Numerical Methods I: Numerical linear algebra

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

September 21, 2017

Solving linear systems

We study the solution of linear systems of the form

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

with $A \in \mathbb{R}^{n \times n}, \boldsymbol{x}, \boldsymbol{b} \in \mathbb{R}^{n}$. We assume that this system has a unique solution, i.e., A is invertible.

Solving linear systems is needed in many applications. Often, we have to solve

- large systems (can be up to millions of unknowns, and more)
- as fast as possible, and
- accurately and reliably.

There exist explicit formulas for solving linear systems but they are extremely expensive (e.g., Kramer's rule requires computing determinants).

Solving linear systems
Triangular systems (forward substitution):

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
l_{11} & 0 & \cdots & \cdots & 0 \\
l_{21} & l_{22} & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
l_{n 1} & \cdots & \cdots & \cdots & l_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
\vdots \\
b_{n}
\end{array}\right] \begin{array}{l}
\text { Assume } \\
\prod_{i=1}^{n} l_{i i} \\
\operatorname{det}(L) \neq O
\end{array}} \\
& \begin{array}{ll}
x_{1}=b_{1} / l_{11} & 1 \text { division } \\
x_{2}=\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} & \mid \text { division, } \mid \text { malt, } \mid \text { addition }
\end{array} \\
& \frac{n(n+1)}{2} \sim \frac{n^{2}}{2}=\theta\left(n^{2}\right) \\
& \text { addodions/multhphes } \\
& \text { "flops" } \\
& x_{n}=\left(b_{n}-l_{n 1} x_{1}-\ln _{n 2} x_{2} \ldots l_{n, n-1} x_{n-1}\right) / \ln \frac{1 \text { div, } n-1 \text { mull, } n-1 \text { additions }}{} \\
& n \text { divisions, } \frac{n(n-1)}{2} \text { mullipl. } \frac{n(n-1)}{2} \text { adolutions }
\end{aligned}
$$

Solving linear systems
Triangular systems, implementation:

$$
\left[\begin{array}{ccccc}
l_{11} & 0 & \cdots & \cdots & 0 \\
l_{21} & l_{22} & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
l_{n 1} & \cdots & \cdots & \cdots & l_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
\vdots \\
b_{n}
\end{array}\right]
$$

Algovithen, row-based

$$
x(1,1)=b(1) / L(1,1) i
$$

for $i=2: n$

$$
\begin{align*}
& =2: \mu \\
& x(i)=b(i)-L(i, 1=(i-)) * x(i-1))
\end{align*}
$$

end

Algorithm, column -bard
for $j=1: n-1$

$$
\begin{gathered}
b(1)=b(1) / L(\gamma(\gamma) i \\
b(\gamma+1: n)=b(1+1: n)-b(\gamma) *
\end{gathered}
$$

end

$$
b(n)=b(r) / L(n, n) \rightarrow \underset{\text { Solution } x}{ } \rightarrow \text { stine }
$$

Triangular systems:

Forward and backward substitution, requires

$$
\begin{aligned}
& \frac{n(n+1)}{2} \text { multiplications/divisions, } \\
& \frac{n(n-1)}{2} \text { additions. }
\end{aligned}
$$

Overall: $\sim n^{2}$ floating point operations (flops).
We count flops to estimate the computational time/effort. Besides floating point operations, computer memory access has a significant influence on the efficiency of numerical methods (see experiments in homework \#2).

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Gaussian elimination: "new row $=$ row $i-l_{i 1}$ row 1 "

$$
\left[\begin{array}{ccccc}
a_{11} & \cdots & \cdots & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & \cdots & \cdots & a_{2 n}^{\prime} \\
\vdots & \vdots & & & \vdots \\
\vdots & \vdots & & & \vdots \\
0 & a_{n 2}^{\prime} & \cdots & \cdots & a_{n n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
$$

New system matrix/rhs is: $A^{(2)}=\quad L_{1} A, \boldsymbol{b}^{(2)}=\quad L_{1} \boldsymbol{b}$.

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Gaussian elimination: "new row $=$ row $i-l_{i 1}$ row 1 "

$$
\left[\begin{array}{ccccc}
a_{11} & \cdots & \cdots & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & \cdots & \cdots & a_{2 n}^{\prime} \\
\vdots & 0 & a_{33}^{\prime \prime} & \cdots & a_{3 n}^{\prime \prime} \\
\vdots & \vdots & & & \vdots \\
0 & 0 & a_{n 3}^{\prime \prime} & \cdots & a_{n n}^{\prime \prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime \prime} \\
\vdots \\
b_{n}^{\prime \prime}
\end{array}\right]
$$

New system matrix/rhs is: $A^{(3)}=L_{2} L_{1} A, \boldsymbol{b}^{(3)}=L_{2} L_{1} \boldsymbol{b}$.

