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Overview

Newton’s method to solve F (x) = 0, F : Rn ! Rn

2 / 33



Newton’s method: Example

In one dimension, solve f(x) = 0 with f : R ! R:
Start with x0, and compute x1, x2, . . . from

xk+1 = xk �
f(xk)

f 0(xk)
, k = 0, 1, . . .

Requires f(xk) 6= 0 to be well-defined (i.e., tangent has nonzero
slope).
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Newton’s method

Let F : Rn ! Rn, n � 1 and solve

F (x) = 0.

Taylor expansion about starting point x0:

F (x) = F (x0) + F 0(x0)(x� x

0) + o(|x� x

0|) for x ! x

0.

Hence:
x

1 = x

0 � F 0(x0)�1F (x0)

Newton iteration: Start with x

0 2 Rn, and for k = 0, 1, . . .
compute

F 0(xk)�x

k = �F (xk), x

k+1 = x

k +�x

k

Requires that F 0(xk) 2 Rn⇥n is invertible.
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Newton’s method

Newton iteration: Start with x

0 2 Rn, and for k = 0, 1, . . .
compute

F 0(xk)�x

k = �F (xk), x

k+1 = x

k +�x

k

Equivalently:
x

k+1 = x

k � F 0(xk)�1F (xk)

Newton’s method is a�ne invariant, that is, the sequence is
invariant to a�ne transformations:
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Newton’s method
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Convergence of Newton’s method
Assumptions on F : D ⇢ Rn open and convex, F : D ! Rn

continuously di↵erentiable with F 0(x) is invertible for all x, and
there exists ! � 0 such that

kF 0(x)�1(F 0(x+ sv)� F 0(x))vk  s!kvk2

for all s 2 [0, 1], x 2 D,v 2 Rn with x+ v 2 D.
Assumptions on x

⇤ and x

0: There exists a solution x

⇤ 2 D and a
starting point x0 2 D such that

⇢ := kx⇤ � x

0k  2

!
and B⇢(x

⇤) ⇢ D

Theorem: Then, the Newton sequence x

k stays in B⇢(x⇤) and
limk!1 x

k = x

⇤, and

kxk+1 � x

⇤k  !

2
kxk � x

⇤k2
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Convergence of Newton’s method
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Convergence of Newton’s method
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Newton’s method–when does convergence theorem apply?

I Example 1: f(x) = x3

I Example 2: f(x) = x3/2

1, x: 0.666666666667

2, x: 0.444444444444

3, x: 0.296296296296

...

17, x: 0.001014959227

18, x: 0.000676639485

19, x: 0.000451092990

20, x: 0.000300728660

1, x: 0.333333333333

2, x: 0.111111111111

3, x: 0.037037037037

4, x: 0.012345679012

...

16, x: 0.000000023231

17, x: 0.000000007744

18, x: 0.000000002581

19, x: 0.000000000860

20, x: 0.000000000287
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Newton’s method
Role of initialization

Choice of initialization x

0 is critical. Depending on the
initialization, the Newton iteration might

I not converge (it could “blow up” or “oscillate” between two
points)

I converge to di↵erent solutions

I fail cause it hits a point where the Jacobian is not invertible
(this cannot happen if the conditions of the convergence
theorem are satisfied)

I . . .
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Newton’s method
Convergence of Newton’s method

I The “more nonlinear” a problem, the harder it is to solve.

I Computation of Jacobian F 0(xk) can be costly/complicated
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Newton’s method
Convergence of Newton’s method

I There’s no reliable black-box solver for nonlinear problems; at
least for higher-dimensional problems, the structure of the
problem must be taken into account.

I Sometimes, continuation ideas must be used to find good
initializations: Solve simpler problems first and use solution as
starting point for harder problems.
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Newton’s method
Robustification

Monotonicity test (a�ne invariant):

kF 0(xk)�1F (xk+1)k  ⇥̄kF 0(xk)�1F (xk)k, ⇥̄ < 1

Damping:

x

k+1 = x

k + �k�x

k, 0 < �k  1

For di�cult problems, start with small �k and increase later in the
iteration (close to the solution �k should be 1).

