Numerical Methods I: Numerical optimization

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

Oct 19, 2017

Different optimization problems:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Often, one additionally encounters constraints of the form

$$
\begin{array}{lr}
g(\boldsymbol{x})=0 & \text { (equality constraints) } \\
h(\boldsymbol{x}) \geq 0 & \text { (inequality constraints) }
\end{array}
$$

- Often used: "programming" \equiv optimization
- continuous optimization $\left(\boldsymbol{x} \in \mathbb{R}^{n}\right)$ versus discrete optimization (e.g., $\boldsymbol{x} \in \mathbb{Z}^{n}$)
- nonsmooth (e.g., f is not differentiable) versus smooth optimization (we assume $f \in C^{2}$)
- convex optimization vs. nonconvex optimization (convexity of f)

Continuous unconstrained optimization

We assume that $f(\cdot) \in C^{2}$, and assume unconstrained minimization problems, i.e.:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

A point \boldsymbol{x}^{*} is a global solution if

$$
\begin{equation*}
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right) \tag{1}
\end{equation*}
$$

for all $\boldsymbol{x} \in \mathbb{R}^{n}$, and a local solution if (1) for all \boldsymbol{x} in a neighborhood of \boldsymbol{x}^{*}.

Strict (local/global) minimizers satisfy (1) with a " $>$ " instead of a " \geq " in a neighborhood of the point.

Continuous unconstrained optimization

Continuous unconstrained optimization
Necessary conditions
At a local minimum \boldsymbol{x}^{*} holds the first-order necessary condition

$$
\mathbb{R}^{n} \ni \nabla f\left(\boldsymbol{x}^{*}\right)=0
$$

and the second-order (necessary) sufficient condition

$$
\mathbb{R}^{n \times n} \ni \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \quad \text { is positive (semi-) definite. }
$$

Proof that at the minimum x^{x} holds $\nabla f\left(x^{*}\right)=0$ if f is continuously diff'able:
Suppox $\nabla f\left(x^{\infty}\right) \neq 0$, choose $p=-\nabla f\left(x^{*}\right)$
$p^{T} \nabla f\left(x^{x}\right)=-\left\|\nabla f\left(x^{x}\right)\right\|^{2}<0$, Since f is $C^{\prime} \Longrightarrow \exists T>0$:
$p^{\top} \nabla f\left(x^{x}+t p\right)<0$ for all $t \in(0, T]$
Taylor: $\bar{t} \in[0, T]: f\left(x^{x}+E_{p}\right)=f\left(x^{a}\right)+\bar{t} \underbrace{p^{\top} \nabla f\left(x^{n}+t_{p}\right)}_{<0}$

$$
<f\left(x^{*}\right) \rightarrow \text { conkodictia! }
$$

$5 / 29$

Continuous unconstrained optimization
Algorithms
To find a candidate for a minimum, we can thus solve the nonlinear equation for a stationary point:

$$
G(\boldsymbol{x}):=\nabla f(\boldsymbol{x})=0
$$

for instance with Newton's method. Note that the Jacobian of $G(\boldsymbol{x})$ is $\nabla^{2} f(\boldsymbol{x})$.

In optimization, one often prefers iterative descent algorithms that take into account the optimization structure.
Example: $f\left(x_{1}, x_{0}\right)=f(x)=x_{1}^{4}+x_{2}^{2}+x_{1} x_{2}, f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Meccesaly cold: $\nabla f(x)=0=\binom{4 x_{1}^{3}+x_{2}}{2 x_{2}+x_{1}} \in R^{2}$

$$
\nabla^{2}\left\{(x)=\left(\begin{array}{cc}
2_{x}^{2} & 1 \\
1 & 2
\end{array}\right) \in e^{\left.2^{2} 2_{2} x_{1}+x_{1}\right)}\right.
$$

Convex minimization
A function If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for all $\boldsymbol{x}, \boldsymbol{y}$ holds, for all $t \in[0,1]$:

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \underbrace{\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})}
$$

