Numerical Methods I: Newton and nonlinear least squares

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

October 12, 2017

Newton's method to solve $F(\boldsymbol{x})=0, F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Newton's method: Example

In one dimension, solve $f(x)=0$ with $f: \mathbb{R} \rightarrow \mathbb{R}$:
Start with x_{0}, and compute x_{1}, x_{2}, \ldots from

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}, \quad k=0,1, \ldots
$$

Requires $f\left(x_{k}\right) \neq 0$ to be well-defined (i.e., tangent has nonzero slope).
Initialization x°
Compute linear model Solve lines made and irate

Newton's method

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, n \geq 1$ and solve

$$
F(\boldsymbol{x})=0
$$

Taylor expansion about starting point \boldsymbol{x}^{0} :

$$
F(\boldsymbol{x})=F\left(\boldsymbol{x}^{0}\right)+F^{\prime}\left(\boldsymbol{x}^{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{0}\right)+o\left(\left|\boldsymbol{x}-\boldsymbol{x}^{0}\right|\right) \quad \text { for } \boldsymbol{x} \rightarrow \boldsymbol{x}^{0} .
$$

Hence:

$$
\boldsymbol{x}^{1}=\boldsymbol{x}^{0}-\overbrace{F^{\prime}\left(\boldsymbol{x}^{0}\right)^{-1} F\left(\boldsymbol{x}^{0}\right)}
$$

Newton iteration: Start with $\boldsymbol{x}^{0} \in \mathbb{R}^{n}$, and for $k=0,1, \ldots$ compute

$$
F^{\prime}\left(\boldsymbol{x}^{k}\right) \Delta \boldsymbol{x}^{k}=-F\left(\boldsymbol{x}^{k}\right), \quad \boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}+\Delta \boldsymbol{x}^{k}
$$

Requires that $F^{\prime}\left(\boldsymbol{x}^{k}\right) \in \mathbb{R}^{n \times n}$ is invertible.
Terminate ideation when $\left\|F\left(x^{k}\right)\right\|<\varepsilon$ ar: $\left\|F\left(x^{0}\right)\right\|$

Newton's method
Newton iteration: Start with $\boldsymbol{x}^{0} \in \mathbb{R}^{n}$, and for $k=0,1, \ldots$ compute

$$
F^{\prime}\left(\boldsymbol{x}^{k}\right) \Delta \boldsymbol{x}^{k}=-F\left(\boldsymbol{x}^{k}\right), \quad \boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}+\Delta \boldsymbol{x}^{k}
$$

Equivalently:

$$
\boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}-F^{\prime}\left(\boldsymbol{x}^{k}\right)^{-1} F\left(\boldsymbol{x}^{k}\right)
$$

Newton's method is affine invariant, that is, the sequence is invariant to affine transformations:
Instead of solving $F(x)=0$ solve $A F(x)-G(x)=0$
Newton iteradion for $G(x)=0$:

$$
\begin{aligned}
& \Delta x=-G^{\prime}\left(x^{k}\right)^{-1} G\left(x^{k}\right)=\left(A F^{\prime}\left(x^{k}\right)\right)^{-1} A P^{k}\left(x^{k}\right) \\
& =F^{\prime}\left(x^{2}\right)^{-1} A^{-1} A^{\prime} F^{\prime}\left(x^{\prime}\right)=F^{\prime}\left(x^{x}\right)^{\prime \prime} F\left(x^{n}\right)=\text { Newhor kp computed } \\
& \text { using } F
\end{aligned}
$$

Newton's method
Inter section point between $F_{1}(x, y)=y-x^{2}+x=0$ parabola

$$
\begin{aligned}
& \left(F_{1}(x, y)\right) \quad\left(y-x^{2}+x\right) \quad F_{z}(x, y)=\frac{x^{2}}{16}+y^{2}-1=0 \quad \text { ellipse } \\
& \text { Ti=0 } \\
& F^{\prime}(x, y)=\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial x}(x, y) & \frac{\partial F_{1}(x, y)}{\partial y} \\
\frac{\partial F_{2}(x, y)}{\partial x} & \frac{\partial F_{2}(x, y)}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
-2 x+1 & 1 \\
\frac{x}{8} & 2 y
\end{array}\right) \\
& x^{0}=\binom{1}{0} \text {, Solve } \overbrace{\left(\begin{array}{cc}
-1 & 1 \\
\frac{1}{8} & 0
\end{array}\right)}^{P^{\prime}\left(x^{0}\right)} \Delta x=-F\left(x^{0}\right) \\
& \rightarrow x^{\prime}=x^{0}+\Delta x \text { report, stop if } \\
& \left\|F\left(x^{k}\right)\right\|<\varepsilon
\end{aligned}
$$

