=3$.

t_{i}				
0	$\left[t_{0}\right] f=1$			
0.5	$\left[t_{1}\right] f=2$	$\left[t_{0} t_{1}\right] f=\frac{\left[t_{1}\right] f-\left[t_{0}\right] f}{t_{1}-t_{0}}=2$		
1	$\left[t_{2}\right] f=0$	$\left[t_{1} t_{2}\right] f=\frac{\left[t_{2}\right] f-\left[t_{1}\right] f}{t_{2} t_{2}-t_{1}}=-4$	$\left[t_{0} t_{1} t_{2}\right] f=-6$	
2	$\left[t_{3}\right] f=3$	$\left[t_{2} t_{3}\right] f=\frac{\left[t_{3}\right] f-\left\lfloor t_{2}\right] f}{t_{3}-t_{2}}=3$	$\left[t_{1} t_{2} t_{3}\right] f=\frac{14}{3}$	$\frac{16}{3}$

Thus, the interpolating polynomial is

$$
p(t)=1+2 t+(-6) t(t-0.5)+\frac{16}{3} t(t-0.5)(t-1) .
$$

Let us now use divided differences to compute the coefficients for the Newton basis for the cubic interpolation polynomial p that satisfies $p(0)=1, p^{\prime}(0)=2, p^{\prime \prime}(0)=1, p(1)=3$.

t_{i}				
0	$\left[t_{0}\right] f=1$			
0	$\left[t_{0}\right] f=1$	$\left[t_{0} t_{1}\right] f=p^{\prime}(0)=2$		
0	$\left[t_{0}\right] f=1$	$\left[t_{1} t_{2}\right] f=p^{\prime}(0)=2$	$\left[t_{0} t_{1} t_{2}\right] f=\frac{p^{\prime \prime}(0)}{2!}=\frac{1}{2}$	
1	$\left[t_{3}\right] f=3$	$\left[t_{2} t_{3}\right] f=\frac{\left.\left[t_{3}\right]\right]-\left[t_{0}\right] f}{t_{3}-t_{0}}=2$	0	$-\frac{1}{2}$

Thus, the interpolating polynomial is

$$
p(t)=1+2 t+\frac{1}{2} t^{2}+\left(-\frac{1}{2}\right) t^{3}
$$

If $f \in C^{(n+1)}$, then

$$
f(t)-P\left(f \mid t_{0}, \ldots, t_{n}\right)(t)=\frac{f^{(n+1)}(\tau)}{(n+1)!} \omega_{n+1}(t)
$$

for an appropriate $\tau=\tau(t), a<\tau<b$.
In particular, the error depends on the choice of the nodes.

$$
\begin{aligned}
f(f)-P\left(f\left(f_{0}, \ldots, t_{n}\right)(f)\right. & =\left[t_{0}, f_{1}, \ldots, t_{n}, \alpha\right] f \omega_{n+1}(f) \\
& =\frac{f^{(n+1)}(\tau)}{(n+1)!} \omega_{n+1}(f), \tau \in(a, b)
\end{aligned}
$$

For Taylor interpolation, i.e., $t_{0}=\ldots=t_{n}$, this results in:

$$
f(t)-P\left(f \mid t_{0}, \ldots, t_{n}\right)(t)=\frac{f^{(n+1)}(\tau)}{(n+1)!}\left(t-t_{0}\right)^{n+1}
$$

Classical polynomial interpolation

Approximation error

Consider functions

$$
\left\{f \in C^{n+1}([a, b]): \sup _{\tau \in[a, b]}\left|f^{n+1}(\tau)\right| \leq M(n+1)!\right\}
$$

for some $M>0$, then the approximation error depends on $\omega_{n}(t)$, and thus on t_{0}, \ldots, t_{n}.

Thus, one can try to minimize

$$
\max _{a \leq t \leq b}\left|\omega_{n+1}(t)\right|
$$

which is achieved by choosing the nodes as the roots of the Chebyshev polynomial of order $(n+1)$.