Theorem: If f is convex, then any local minimizer \boldsymbol{x}^{*} is also a global minimizer. If f is differentiable, then any stationary point x^{*} is a global minimizer.
Proof: 1.) Show that any local. minimum is also a global minimum. Proof by contradiction: Let x^{*} le a local

Convex minimization

$$
\rightarrow \exists z \in \mathbb{R}^{n}: \quad f(z)<f\left(x^{x}\right)
$$

Consider line segment between x^{x} and z.
The convexity implies that for all $\lambda \in(a, 1)^{x^{3}}$
$f\left(\lambda x^{* *}+(1-\lambda) z\right) \leqslant \lambda f\left(x^{*}\right)+(1-\lambda) f(z)<f\left(x^{*}\right)$ for all
\rightarrow every neighborhood of x^{*} contains pours $\quad \lambda \in(0,1)$ that have a function value less than $f\left(x^{*}\right) \rightarrow$
2.) Let x^{*} with $\nabla f\left(x^{n}\right)=0$, but x^{n} is conkadictia! not global minimizer.

$$
\begin{aligned}
& 0=\nabla f\left(x^{*}\right)\left(z-x^{*}\right) \left.=\frac{d}{d \lambda} f\left(x^{*}+\lambda\left(z-x^{*}\right)\right) \right\rvert\, \\
&=\lim _{\lambda \downarrow 0} \frac{f\left(x^{*}+\lambda\left(z-x^{*}\right)\right)-f\left(x^{*}\right)^{*}}{\lambda} \\
& \leq \lim _{\lambda \downarrow 0}^{\lambda} \frac{\lambda(z)+(1-\lambda) f\left(x^{*}\right)-f\left(x^{*}\right)}{\lambda}=f(z)-f\left(\alpha^{*}\right)<0 \\
& \text { conteadiciaia! }
\end{aligned}
$$

Descent algorithm

Basic descent algorithm:

1. Initialize starting point \boldsymbol{x}^{0}, set $k=1$.
2. For $k=0,1,2, \ldots$, find a descent direction \boldsymbol{d}^{k}
3. Find a step length $\alpha_{k}>0$ for the update

$$
\boldsymbol{x}^{k+1}:=\boldsymbol{x}^{k}+\alpha_{k} \boldsymbol{d}^{k}
$$

such that $f\left(\boldsymbol{x}^{k+1}\right)<f\left(\boldsymbol{x}^{k}\right)$. Set $k:=k+1$ and repeat.

Descent algorithm

Idea: Instead of solving an n-dim. minimization problem, (approximately) solve a sequence of 1-dim. problems:

- Initialization: As close as possible to \boldsymbol{x}^{*}.
- Descent direction: Direction in which function decreases locally.
- Step length: Want to make large, but not too large steps.
- Check for descent: Make sure you make progress towards a (local) minimum.

Descent algorithm

Initialization: Ideally close to the minimizer. Solution depends, in general, on initialization (in the presence of multiple local minima).

Directions, in which the function decreases (locally) are called descent directions.

- Steepest descent direction:

$$
\boldsymbol{d}^{k}=-\nabla f\left(\boldsymbol{x}^{k}\right)
$$

- When $B_{k} \in \mathbb{R}^{n \times n}$ is positive definite, then

$$
\boldsymbol{d}^{k}=-B_{k}^{-1} \nabla f\left(\boldsymbol{x}^{k}\right)
$$

per. def: $\begin{aligned} &(x, B x)>0 \\ & \forall x\end{aligned}$
is the quasi-Newton descent direction.

- When $H_{k}=H\left(\boldsymbol{x}^{k}\right)=\nabla^{2} f\left(\boldsymbol{x}^{k}\right)$ is positive definite, then

$$
\boldsymbol{d}^{k}=-H_{k}^{-1} \nabla f\left(\boldsymbol{x}^{k}\right)
$$

is the Newton descent direction. At a local minimum, $H\left(\boldsymbol{x}^{*}\right)$ is positive (semi)definite.