Assumptions on $F: D \subset \mathbb{R}^{n}$ open and convex, $F: D \rightarrow \mathbb{R}^{n}$ continuously differentiable with $F^{\prime}(\boldsymbol{x})$ is invertible for all \boldsymbol{x}, and there exists $\omega \geq 0$ such that

$$
\left\|F^{\prime}(\boldsymbol{x})^{-1}\left(F^{\prime}(\boldsymbol{x}+s \boldsymbol{v})-F^{\prime}(\boldsymbol{x})\right) \boldsymbol{v}\right\| \leq s \omega\|\boldsymbol{v}\|^{2}
$$

for all $s \in[0,1], \boldsymbol{x} \in D, \boldsymbol{v} \in \mathbb{R}^{n}$ with $\boldsymbol{x}+\boldsymbol{v} \in D$.
Assumptions on \boldsymbol{x}^{*} and \boldsymbol{x}^{0} : There exists a solution $\boldsymbol{x}^{*} \in D$ and a starting point $\boldsymbol{x}^{0} \in D$ such that

$$
\rho:=\left\|\boldsymbol{x}^{*}-\boldsymbol{x}^{0}\right\| \leq \frac{2}{\omega} \text { and } B_{\rho}\left(\boldsymbol{x}^{*}\right) \subset D
$$

Theorem: Then, the Newton sequence \boldsymbol{x}^{k} stays in $B_{\rho}\left(\boldsymbol{x}^{*}\right)$ and $\lim _{k \rightarrow \infty} \boldsymbol{x}^{k}=\boldsymbol{x}^{*}$, and

$$
\left\|\boldsymbol{x}^{k+1}-\boldsymbol{x}^{*}\right\| \leq \frac{\omega}{2}\left\|\boldsymbol{x}^{k}-\boldsymbol{x}^{*}\right\|^{2}
$$

Convergence of Newton's method $x, y \in D$

Mean theome fa integals:

$$
F(y)-F(x)-F^{\prime}(x)(y-x)=\int_{0}^{1}\left(F^{\prime}(x+s(y-x))-F^{\prime}(x)\right)(y-x) d s
$$

$$
\begin{align*}
& \left\|F^{\prime}(x)^{-1}\left[\int^{\omega} \ldots .\right]\right\| \leq \int_{s=0}^{1} s w\|y-x\|^{2} d s=\frac{w}{2}\|y-x\|^{2} \\
& \left\|F^{\prime}(x)^{-1}\left(F(y)-F(x)-F^{\prime}(x)(y-x)\right)\right\| \leq \frac{\omega}{2}\|y-x\|^{2} \tag{1}\\
& x^{k+1}-x^{*}=x^{k}-F^{\prime}\left(x^{k}\right)^{-1} F\left(x^{k}\right)-x^{*} \\
& =x^{k}-x^{k}-F^{\prime}\left(x^{k}\right)^{-1}\left(F\left(x^{k}\right)-F\left(x^{k}\right)\right) \\
& =F^{\prime}\left(x^{n}\right)^{-1}\left[F\left(x^{a}\right)-F\left(x^{k}\right)-F^{\prime}\left(x^{n}\right)\left(x^{x}-x\right)\right] \tag{2}\\
& \begin{array}{l}
\left.(1)+(2)=F\left(x^{4}\right) F\left(x^{x}\right)-F\left(x^{a}\right)-F\left(x^{n}\right)\left(x^{x}-x\right)\right] \\
\Longrightarrow\left\|x^{k+1}-x^{*}\right\| \leq \frac{\omega}{2}\left\|x^{k}-x^{*}\right\|^{2} \longrightarrow \text { quadrahic }
\end{array} \\
& \text { Conrugera }
\end{align*}
$$

Convergence of Newton's method

$$
\begin{aligned}
& 0<\left\|x^{4}-x^{*}\right\| \leq \rho \\
& \quad\left\|x^{k+1}-x^{\alpha}\right\| \leq \underbrace{\frac{w}{2}\left\|x^{n}-x^{*}\right\|}_{\leq \frac{w}{2} \rho \leq 1}\left\|x^{k}-x^{\alpha}\right\|
\end{aligned}
$$