Approximative Jacobians: Use approximative Jacobians F̃ 0(xk),
e.g., computed through finite di↵erences.
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Nonlinear versus linear problems

“Classification of mathematical problems as linear and nonlinear is
like classification of the Universe as bananas and non-bananas.”

or (according to Stanislav Ulam):

Using a term like nonlinear science is like referring to the bulk of
zoology as the study of non-elephant animals.
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Overview

Nonlinear least squares—Gauss-Newton
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Nonlinear least-squares problems

Assume a least squares problem, where the parameters x do not

enter linearly into the model. Instead of

min
x2Rn

kAx� bk2,

we have with F : D ! Rn, D ⇢ Rn:

min
x2Rn

g(x) :=
1

2
kF (x)k2, where F (x)i = '(ti,x)�bi, 1  i  m

The (local) minimum x

⇤ of this optimization problem satisfies:

g0(x) = 0, g00(x) is positive definite.
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Nonlinear least-squares problems

The derivative of g(·) is

G(x) := g0(x) = F 0(x)TF (x)

This is a nonlinear system in x, G : D ! Rn. Let’s try to solve it
using Newton’s method:

G0(xk)�x

k = �G(xk), x

k+1 = x

k +�x

k

where
G0(x) = F 0(x)TF 0(x) + F 00T (x)F (x).
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Nonlinear least-squares problems: Example
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Nonlinear least-squares problems: Example
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Nonlinear least-squares problems

F 00(x) is a tensor. It is often neglected due to the following
reasons:

I It’s di�cult to compute and we can use an approximate
Jacobian in Newton’s method.

I If the data is compatible with the model, then F (x⇤) = 0 and
the term involving F 00(x) drops out. If kF (x⇤)k is small,
neglecting that term might not make the convergence much
slower.

I We know that g00(x⇤) must be positive. If F 0(xk) has full
rank, then F 0(x)TF 0(x) is positive and invertible.
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Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares
problem is called Gauss-Newton method: Initialize x

0 and for
k = 0, 1, . . . solve

F 0(xk)TF 0(xk)�x

k = �F 0(xk)TF (xk) (solve)

x

k+1 = x

k +�x

k. (update step)

The solve step is the normal equation for the linear least squares
problem

min
�x

kF 0(xk)�x

k + F (xk)k.
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Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares
problem is called Gauss-Newton method: Initialize x

0 and for
k = 0, 1, . . . solve

F 0(xk)TF 0(xk)�x

k = �F 0(xk)TF (xk) (solve)

x

k+1 = x

k +�x

k. (update step)

The solve step is the normal equation for the linear least squares
problem

min
�x

kF 0(xk)�x

k + F (xk)k.
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Convergence of Gauss-Newton method
Assumptions on F : D ⇢ Rn open and convex, F : D ! Rm,
m � n continuously di↵erentiable with F 0(x) has full rank for all
x, and let ! � 0, 0  ⇤ < 1 such that

kF 0(x)+(F 0(x+ sv)� F 0(x))vk  s!kvk2

for all s 2 [0, 1], x 2 D,v 2 Rn with x+ v 2 D.
Assumptions on x

⇤ and x

0: Assume there exists a solution x

⇤ 2 D
of the least squares problem and a starting point x0 2 D such that

kF 0(x)+F (x⇤)k  ⇤kx� x

⇤k

⇢ := kx⇤ � x

0k  2(1� ⇤)

!
:= �

Theorem: Then, the sequence x

k stays in B⇢(x⇤) and
limk!1 x

k = x

⇤, and

kxk+1 � x

⇤k  !

2
kxk � x

⇤k2 + ⇤kxk � x

⇤k
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Convergence of Gauss-Newton method

I Role of ⇤: Represents omission of F 00(x)

I ⇤ can be chosen as 0 ) local quadratic convergence
I ⇤ > 0 linear convergence (thus we require ⇤ < 1).

I Damping strategy as before (better: linesearch to make
guaranteed progress in minimization problem)

I There can, in principle, be multiple solutions.
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