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Optimization problems
Main source: Nocedal /Wright: Numerical Optimization, Springer 2006.
Different optimization problems:

min f(x)

where f : R™ — R. Often, one additionally encounters constraints

of the form
g(x) =0 (equality constraints)
h(x) >0 (inequality constraints)

» Often used: “programming” = optimization

» continuous optimization (x € R™) versus discrete optimization
(e.g, xeZ™)

» nonsmooth (e.g., f is not differentiable) versus smooth
optimization (we assume f € C?)

» convex optimization vs. nonconvex optimization (convexity of

f)



Continuous unconstrained optimization

Assumptions

We assume that f(-) € C2, and assume unconstrained
minimization problems, i.e.:

min f(z).

A point x* is a global solution if

flz) > f(z") (1)
for all € R™, and a local solution if (1) for all « in a
neighborhood of x*.

Strict (local/global) minimizers satisfy (1) with a “>" instead of a
“>""in a neighborhood of the point.



Continuous unconstrained optimization
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Continuous unconstrained optimization
Necessary conditions
At a local minimum x* holds the first-order necessary condition

R"> Vf(z*) =0
and the second-order (necessary) sufficient condition
R™ " 5 V2f(x*) is positive (semi-) definite.
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Continuous unconstrained optimization
Algorithms

To find a candidate for a minimum, we can thus solve the
nonlinear equation for a stationary point:
G(x) = Vf(z) =0,

for instance with Newton's method. Note that the Jacobian of
G(zx) is Vif(x).

In optimization, one often prefers iterative descent algorithms that
take into account the optimization structure.
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Convex minimization

A function If f: R"™ — R is convex if for all ,y holds, for all
t€[0,1]:

fOz+ (1 =Ny) <Af(x)+(1—N)f(y)

Theorem: If f is convex\then any local minimizer x* is also a
global minimizer. If f is differentiable, then any stationary point
x* is a global minimizer.
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Convex minimization
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Descent algorithm

Basic descent algorithm:

1. Initialize starting point 2°, set k = 1.
2. For k=0,1,2,..., find a descent direction d*
3. Find a step length aj > 0 for the update

it = 2F 4 apdF

such that f(z**!) < f(z*). Set k := k + 1 and repeat.
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Descent algorithm

Idea: Instead of solving an n-dim. minimization problem,
(approximately) solve a sequence of 1-dim. problems:

> Initialization: As close as possible to x*.

» Descent direction: Direction in which function decreases
locally.

» Step length: Want to make large, but not too large steps.

» Check for descent: Make sure you make progress towards a
(local) minimum.



Descent algorithm

Initialization: ldeally close to the minimizer. Solution depends, in
general, on initialization (in the presence of multiple local minima).
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Descent algorithm d dvet diehu- § VL@YOL<Q

Directions, in which the function decreases (locally) are called

descent directions. .

> Steepest descent direction: ’(

d* = -V f(a")
» When Bj, € R™ " is positive definite, then
ftm.ow : <>< 3&\'>O
d" = -B,'Vf(z") x
is the quasi-Newton descent direction.
» When Hy = H(zF) = V2f(z") is positive definite, then
d* = —H, 'V f(a")

is the Newton descent direction. At a local minimum, H(x*)
is positive (semi)definite.
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Descent algorithm
Why is the negative gradient the steepest direction? o C K\ ’PG [Y&

=4 (x e wp) = L) v V) 4
+ % P \72(“}01’3?
ok ab whid thus

pnckia chong, dypnda o~ VRL) e
—> ez fz,vgﬂ’ "shapel (hec?)

- d\'vtc\-(ou\l\
S
|-?3wk ) o o
Thuet vugabive gradil direcke 8 e OIS

l' TV ke =
e 7 41&)% “l)lP” e 7)
—o ~ U b gy o Syl



Descent algorithm

Newton method for optimization

Idea behind Newton's method in optimization: Instead of finding
minimum of f, find minimum of quadratic approximation of f

around current point:
e+ g Td +z d H ok

ar(d) = (") + Vf(")d + dTV2f( “)d

inimum is (provided V2 f(z*) is spd):
d= V(@) 'V ("), de—(%

is the Newton search direction. Since this is the minimum of the
quadratic approximation, a = 1 is the “optimal” step length.
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Descent algorithm

Step length: Need to choose step length az > 0 in

"t = 2F + oy dF

Ideally: Find minimum « of 1-dim. problem 1D+
L k
mmf(:ck + adk) g&)euﬁ +¢Ld.)
a>0

It is not necessary to find the exact minimum.
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Descent algorithm

Step length (continued): Find «y that satisfies the Armijo
condition:

fab + apdb) < f(2b) + 1V f(2F) T dP, (2)

where ¢; € (0,1) (usually chosen rather small, e.g., ¢; = 107%).

Additionally, one often uses the gradient condition
V(" + apd)d" > oV f(2F)"db (3)

with ¢y € (Cl, 1).
The two conditions (2) and (3) are called Wolfe conditions.
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Armijo/Wolfe conditions
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Descent algorithm

Convergence of line search methods .—Vl(,(“')
Denote the angle between d* and —V f(x*) by ©}: O
a
_ k Tdk
IV f(&®)l[| "]l

Assumptions on f : R™ — R: continuously differentiable, derivative
is Lipschitz-continuous, f is bounded from below.

Method: descent algorithm with Wolfe-conditions.

Then:

> cos’(O)[[V f(@")|I? < co.

k>0
In particular: If cos(©y) > & > 0, then limy_,o | V.f(zF)|| = 0.

Note that this does not imply that 2 converges.




Descent algorithm

Alternative to Wolfe step length: Find «j that satisfies the Armijo
condition:

f@® + apdh) < f(¥) + 1,V f(a*) " dP, (4)

where ¢; € (0,1).

Use backtracking linesearch to find a step length that is large
enough:

» Start with (large) step length o > 0.

» If it satisfies (4), accept the step length.

> Else, compute o} := pai with p < 1 (usually, p = 0.5) and

go back to previous step.

This also leads to a globally converging method to a stationary
point.



Backtracking
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Descent algorithm

Convergence rates

Let us consider a simple case, where f is quadratic:

1
f(z) = inQ:c — bz,
where @ is spd. The gradient is V f(z) = Qx — b, and minimizer
x* is solution to Qx = b. Using exact line search, the convergence
is:
Amax — Ami
k+1 ¥ 2 < max min k
£ le= 3 > |l

(linear convergence with rate depending on eigenvalues of Q)
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Descent algorithms

Convergence of steepest descent
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Descent algorithms

Convergence of steepest descent
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Descent algorithm

Convergence rates

Newton's method: Assumptions on f: 2xdifferentiable with
Lipschitz-continuous Hessian V2 f(2*). Hessian is positive definite
in a neighborhood around solution x*.

Assumptions on starting point: & sufficient close to x*.

Then: Quadratic convergence of Newton's method with o = 1,
and |V f(z*)|| — 0 quadratically.

Equivalent to Newton's method for solving V f(x) = 0, if Hessian
is positive.

How many iterations does Newton need for quadratic problems?



Summary of Newton methods and variants

» Newton to solve nonlinear equation F'(x) = 0.

> Newton to solve optimization problem is equivalent to solving
for the stationary point V f(x) = 0, provided Hessian is
positive and full steps are used (compare also convergence
result).

» Optimization perspective to solve V f(x) provided additional
information.

> Gauss-Newton method for nonlinear least squares problem is a
specific quasi-Newton method.