$\Longrightarrow I^{\prime} m$ shaying in $\$_{\rho}\left(x^{x}\right)$ if x^{k} is in $B_{g}\left(x^{x}\right)$
Uniquinon: $x^{*}, x^{n * *}$ solutions

$$
\begin{gathered}
\left\|x^{x}-x^{* * \alpha}\right\| \leq \\
\quad \underbrace{\frac{\omega}{2}\left\|x^{A}-x^{*}\right\|}_{21}\left\|x^{x}-x^{* \alpha}\right\| \\
\quad \rightarrow x^{*}-x^{* \alpha}\|<\| x^{*}-x^{* \alpha} \| \\
\longrightarrow x^{*}=x^{* *}
\end{gathered}
$$

(for geneual sult on previon Page)

Newton's method-when does convergence theorem apply?

- Example 1: $f(x)=x^{3}$

$$
\begin{aligned}
x^{*} & =0 \text { solution } \\
f^{\prime}\left(x^{x}\right) & =0
\end{aligned}
$$

1, x: 0.666666666667
2, x: 0.444444444444
3, x: 0.296296296296

17, x: 0.001014959227
18, x: 0.000676639485
19, x: 0.000451092990
20, x: 0.000300728660

1, $\mathrm{x}: 0.333333333333$
2, $x: 0.111111111111$
3, $x: 0.037037037037$
4, x: 0.012345679012

16, x: 0.000000023231
17, x: 0.000000007744
18, x: 0.000000002581
19, x: 0.000000000860
20, x: 0.000000000287

Choice of initialization x^{0} is critical. Depending on the initialization, the Newton iteration might

- not converge (it could "blow up" or "oscillate" between two points)
- converge to different solutions
- fail cause it hits a point where the Jacobian is not invertible (this cannot happen if the conditions of the convergence theorem are satisfied)
- ...

Global Behavior of Newton Method

Newton's method
Convergence of Newton's method

- The "more nonlinear" a problem, the harder it is to solve. very nonlinear $\rightarrow F^{\prime}(x)$ changes

$$
\left\|F^{\prime}(\boldsymbol{x})^{-1}\left(F^{\prime}(\boldsymbol{x}+s \boldsymbol{v})-F^{\prime}(\boldsymbol{x})\right) \boldsymbol{v}\right\| \leq s \omega\|\boldsymbol{v}\|^{2} \quad \rightarrow \text { a lot } \text { large }
$$

- Computation of Jacobian $F^{\prime}\left(\boldsymbol{x}^{k}\right)$ can be costly/complicated (sometimes approximations of $F^{\prime}\left(x^{k}\right)$ are used)
- There's no reliable black-box solver for nonlinear problems; at least for higher-dimensional problems, the structure of the problem must be taken into account.
- Sometimes, continuation ideas must be used to find good initializations: Solve simpler problems first and use solution as starting point for harder problems.

Monotonicity test (affine invariant):

$$
\left\|F^{\prime}\left(x^{k}\right)^{-1} F\left(\boldsymbol{x}^{k+1}\right)\right\| \leq \bar{\Theta}\left\|F^{\prime}\left(x^{k}\right)^{-1} F\left(\boldsymbol{x}^{k}\right)\right\|, \quad \bar{\Theta}<1
$$

Damping:

$$
\boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}+\lambda_{k} \Delta \boldsymbol{x}^{k}, \quad 0<\lambda_{k} \leq 1
$$

For difficult problems, start with small λ_{k} and increase later in the iteration (close to the solution λ_{k} should be 1).
Approximative Jacobians: Use approximative Jacobians $\tilde{F}^{\prime}\left(\boldsymbol{x}^{k}\right)$, e.g., computed through finite differences.

Nonlinear versus linear problems

"Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas." or (according to Stanislav Ulam):

Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals.

