Numerical Methods I: Numerical optimization

Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu

Oct 19, 2017

Optimization problems

Main source: Nocedal/Wright: *Numerical Optimization*, Springer 2006. Different optimization problems:

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})$$

where $f:\mathbb{R}^n\to\mathbb{R}.$ Often, one additionally encounters constraints of the form

$$g(m{x}) = 0$$
 (equality constraints)
 $h(m{x}) \ge 0$ (inequality constraints)

- Often used: "programming" \equiv optimization
- continuous optimization ($m{x} \in \mathbb{R}^n$) versus discrete optimization (e.g., $m{x} \in \mathbb{Z}^n$)
- ▶ nonsmooth (e.g., f is not differentiable) versus smooth optimization (we assume $f \in C^2$)
- convex optimization vs. nonconvex optimization (convexity of f)

Assumptions

We assume that $f(\cdot) \in C^2$, and assume unconstrained minimization problems, i.e.:

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x}).$$

A point x^* is a global solution if

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}^*) \tag{1}$$

for all $x \in \mathbb{R}^n$, and a local solution if (1) for all x in a neighborhood of x^* .

Strict (local/global) minimizers satisfy (1) with a ">" instead of a " \geq " in a neighborhood of the point.

Necessary conditions

At a local minimum x^* holds the first-order necessary condition

 $\mathbb{R}^n \ni \nabla f(\boldsymbol{x}^*) = 0$

and the second-order (necessary) sufficient condition

 $\mathbb{R}^{n imes n}
i
abla \nabla^2 f(\boldsymbol{x}^*)$ is positive (semi-) definite.

Proof that at the minimum x holds $\nabla f(x^n) = 0$ if f is continuously difficulte: Suppose $\nabla f(x^{(n)}) \neq 0$, choose $p = -\nabla f(x)$ p^T Vf(x^m) = - || Vf(x^m)||² < 0, Since f is C'=D = T>0: $te(0,\overline{t})$ $p^{T} \nabla f(x^{a}+tp) < 0$ for all $t \in (0,T]$ Taylor: $\overline{t} \in [0,T]$: $\frac{1}{x^{+}tp} = \frac{1}{x^{+}tp} \nabla \frac{1}{x^{+}tp}$ < f(x*) ~ conhadiction!

Algorithms

To find a candidate for a minimum, we can thus solve the nonlinear equation for a stationary point:

$$G(\boldsymbol{x}) := \nabla f(\boldsymbol{x}) = 0,$$

for instance with Newton's method. Note that the Jacobian of $G({\pmb x})$ is $\nabla^2 f({\pmb x}).$

In optimization, one often prefers iterative descent algorithms that take into account the optimization structure.

Example:
$$f(x_1, x_1) = f(x) = x_1^4 + x_2^2 + x_1 x_2, f: \mathbb{R}^2 \to \mathbb{R}$$

Me creasing cond: $\nabla f(x) = 0 = \begin{pmatrix} 4x_1^3 + x_2 \\ 2x_2 + x_1 \end{pmatrix} \in \mathbb{R}^2$
 $\nabla^2 f(x) = \begin{pmatrix} 12x_1^2 & 1 \\ 1 & 2 \end{pmatrix} \in \mathbb{R}^{2x_2}$

Convex minimization

A function If $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for all x, y holds, for all $t \in [0, 1]$:

$$f(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}) \leq \underline{\lambda f(\boldsymbol{x}) + (1 - \lambda)f(\boldsymbol{y})}$$

Theorem: If f is convex, then any local minimizer x^* is also a global minimizer. If f is differentiable, then any stationary point x^* is a global minimizer.

Convex minimization $\rightarrow \exists z \in \mathbb{R}^{n} : f(z) < f(x^{*})$ Consider line segment between xx and z. The convexity implies that for all $\lambda e(q_i)^{x^{\pi}}$ $f(\Im x_{*}+(I-\Im) s) \in \Im f(x_{*})+(I-\Im) f(s) < f(x_{*})$ for all -> every neighborhood of x* contains parts $\lambda \in (0,1)$ that have a function value loss than $f(x^{\prime\prime}) \rightarrow$ Conkadichia! 2. Let x^{*} with $\nabla f(x^{*}) = 0$, but x^{*} is not global minimizer. $0 = \nabla f(x_{*}) \left(z - x_{*} \right) = \frac{q}{qy} f(x_{*} + y(z - x_{*}))$ $= \lim_{\lambda \neq 0} \frac{f(x^{+}\lambda(z-x^{*})) - f(x^{+})}{\lambda}$ $\leq \lim_{\lambda \neq 0} h \underbrace{f(z) + (1-\lambda) f(x^{*}) - f(x^{*})}_{\lambda \neq 0} = f(z) - f(x^{*}) < O$ Contradictia.¹
8/29