We obtain:

$$
A^{(n)}=L_{n-1} \cdots L_{1} A, \quad \boldsymbol{b}^{(n)}=L_{n-1} \cdots L_{1} \boldsymbol{b}
$$

with the Frobenius matrices

$$
L_{k}=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -l_{k+1, k} & 1 & & \\
& & \vdots & & \ddots & \\
& & -l_{n, k} & & & 1
\end{array}\right]
$$

Note that L_{k}^{-1} are also Frobenius matrices, but with different sign for the $l_{j, i}$'s.

We obtain:

$$
A^{(n)}=L_{n-1} \cdots L_{1} A, \quad \boldsymbol{b}^{(n)}=L_{n-1} \cdots L_{1} \boldsymbol{b}
$$

with the Frobenius matrices

$$
L_{k}=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -l_{k+1, k} & 1 & & \\
& & \vdots & & \ddots & \\
& & -l_{n, k} & & & 1
\end{array}\right]
$$

Note that L_{k}^{-1} are also Frobenius matrices, but with different sign for the $l_{j, i}$'s.

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & & a_{n n}
\end{array}\right]} \\
=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
l_{21} & 1 & & 0 \\
\vdots & & \ddots & \vdots \\
l_{n 1} & l_{n 2} & \cdots & 1
\end{array}\right]\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & & u_{2 n} \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & u_{n n}
\end{array}\right] \\
\quad \begin{array}{rl}
u_{11} & =a_{11} \\
u_{12} & =a_{12} \\
l_{21} u_{11} & =a_{21}
\end{array} \\
\\
l_{21} u_{12}+u_{22}
\end{array}\right]=a_{22} .
$$

Solving linear systems
Gaussian elimination-LU factorization

Algorithm for solving linear system $A \boldsymbol{x}=\boldsymbol{b}$ (assuming diagonal elements do not vanish):

1. Compute triangular factorization $A=L U$.
2. Solve $L \boldsymbol{z}=\boldsymbol{b}$ (forward substitution).
3. Solve $U \boldsymbol{x}=\boldsymbol{z}$ (backward substitution).

$$
A x=b \leadsto \underbrace{U x}_{z}=b: \text { Solve } \begin{aligned}
L z & =b \quad \theta\left(n^{2}\right) \\
U x & =z \quad \theta\left(n^{2}\right)
\end{aligned}
$$

Algorithm for solving linear system $A \boldsymbol{x}=\boldsymbol{b}$ (assuming diagonal elements do not vanish):

1. Compute triangular factorization $A=L U$. ऑhogro: $\sim \frac{n^{3}}{3}$ flops
2. Solve $L \boldsymbol{z}=\boldsymbol{b}$ (forward substitution).
3. Solve $U \boldsymbol{x}=\boldsymbol{z}$ (backward substitution).

Notes:

- Main cost is $L U$ factorization.
- Factorization can be reused for different right hand sides \boldsymbol{b}.

Matlab: Solving $A x=5: x=A \backslash b_{i}$
How about: $\quad x=\operatorname{inv}(A) * b$:

Solving linear systems
LU with pivoting
If diagonal "pivoting" element is zero (or very small), one has to exchange rows and/or columns-otherwise the LU factorization fails.

Basic idea:
Choose largest element (in absolute value) in the row that is eliminated as pivot.

Example:
$A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \rightarrow$ Gam elimination foil exchange $\int^{\text {sf }} \& 2^{\text {nd }}$ now:

$$
\tilde{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=L U, \quad L=U=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Solving linear systems
LU with pivoting
Example with a 3 digit computer:

$$
\begin{aligned}
& \text { Example with a } 3 \text { digit computer: } \\
& \left(\begin{array}{cc}
10^{-4} & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{e}}=\binom{1}{2} \text { exact solution: } \begin{array}{l}
x_{1}=1.000 \\
x_{2}=0.999
\end{array}
\end{aligned}
$$

Gain eliminatia on machine with 3 accurak digits:

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
10^{-4} & 1 & 1 \\
1 & 1 & 2
\end{array}\right) \longrightarrow\left(\begin{array}{cc|c}
10^{-4} & 1 & 1 \\
0 & \underbrace{1-10^{4}}_{2-1.000} & \underbrace{2-10^{4}}_{10^{4}}
\end{array}\right) \\
& \Longrightarrow \frac{x_{2}=1.000 \times 10^{4}}{10^{-4} x_{1}+1.000}=1.000 \Longrightarrow x_{1}=0
\end{aligned}
$$