Nonlinear least squares-Gauss-Newton

Assume a least squares problem, where the parameters \boldsymbol{x} do not enter linearly into the model. Instead of

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}}\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}
$$

we have with $F: D \rightarrow \mathbb{R}^{n}, D \subset \mathbb{R}^{n}$:
$\min _{\boldsymbol{x} \in \mathbb{R}^{n}} g(\boldsymbol{x}):=\frac{1}{2}\|F(\boldsymbol{x})\|^{2}, \quad$ where $F(\boldsymbol{x})_{i}=\varphi\left(t_{i}, \boldsymbol{x}\right)-b_{i}, 1 \leq i \leq m$
The (local) minimum \boldsymbol{x}^{*} of this optimization problem satisfies:

$$
g^{\prime}(\boldsymbol{x})=0, \quad g^{\prime \prime}(\boldsymbol{x}) \text { is positive definite. }
$$

Nonlinear least-squares problems

$$
g(x)=\frac{1}{2}\|F(x)\|^{2}
$$

The derivative of $g(\cdot)$ is

$$
\begin{aligned}
& g(\cdot) \text { is } \quad \llbracket=\square \\
& G(\boldsymbol{x}):=g^{\prime}(\boldsymbol{x})=\bar{F}^{\prime}(\boldsymbol{x})^{T} F(\boldsymbol{x})
\end{aligned}
$$

This is a nonlinear system in $\boldsymbol{x}, G: D \rightarrow \mathbb{R}^{n}$. Let's try to solve it using Newton's method:

$$
G^{\prime}\left(\boldsymbol{x}^{k}\right) \Delta \boldsymbol{x}^{k}=-G\left(\boldsymbol{x}^{k}\right), \quad \boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}+\Delta \boldsymbol{x}^{k}
$$

where

$$
G^{\prime}(\boldsymbol{x})=F^{\prime}(\boldsymbol{x})^{T} F^{\prime}(\boldsymbol{x})+F^{\prime \prime T}(\boldsymbol{x}) F(\boldsymbol{x}) \div \%
$$

Nonlinear least-squares problems: Example

$$
\begin{aligned}
& \left(t, b_{i}\right) \quad i=1,2,3 \text { data point } \\
& \varphi\left(t_{i} x_{1}, x_{2}\right)=\exp \left(x_{1}\right) t^{2}+x_{2}^{2} \sin (t) \\
& x=\binom{x_{1}}{x_{2}} \\
& F(x)=\left[\begin{array}{lll}
\varphi\left(t_{1}\right. & \left.x_{1}, x_{2}\right)-b_{1} \\
\varphi\left(t_{2}\right. & \cdots)-b_{2} \\
\varphi\left(b_{3}\right. & \cdots & -b_{3}
\end{array}\right] \\
& \min _{x_{1}, x_{2}} \frac{1}{2}\|F(x)\|^{2}=\frac{1}{2}\left\|\left[\begin{array}{l}
\exp \left(x_{1}\right) t_{1}^{2}+x_{2}^{2} \sin \left(t_{1}\right)-b_{1} \\
-11 \\
-t_{2}
\end{array}-1-t_{2}-b_{2}\right]\right\|^{2}
\end{aligned}
$$

Nonlinear least-squares problems: Example

$$
G(x)=F^{\prime}(x)^{\top} F(x)=\begin{array}{|}
\substack{\text { acobiar } \\
\in \mathbb{R}^{2 \times 3}}
\end{array}
$$

Gaur-Newton method

$$
\begin{gathered}
F^{\prime}\left(x^{\top} F^{\prime}(x) \Delta x=-F^{\prime}\left(x^{k}\right)^{\top} F\left(x^{k}\right)\right. \\
x^{k+1}=x^{k}+\Delta x
\end{gathered}
$$

linear least squares: $\quad A^{\top} A x=-A^{\top} b$
$F^{\prime \prime}(\boldsymbol{x})$ is a tensor. It is often neglected due to the following reasons:

- It's difficult to compute and we can use an approximate Jacobian in Newton's method.
- If the data is compatible with the model, then $F\left(\boldsymbol{x}^{*}\right)=0$ and the term involving $F^{\prime \prime}(\boldsymbol{x})$ drops out. If $\left\|F\left(\boldsymbol{x}^{*}\right)\right\|$ is small, neglecting that term might not make the convergence much slower.
- We know that $g^{\prime \prime}\left(\boldsymbol{x}^{*}\right)$ must be positive. If $F^{\prime}\left(x^{k}\right)$ has full rank, then $F^{\prime}(\boldsymbol{x})^{T} F^{\prime}(\boldsymbol{x})$ is positive and invertible.
We neglect $F^{\prime \prime}(x) F(x)$ compatible:

The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize \boldsymbol{x}^{0} and for $k=0,1, \ldots$ solve

$$
\begin{gathered}
F^{\prime}\left(\boldsymbol{x}^{k}\right)^{T} F^{\prime}\left(\boldsymbol{x}^{k}\right) \Delta \boldsymbol{x}^{k}=-F^{\prime}\left(\boldsymbol{x}^{k}\right)^{T} F\left(\boldsymbol{x}^{k}\right) \quad \text { (solve) } \\
\boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}+\Delta \boldsymbol{x}^{k} . \quad \text { (update step) }
\end{gathered}
$$

The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize \boldsymbol{x}^{0} and for $k=0,1, \ldots$ solve

$$
\begin{gathered}
F^{\prime}\left(\boldsymbol{x}^{k}\right)^{T} F^{\prime}\left(\boldsymbol{x}^{k}\right) \Delta \boldsymbol{x}^{k}=-F^{\prime}\left(\boldsymbol{x}^{k}\right)^{T} F\left(\boldsymbol{x}^{k}\right) \quad \text { (solve) } \\
\boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}+\Delta \boldsymbol{x}^{k} . \quad \text { (update step) }
\end{gathered}
$$

The solve step is the normal equation for the linear least squares problem

$$
\min _{\Delta \boldsymbol{x}}\left\|F^{\prime}\left(\boldsymbol{x}^{k}\right) \Delta \boldsymbol{x}^{k}+F\left(\boldsymbol{x}^{k}\right)\right\| .
$$

Assumptions on $F: D \subset \mathbb{R}^{n}$ open and convex, $F: D \rightarrow \mathbb{R}^{m}$, $m \geq n$ continuously differentiable with $F^{\prime}(\boldsymbol{x})$ has full rank for all \boldsymbol{x}, and let $\omega \geq 0,0 \leq \kappa^{*}<1$ such that

$$
\left\|F^{\prime}(\boldsymbol{x})^{+}\left(F^{\prime}(\boldsymbol{x}+s \boldsymbol{v})-F^{\prime}(\boldsymbol{x})\right) \boldsymbol{v}\right\| \leq s \omega\|\boldsymbol{v}\|^{2}
$$

for all $s \in[0,1], \boldsymbol{x} \in D, \boldsymbol{v} \in \mathbb{R}^{n}$ with $\boldsymbol{x}+\boldsymbol{v} \in D$.
Assumptions on x^{*} and x^{0} : Assume there exists a solution $x^{*} \in D$ of the least squares problem and a starting point $x^{0} \in D$ such that

$$
\begin{gathered}
\left\|F^{\prime}(\boldsymbol{x})^{+} F\left(\boldsymbol{x}^{*}\right)\right\| \leq \kappa^{*}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\| \\
\rho:=\left\|\boldsymbol{x}^{*}-\boldsymbol{x}^{0}\right\| \leq \frac{2\left(1-\kappa^{*}\right)}{\omega}:=\sigma
\end{gathered}
$$

Theorem: Then, the sequence \boldsymbol{x}^{k} stays in $B_{\rho}\left(\boldsymbol{x}^{*}\right)$ and $\lim _{k \rightarrow \infty} \boldsymbol{x}^{k}=\boldsymbol{x}^{*}$, and

$$
\left\|\boldsymbol{x}^{k+1}-\boldsymbol{x}^{*}\right\| \leq \frac{\omega}{2}\left\|\boldsymbol{x}^{k}-\boldsymbol{x}^{*}\right\|^{2}+\kappa^{*}\left\|\boldsymbol{x}^{k}-\boldsymbol{x}^{*}\right\|
$$

- Role of κ^{*} : Represents omission of $F^{\prime \prime}(\boldsymbol{x})$
- κ^{*} can be chosen as $0 \Rightarrow$ local quadratic convergence
- $\kappa^{*}>0$ linear convergence (thus we require $\kappa^{*}<1$).

- Damping strategy as before (better: linesearch to make guaranteed progress in minimization problem)
- There can, in principle, be multiple solutions.

Why do outliers in ${ }_{m}$ dat a not matte when wing the functional, $\sum_{i=1}^{m}\left|\Delta_{i}\right|$?

optimal model seperates the point such that the same numbly of pouts is on both sides, so outhius have (almost) no influence
If 1 minimize $\sum_{i=1}^{m} A_{1}^{2}$, outliers have a big influence as we minimize the squads.