Basic descent algorithm:

- 1. Initialize starting point x^0 , set k = 1.
- 2. For $k = 0, 1, 2, \ldots$, find a descent direction d^k
- 3. Find a step length $\alpha_k > 0$ for the update

$$\boldsymbol{x}^{k+1} := \boldsymbol{x}^k + \alpha_k \boldsymbol{d}^k$$

such that $f(\boldsymbol{x}^{k+1}) < f(\boldsymbol{x}^k)$. Set k := k+1 and repeat.

Idea: Instead of solving an *n*-dim. minimization problem, (approximately) solve a sequence of 1-dim. problems:

- Initialization: As close as possible to x^* .
- Descent direction: Direction in which function decreases locally.
- Step length: Want to make large, but not too large steps.
- Check for descent: Make sure you make progress towards a (local) minimum.

Initialization: Ideally close to the minimizer. Solution depends, in general, on initialization (in the presence of multiple local minima).

Descent algorithm d descent direction if $\nabla f(x^{t})^{T} d < 0$

Directions, in which the function decreases (locally) are called descent directions.

Steepest descent direction:

$$\boldsymbol{d}^k = -\nabla f(\boldsymbol{x}^k)$$

• When $B_k \in \mathbb{R}^{n \times n}$ is positive definite, then

$$\boldsymbol{d}^k = -B_k^{-1} \nabla f(\boldsymbol{x}^k)$$

is the quasi-Newton descent direction.

▶ When $H_k = H(\boldsymbol{x}^k) = \nabla^2 f(\boldsymbol{x}^k)$ is positive definite, then

$$\boldsymbol{d}^k = -H_k^{-1} \nabla f(\boldsymbol{x}^k)$$

is the Newton descent direction. At a local minimum, $H(x^*)$ is positive (semi)definite.

Descent algorithm x e R, pe Rh Why is the negative gradient the steepest direction? $gk=f(x^{k}+xp)=f(x^{k})+xp^{T}\nabla f(x^{k})+$ $+\frac{x^2}{2}p^T \nabla^2_{\perp}(x+tp)p$ scale at which this 21 4 function changes depends on pT VF(x4) $t \in (0, \varkappa)$ moundized moundized mogative gradied direction (f ∈ C²) min p^T $\nabla f(x^{h})$ (f ∈ C²) - $\nabla f(x^{h})$ min p^T $\nabla f(x^{h})$ -> choox p=-Vf(xh) "Steeped Thus: - VP(ch) I make inequality on equality

Descent algorithm Newton method for optimization

Idea behind Newton's method in optimization: Instead of finding minimum of f, find minimum of quadratic approximation of faround current point: $c \rightarrow q^{\top} d + \frac{1}{2} d^{\top} + d$ $q_k(d) = f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d$ χ^k Minimum is (provided $\nabla^2 f(x^k)$ is spd): $d = -\nabla^2 f(x^k)^{-1} \nabla f(x^k)$. $d \neq H_q$

is the Newton search direction. Since this is the minimum of the quadratic approximation, $\alpha_k = 1$ is the "optimal" step length.

Step length: Need to choose step length $\alpha_k > 0$ in

$$\boldsymbol{x}^{k+1} := \boldsymbol{x}^k + \alpha_k \boldsymbol{d}^k$$

Ideally: Find minimum α of 1-dim. problem

$$\min_{\alpha>0} f(\boldsymbol{x}^k + \alpha \boldsymbol{d}^k).$$

It is not necessary to find the exact minimum.

Step length (continued): Find α_k that satisfies the Armijo condition:

$$f(\boldsymbol{x}^{k} + \alpha_{k}\boldsymbol{d}^{k}) \leq f(\boldsymbol{x}^{k}) + c_{1}\alpha_{k}\nabla f(\boldsymbol{x}^{k})^{T}\boldsymbol{d}^{k},$$
(2)

where $c_1 \in (0,1)$ (usually chosen rather small, e.g., $c_1 = 10^{-4}$). Additionally, one often uses the gradient condition

$$\nabla f(\boldsymbol{x}^k + \alpha_k \boldsymbol{d}^k)^T \boldsymbol{d}^k \ge c_2 \nabla f(\boldsymbol{x}^k)^T \boldsymbol{d}^k$$
(3)

with $c_2 \in (c_1, 1)$.