Classical polynomial interpolation

Summary on pointwise convergence:

- If an interpolating polynomial is close/converges to the original function depends on the regularity of the function and the choice of interpolation nodes
- For a good choice of interpolation nodes, fast convergence can be obtained for almost all functions

Interpolation/Least square approximation/Splines

- Polynomial interpolation

- Least squares with polynomials

- Splines (i.e., piecewise polynomial interpolation):

Assume $(l+2)$ pairwise disjoint nodes:

$$
a=t_{0}<t_{1}<\ldots<t_{l+1}=b
$$

A spline of degree $k-1$ (order k) is a function in C^{k-2} which on each interval $\left[t_{i}, t_{i+1}\right]$ coincides with a polynomial in \boldsymbol{P}_{k-1}.

Most important examples:

- linear splines, $k=2$
- cubic splines, $k=4$

Splines
Si polynomials of degree 3
Cubic splines look smooth:
(4 degrees of pedal)
overall: 4×4 unknowns

constraints:
each Si_{i} is required to intupalate of 2 points
$\rightarrow 4 \times 2$ conditions first \& second derivative coincide at intersection point \longrightarrow
$3 \times 2=6$ cond

$$
C S_{0}^{\prime}\left(f_{1}\right)=S_{1}^{\prime}\left(f_{1}\right), S_{0}^{\prime \prime}\left(f_{1}\right)=S_{1}^{\prime \prime}\left(f_{1}^{\prime}\right),
$$

$\rightarrow 2$ free degrees of freedom, e.g. $S_{0}^{\prime \prime}(a)=S_{3}^{\prime \prime}(b)=0$

B-splines
B-splines are a basis in the spline space that:

- has local support
- satisfies a 3-term recursion
- non-negative
$N_{i 1} \quad N_{i 2} \quad N_{i 3}$

B-splines

- Coefficients for interpolation with the B-spline basis can be computed efficiently using the De Boor algorithm.
- Splines are essential in Computer Aided Design (CAD).
- Also important in CAD: Bezier curves (these do not interpolate points and have useful geometrical properties).

Trigonometric Interpolation

For periodic functions

Instead of polynomials, use $\sin (j t), \cos (j t)$ for different $j \in \mathbb{N}$.
For $N \geq 1$, we define the set of complex trigonometric polynomials of degree $\leq N-1$ as

$$
\boldsymbol{T}_{N-1}:=\left\{\sum_{j=0}^{N-1} c_{j} e^{i j t}, c_{j} \in \mathbb{C}\right\}
$$

where $i=\sqrt{-1}$.
Complex interpolation problem: Given pairwise distinct nodes $t_{0}, \ldots, t_{N-1} \in[0,2 \pi)$ and corresponding nodal values $f_{0}, \ldots, f_{N-1} \in \mathbb{C}$, find a trigonometric polynomial $p \in \boldsymbol{T}_{N-1}$ such that $p\left(t_{i}\right)=f_{i}$, for $i=0, \ldots, N-1$.

- There exists exactly one $p \in \boldsymbol{T}_{N-1}$, which solves this interpolation problem.
- Choose the equidistant nodes $t_{k}:=\frac{2 \pi k}{N}$ for $k=0, \ldots, N-1$. Then, the trigonometric polynomial that satisfies $p\left(t_{i}\right)=f_{i}$ for $i=0, \ldots, N-1$ has the coefficients

$$
c_{j}=\frac{1}{N} \sum_{k=0}^{N-1} e^{-\frac{2 \pi i j k}{N}} f_{k}
$$

- For equidistant nodes, the linear map from $\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ defined by $\left(f_{0}, \ldots, f_{N-1}\right) \mapsto\left(c_{0}, \ldots, c_{N-1}\right)$ is called the discrete Fourier transformation (DFT).

Discrete Fourier transform

The interpolation problem $\left(f_{0}, \ldots, f_{N-1}\right) \mapsto\left(c_{0}, \ldots, c_{N-1}\right)$ and its inverse require the multiplication or solution with a dense $n \times n$ system, i.e., at least $O\left(n^{2}\right)$ flops.

However, the special structure of the system matrix allows performing those operations using a much faster algorith, the Fast Fournier Transform (FFT).

The Fast Fourier Transform (FFT) is a (very famous!) algorithm that computes the DFT and its inverse in $O(n)$ flops.

- Note that uniform nodes are used (and even required for the FFT).
- Tensor products on square domains can be used for two dimensional approximations, i.e., $p(x) p(y)$.
- Can be used to approximate and solve differential equations (see Numerical Methods II).

