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Optimization problems
Main source: Nocedal/Wright: Numerical Optimization, Springer 2006.

Di↵erent optimization problems:

min

x2Rn
f(x)

where f : Rn ! R. Often, one additionally encounters constraints
of the form

g(x) = 0 (equality constraints)

h(x) � 0 (inequality constraints)

I Often used: “programming” ⌘ optimization
I continuous optimization (x 2 Rn) versus discrete optimization

(e.g., x 2 Zn)
I nonsmooth (e.g., f is not di↵erentiable) versus smooth

optimization (we assume f 2 C2)
I convex optimization vs. nonconvex optimization (convexity of

f)
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Continuous unconstrained optimization
Assumptions

We assume that f(·) 2 C2, and assume unconstrained
minimization problems, i.e.:

min

x2Rn
f(x).

A point x⇤ is a global solution if

f(x) � f(x⇤
) (1)

for all x 2 Rn, and a local solution if (1) for all x in a
neighborhood of x⇤.

Strict (local/global) minimizers satisfy (1) with a “>” instead of a
“�” in a neighborhood of the point.
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Continuous unconstrained optimization
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Continuous unconstrained optimization
Necessary conditions

At a local minimum x

⇤ holds the first-order necessary condition

Rn 3 rf(x⇤
) = 0

and the second-order (necessary) su�cient condition

Rn⇥n 3 r2f(x⇤
) is positive (semi-) definite.
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Continuous unconstrained optimization
Algorithms

To find a candidate for a minimum, we can thus solve the
nonlinear equation for a stationary point:

G(x) := rf(x) = 0,

for instance with Newton’s method. Note that the Jacobian of
G(x) is r2f(x).

In optimization, one often prefers iterative descent algorithms that
take into account the optimization structure.
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Convex minimization

A function If f : Rn ! R is convex if for all x,y holds, for all
t 2 [0, 1]:

f(�x+ (1� �)y)  �f(x) + (1� �)f(y)

Theorem: If f is convex, then any local minimizer x⇤ is also a
global minimizer. If f is di↵erentiable, then any stationary point
x

⇤ is a global minimizer.
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Convex minimization
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Descent algorithm

Basic descent algorithm:

1. Initialize starting point x0, set k = 1.

2. For k = 0, 1, 2, . . ., find a descent direction d

k

3. Find a step length ↵k > 0 for the update

x

k+1

:= x

k
+ ↵kd

k

such that f(xk+1

) < f(xk
). Set k := k + 1 and repeat.
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Descent algorithm

Idea: Instead of solving an n-dim. minimization problem,
(approximately) solve a sequence of 1-dim. problems:

I Initialization: As close as possible to x

⇤.

I Descent direction: Direction in which function decreases
locally.

I Step length: Want to make large, but not too large steps.

I Check for descent: Make sure you make progress towards a
(local) minimum.
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Descent algorithm

Initialization: Ideally close to the minimizer. Solution depends, in
general, on initialization (in the presence of multiple local minima).
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Descent algorithm

Directions, in which the function decreases (locally) are called
descent directions.

I Steepest descent direction:

d

k
= �rf(xk

)

I When Bk 2 Rn⇥n is positive definite, then

d

k
= �B�1

k rf(xk
)

is the quasi-Newton descent direction.

I When Hk = H(x

k
) = r2f(xk

) is positive definite, then

d

k
= �H�1

k rf(xk
)

is the Newton descent direction. At a local minimum, H(x

⇤
)

is positive (semi)definite.
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Descent algorithm
Why is the negative gradient the steepest direction?
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Descent algorithm
Newton method for optimization

Idea behind Newton’s method in optimization: Instead of finding
minimum of f , find minimum of quadratic approximation of f
around current point:

qk(d) = f(xk
) +rf(xk

)

T
d+

1

2

d

Tr2f(xk
)d

Minimum is (provided r2f(xk
) is spd):

d = �r2f(xk
)

�1rf(xk
).

is the Newton search direction. Since this is the minimum of the
quadratic approximation, ↵k = 1 is the “optimal” step length.
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Descent algorithm

Step length: Need to choose step length ↵k > 0 in

x

k+1

:= x

k
+ ↵kd

k

Ideally: Find minimum ↵ of 1-dim. problem

min

↵>0

f(xk
+ ↵dk

).