The two conditions (2) and (3) are called Wolfe conditions.

Armijo/Wolfe conditions $c_2 V_1(x)^T d$ slope negative because d'is a descert direction TOME $f(x^k) + c_i \times \nabla f(x^k)^T d^k$ $g(k) = f(x^{k} + \alpha d^{k})$ Sahisfy Amigo cond. Amyo schipfied satisfies Wolfe cond Welf and

Convergence of line search methods

Denote the angle between \boldsymbol{d}^k and $-\nabla f(\boldsymbol{x}^k)$ by Θ_k :

$$\cos(\Theta_k) = \frac{-\nabla f(\boldsymbol{x}^k)^T \boldsymbol{d}^k}{\|\nabla f(\boldsymbol{x}^k)\| \| \boldsymbol{d}^k \|}.$$

Assumptions on $f : \mathbb{R}^n \to \mathbb{R}$: continuously differentiable, derivative is Lipschitz-continuous, f is bounded from below. Method: descent algorithm with Wolfe-conditions. Then:

$$\sum_{k\geq 0}\cos^2(\Theta_k)\|
abla f(oldsymbol{x}^k)\|^2<\infty.$$

In particular: If $\cos(\Theta_k) \ge \delta > 0$, then $\lim_{k\to\infty} \|\nabla f(\boldsymbol{x}^k)\| = 0$. Note that this does not imply that \boldsymbol{x}^k converges.

Alternative to Wolfe step length: Find α_k that satisfies the Armijo condition:

$$f(\boldsymbol{x}^{k} + \alpha_{k}\boldsymbol{d}^{k}) \leq f(\boldsymbol{x}^{k}) + c_{1}\alpha_{k}\nabla f(\boldsymbol{x}^{k})^{T}\boldsymbol{d}^{k},$$
(4)

where $c_1 \in (0, 1)$.

Use backtracking linesearch to find a step length that is large enough:

- Start with (large) step length $\alpha_k^0 > 0$.
- ▶ If it satisfies (4), accept the step length.
- Else, compute $\alpha_k^{i+1} := \rho \alpha_k^i$ with $\rho < 1$ (usually, $\rho = 0.5$) and go back to previous step.

This also leads to a globally converging method to a stationary point.

Backtracking

Convergence rates

Let us consider a simple case, where f is quadratic:

$$f(\boldsymbol{x}) := \frac{1}{2} \boldsymbol{x}^T Q \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x},$$

where Q is spd. The gradient is $\nabla f(x) = Qx - b$, and minimizer x^* is solution to Qx = b. Using exact line search, the convergence is:

$$\|oldsymbol{x}^{k+1}-oldsymbol{x}^*\|_Q^2 \leq rac{\lambda_{ ext{max}}-\lambda_{ ext{min}}}{\lambda_{ ext{max}}+\lambda_{ ext{min}}}\|oldsymbol{x}^k-oldsymbol{x}^*\|_Q^2$$

(linear convergence with rate depending on eigenvalues of Q)

Convergence of steepest descent

Convergence of steepest descent

Convergence rates

Newton's method: Assumptions on f: $2 \times \text{differentiable}$ with Lipschitz-continuous Hessian $\nabla^2 f(x^k)$. Hessian is positive definite in a neighborhood around solution x^* .

Assumptions on starting point: x^0 sufficient close to x^* .

Then: Quadratic convergence of Newton's method with $\alpha_k = 1$, and $\|\nabla f(\boldsymbol{x}^k)\| \to 0$ quadratically.

Equivalent to Newton's method for solving $\nabla f(\boldsymbol{x}) = 0$, if Hessian is positive.

How many iterations does Newton need for quadratic problems?

Summary of Newton methods and variants

- Newton to solve nonlinear equation F(x) = 0.
- Newton to solve optimization problem is equivalent to solving for the stationary point ∇f(x) = 0, provided Hessian is positive and full steps are used (compare also convergence result).
- ► Optimization perspective to solve ∇f(x) provided additional information.
- Gauss-Newton method for nonlinear least squares problem is a specific quasi-Newton method.