Descent algorithm
Why is the negative gradient the steepest direction?

$$
\alpha \in \mathbb{R}, p \in \mathbb{R}^{n}
$$

$g(k)=f\left(x^{k}+\alpha p\right)=f\left(x^{k}\right)+\alpha p^{\top} \nabla f\left(x^{k}\right)+$

$$
+\frac{\alpha^{2}}{2} p^{\top} \nabla^{2} f(x+t p) p
$$

rate at which this
function changes depends on $p^{\top} \nabla f\left(x^{l}\right)$

$$
\begin{gathered}
t \in(0, \alpha) \\
\left(f \in c^{2}\right)
\end{gathered}
$$

\rightarrow chaos $p=-\nabla f\left(x^{k}\right)$ "steepest
"steepest
Thus: monetized

$$
\begin{aligned}
& \min _{p} p^{\top} \nabla f\left(x^{k}\right),\|\rho\|=1\left|p^{\top} \nabla f\left(x^{k}\right)\right| \leq \\
& \|p\|\left\|\nabla f\left(x^{n}\right)\right\|
\end{aligned}
$$

Descent algorithm

Idea behind Newton's method in optimization: Instead of finding minimum of f, find minimum of quadratic approximation of f around current point:

$$
c+g^{\top} d+\frac{1}{2} d^{\top} H d
$$

$$
q_{k}(\boldsymbol{d})=f\left(\boldsymbol{x}^{k}\right)+\nabla f\left(\boldsymbol{x}^{k}\right)^{T} \boldsymbol{d}+\frac{1}{2} \boldsymbol{d}^{T} \nabla^{2} f\left(\boldsymbol{x}^{k}\right) \boldsymbol{d}
$$

$\chi^{k_{i} \mid V i l i n i m u m ~ i s ~(p r o v i d e d ~} \nabla^{2} f\left(x^{k}\right)$ is spd):

$$
d=-\nabla^{2} f\left(x^{k}\right)^{-1} \nabla f\left(\boldsymbol{x}^{k}\right) . \quad d z^{-H} g
$$

is the Newton search direction. Since this is the minimum of the quadratic approximation, $\alpha_{k}=1$ is the "optimal" step length.

Step length: Need to choose step length $\alpha_{k}>0$ in

$$
\boldsymbol{x}^{k+1}:=\boldsymbol{x}^{k}+\alpha_{k} \boldsymbol{d}^{k}
$$

Ideally: Find minimum α of 1-dim. problem
$\ln I D$:

$$
\min _{\alpha>0} f\left(\boldsymbol{x}^{k}+\alpha \boldsymbol{d}^{k}\right)
$$

It is not necessary to find the exact minimum.

Descent algorithm

Step length (continued): Find α_{k} that satisfies the Armijo condition:

$$
\begin{equation*}
f\left(\boldsymbol{x}^{k}+\alpha_{k} \boldsymbol{d}^{k}\right) \leq f\left(\boldsymbol{x}^{k}\right)+c_{1} \alpha_{k} \nabla f\left(\boldsymbol{x}^{k}\right)^{T} \boldsymbol{d}^{k}, \tag{2}
\end{equation*}
$$

where $c_{1} \in(0,1)$ (usually chosen rather small, e.g., $c_{1}=10^{-4}$).
Additionally, one often uses the gradient condition

$$
\begin{equation*}
\nabla f\left(\boldsymbol{x}^{k}+\alpha_{k} \boldsymbol{d}^{k}\right)^{T} \boldsymbol{d}^{k} \geq c_{2} \nabla f\left(\boldsymbol{x}^{k}\right)^{T} \boldsymbol{d}^{k} \tag{3}
\end{equation*}
$$

with $c_{2} \in\left(c_{1}, 1\right)$.
The two conditions (2) and (3) are called Wolfe conditions.