It is not necessary to find the exact minimum.
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Descent algorithm

Step length (continued): Find ↵k that satisfies the Armijo
condition:

f(xk
+ ↵kd

k
)  f(xk

) + c
1

↵krf(xk
)

T
d

k, (2)

where c
1

2 (0, 1) (usually chosen rather small, e.g., c
1

= 10

�4).

Additionally, one often uses the gradient condition

rf(xk
+ ↵kd

k
)

T
d

k � c
2

rf(xk
)

T
d

k (3)

with c
2

2 (c
1

, 1).

The two conditions (2) and (3) are called Wolfe conditions.
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Armijo/Wolfe conditions
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Descent algorithm
Convergence of line search methods

Denote the angle between d

k and �rf(xk
) by ⇥k:

cos(⇥k) =
�rf(xk

)

T
d

k

krf(xk
)kkdkk

.

Assumptions on f : Rn ! R: continuously di↵erentiable, derivative
is Lipschitz-continuous, f is bounded from below.
Method: descent algorithm with Wolfe-conditions.
Then: X

k�0

cos

2

(⇥k)krf(xk
)k2 < 1.

In particular: If cos(⇥k) � � > 0, then limk!1 krf(xk
)k = 0.

Note that this does not imply that xk converges.
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Descent algorithm

Alternative to Wolfe step length: Find ↵k that satisfies the Armijo
condition:

f(xk
+ ↵kd

k
)  f(xk

) + c
1

↵krf(xk
)

T
d

k, (4)

where c
1

2 (0, 1).

Use backtracking linesearch to find a step length that is large
enough:

I Start with (large) step length ↵0

k > 0.

I If it satisfies (4), accept the step length.

I Else, compute ↵i+1

k := ⇢↵i
k with ⇢ < 1 (usually, ⇢ = 0.5) and

go back to previous step.

This also leads to a globally converging method to a stationary
point.
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Backtracking
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Descent algorithm
Convergence rates

Let us consider a simple case, where f is quadratic:

f(x) :=
1

2

x

TQx� b

T
x,

where Q is spd. The gradient is rf(x) = Qx� b, and minimizer
x

⇤ is solution to Qx = b. Using exact line search, the convergence
is:

kxk+1 � x

⇤k2Q  �
max

� �
min

�
max

+ �
min

kxk � x

⇤k2Q

(linear convergence with rate depending on eigenvalues of Q)
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Descent algorithms
Convergence of steepest descent
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Descent algorithms
Convergence of steepest descent
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Descent algorithm
Convergence rates

Newton’s method: Assumptions on f: 2⇥di↵erentiable with
Lipschitz-continuous Hessian r2f(xk

). Hessian is positive definite
in a neighborhood around solution x

⇤.

Assumptions on starting point: x0 su�cient close to x

⇤.

Then: Quadratic convergence of Newton’s method with ↵k = 1,
and krf(xk

)k ! 0 quadratically.

Equivalent to Newton’s method for solving rf(x) = 0, if Hessian
is positive.

How many iterations does Newton need for quadratic problems?
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Summary of Newton methods and variants

I Newton to solve nonlinear equation F (x) = 0.

I Newton to solve optimization problem is equivalent to solving
for the stationary point rf(x) = 0, provided Hessian is
positive and full steps are used (compare also convergence
result).

I Optimization perspective to solve rf(x) provided additional
information.

I Gauss-Newton method for nonlinear least squares problem is a
specific quasi-Newton method.
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