Solving linear systems mater with exactly one "I" in LU with pivoting each row \& column, zeros els Pivoting can be expressed by permutation matrices P_{π}, resulting in $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
the LU decomposition (the permutation π also affects L and U). Theorem: For every invertible matrix A, there exists a permutation matrix P_{π} such that

$$
P_{\pi} A=L U
$$

is possible. The permutation can be chosen such that all entries in L are ≤ 1.
Proof(Sufch): $\operatorname{det}(A) \neq 0 \rightarrow$ not all entries in find column ale zew Let's permuk rows such that

$$
\begin{gathered}
A^{(1)}=P_{\tau_{1}} A, \quad\left|a_{11}^{(1)}\right| \geqslant\left|a_{11}^{(1)}\right| \\
A^{(2)}=L_{1} A^{(1)}=L_{1} P_{\tau_{1}} A=\left[\begin{array}{ccc}
a_{11}^{(1)} & \not 4 \cdots & \cdots \\
\hline 0 & * \\
\vdots & B^{(2)} \\
0 &
\end{array}\right]
\end{gathered}
$$

Solving linear systems
LU with pivoting
repeat

$$
\begin{aligned}
& U=A^{(n)}=L_{\mu-1} P_{\tau_{n-1}} \cdots \cdots \cdot L_{2} P_{\tau_{2}} L_{1} P_{c_{1}} A \\
& \hat{L}_{k}=P_{\pi} L_{k} P_{\pi}^{-1}=\left[\begin{array}{llll}
1 & & & \\
\ddots & & \\
-l_{(m), k} & & \\
-\lambda_{\pi(h), k} & & 1
\end{array}\right]
\end{aligned}
$$

A matrix is symmetric positive definite (spd), if $A=A^{T}$ and for all $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \neq 0$, the inner product $\langle A \boldsymbol{x}, \boldsymbol{x}\rangle>0$.
For spd matrices, we can compute the factorization:

$$
A=L D L^{T}
$$

where L is a lower triangular matrix with 1 's on the diagonal, and D is a positive diagonal matrix.
The Choleski factorization is obtained by multiplying the square root of D (which exists!) with L :

$$
A=\bar{L} \bar{L}^{T}
$$

Choleski factorization requires $\sim \frac{n^{3}}{6}$ multiplications and n square roots.

Kinds of linear systems
Solvers such as MATLAB's \backslash take advantage of matrix properties:

- Dense matrix storage: Only entries are stored as 1D array (column or row wise)
- Sparse matrix storage: Most $a_{i j}=0$: only store nonzero entries; stores indices and value; occur in many applications

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{12} \\
a_{21} & & \vdots \\
\vdots & & -
\end{array}\right]
$$

\longrightarrow dense just stows first colin, and column ... etc.
Spare format: only stour mon-zuos', need to store the value $a_{i j}$ and i, f.

Kinds of linear systems
Solvers such as MATLAB's \backslash take advantage of matrix properties:

- Fast algorithms for special matrices: for computing $A x$, EFT, EM, ...
hon -zees elemab in factorization.
- Sparse: Most $a_{i j}=0$: avoid fill-in in factorizations
- Structured/unstructured: is the sparsity pattern easy to describe without storing it explicitly?

$$
\begin{aligned}
& \text { Sara matux }
\end{aligned}
$$

Kinds of linear systems and solvers

Symmetry, positivity ...

- Special factorizations for (skew) symmetric matrices
- Special factorizations for positive definite matrices (Choleski)
- Diagonally dominant matrices don't need pivoting

MATLAB's \backslash (i.e., UMFPACK) chooses the optimal algorithms after studying properties of the matrix (details in the "backslash" book: Tim Davis: Direct methods for sparse linear systems, SIAM, 2006.)

Kinds of linear systems and solvers
UMFPACK's decision tree for dense matrices

Kinds of linear systems and solvers

UMFPACK's decision tree for dense matrices

UMFPACK's decision tree for sparse matrices

UMFPACK's decision tree for sparse matrices

Kinds of linear systems and solvers

Factorization-based/direct solvers (dense/sparse LU, Choleski) require the matrix

- to fit into memory,
- to be explicitly available (sometimes only a function that applies the matrix to a vector is available) and to fit in memory,
+ but compute exact (besides rounding error) solution
Iterative solvers
- find an ε-approximation of the solution,
+ able to solve very large problems,
+ often only require a function that computes $A \boldsymbol{x}$ for given \boldsymbol{x}
\pm might be faster or slower than a factorization-based method
- What are the different storage formats (sparse/dense)? Is it always better to use one of them?
- How long does it take to solve sparse/dense systems?
- What is fill in and how to avoid it?

Kinds of linear systems and solvers

MATLAB demo

Sparse/sense storage:
A=rand (2,2);
B=sparse(A) ;
whos
Fill-in:
A=bucky + 4*speye (60);
r = symrcm(A);
$\operatorname{spy}(A) ; \operatorname{spy}(A(r, r)) ; \operatorname{spy}(\operatorname{chol}(A)) ; \operatorname{spy}(\operatorname{chol}(A(r, r))) ;$
Which sparse solver?
spparms('spumoni',1);
A=gallery('poisson', 8) ;
$\mathrm{b}=\mathrm{randn}(64,1)$;
$\mathrm{A} \backslash \mathrm{b}$;