Armijo/ Wolfe conditions $c_{2} \nabla f(x)^{\top} d$

Denote the angle between \boldsymbol{d}^{k} and $-\nabla f\left(\boldsymbol{x}^{k}\right)$ by Θ_{k} :

$$
\cos \left(\Theta_{k}\right)=\frac{-\nabla f\left(\boldsymbol{x}^{k}\right)^{T} \boldsymbol{d}^{k}}{\left\|\nabla f\left(\boldsymbol{x}^{k}\right)\right\|\left\|\boldsymbol{d}^{k}\right\|}
$$

Assumptions on $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$: continuously differentiable, derivative is Lipschitz-continuous, f is bounded from below.
Method: descent algorithm with Wolfe-conditions.
Then:

$$
\sum_{k \geq 0} \cos ^{2}\left(\Theta_{k}\right)\left\|\nabla f\left(\boldsymbol{x}^{k}\right)\right\|^{2}<\infty
$$

In particular: If $\cos \left(\Theta_{k}\right) \geq \delta>0$, then $\lim _{k \rightarrow \infty}\left\|\nabla f\left(\boldsymbol{x}^{k}\right)\right\|=0$.
Note that this does not imply that \boldsymbol{x}^{k} converges.

Descent algorithm

Alternative to Wolfe step length: Find α_{k} that satisfies the Armijo condition:

$$
\begin{equation*}
f\left(\boldsymbol{x}^{k}+\alpha_{k} \boldsymbol{d}^{k}\right) \leq f\left(\boldsymbol{x}^{k}\right)+c_{1} \alpha_{k} \nabla f\left(\boldsymbol{x}^{k}\right)^{T} \boldsymbol{d}^{k} \tag{4}
\end{equation*}
$$

where $c_{1} \in(0,1)$.
Use backtracking linesearch to find a step length that is large enough:

- Start with (large) step length $\alpha_{k}^{0}>0$.
- If it satisfies (4), accept the step length.
- Else, compute $\alpha_{k}^{i+1}:=\rho \alpha_{k}^{i}$ with $\rho<1$ (usually, $\rho=0.5$) and go back to previous step.
This also leads to a globally converging method to a stationary point.

Backtracking

Descent algorithm

Let us consider a simple case, where f is quadratic:

$$
f(\boldsymbol{x}):=\frac{1}{2} \boldsymbol{x}^{T} Q \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}
$$

where Q is spd. The gradient is $\nabla f(x)=Q \boldsymbol{x}-b$, and minimizer \boldsymbol{x}^{*} is solution to $Q \boldsymbol{x}=\boldsymbol{b}$. Using exact line search, the convergence is:

$$
\left\|\boldsymbol{x}^{k+1}-\boldsymbol{x}^{*}\right\|_{Q}^{2} \leq \frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}\left\|\boldsymbol{x}^{k}-\boldsymbol{x}^{*}\right\|_{Q}^{2}
$$

(linear convergence with rate depending on eigenvalues of Q)

Descent algorithms

Convergence of steepest descent

Descent algorithms
Convergence of steepest descent

Descent algorithm

Newton's method: Assumptions on f: $2 \times$ differentiable with Lipschitz-continuous Hessian $\nabla^{2} f\left(\boldsymbol{x}^{k}\right)$. Hessian is positive definite in a neighborhood around solution \boldsymbol{x}^{*}.

Assumptions on starting point: \boldsymbol{x}^{0} sufficient close to \boldsymbol{x}^{*}.
Then: Quadratic convergence of Newton's method with $\alpha_{k}=1$, and $\left\|\nabla f\left(\boldsymbol{x}^{k}\right)\right\| \rightarrow 0$ quadratically.

Equivalent to Newton's method for solving $\nabla f(\boldsymbol{x})=0$, if Hessian is positive.

How many iterations does Newton need for quadratic problems?

- Newton to solve nonlinear equation $F(\boldsymbol{x})=0$.
- Newton to solve optimization problem is equivalent to solving for the stationary point $\nabla f(\boldsymbol{x})=0$, provided Hessian is positive and full steps are used (compare also convergence result).
- Optimization perspective to solve $\nabla f(\boldsymbol{x})$ provided additional information.
- Gauss-Newton method for nonlinear least squares problem is a specific quasi-Newton method.

