Numerical Methods I: SVD and Orthogonal polynomials

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 9, 2017

- Power method: computes eigenvector for dominant eigenvalue (i.e., largest in absolute value)
- Inverse power method: computes eigenvector for eigenvalue closest to $\bar{\lambda}$

Note: Both methods only require repeated multiplication of the matrix A (or its shifted inverse) to vectors, not the matrix A itself.

- Computes all eigenvalues of A
- Each iteration requires a $Q R$-factorization

To make it computationally efficient (for SPD matrices):

- Compute tridiagonal form using orthogonal transformation (Givens rotations or Householder) - $\mathcal{O}\left(n^{3}\right)$ complexity
- In QR algorithm, tridiagonal matrices remain tridiagonal. Hence each step is $\mathcal{O}\left(n^{2}\right)$.

Note: Requires explicit knowledge of A. Can be made efficient also for non-symmetric A using upper Hessenberg forms.

Singular value decomposition

Let $A \in \mathbb{C}^{m \times n}$. The SVD decomposition is

$$
A=U \Sigma V^{*}, \quad \Sigma=\begin{aligned}
& a_{1} \cdot \\
& \hline a_{p} \\
& \hline 0
\end{aligned}
$$

$U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ are unitary/orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$,
$\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right), \sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{p} \geq 0$, where $p=\min (m, n)$.

- If A is real, it has a real SVD, ie., U, V can be chosen as real orthonormal matrices.
- The singular values are the square roots of the eigenvalues of $A^{*} A$.

$$
\Longrightarrow A^{*} A V=V\binom{\sigma_{1}^{2} \ldots \sigma_{p}^{2}}{0} \Longrightarrow \sigma_{1}^{2}, \ldots \sigma_{p}^{2} E V \text { d } A^{*} A_{1} \text { equenveden ore colyurd } d V
$$

$$
\begin{aligned}
& A=U \sum V^{*} \Longrightarrow A V=U \sum \text {, componalwise: } A v_{i}=\alpha_{i} u_{i} \\
& V^{*} A^{*} A V=\Gamma^{*} U^{*} U T=\Gamma^{*} \Gamma \quad a_{1}^{2} \quad i=1, \ldots P \\
& V^{*} A^{*} A V=\sum^{*} U^{*} U \sum=\sum^{*} \sum=\left(\begin{array}{l}
a_{1}^{2} \cdots \sigma_{p}^{2} \\
\left.\frac{\sigma_{1}^{2}}{1} \ldots \sigma_{p}^{2}\right) \Longrightarrow \sigma^{2} \\
\left.\frac{\sigma_{p}^{2} E V}{}\right)
\end{array}\right.
\end{aligned}
$$

Singular value decomposition
Existence Induction: Show that ZU,V athoggaal /unitary such that

$$
\begin{aligned}
& U^{\top} A V=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & B
\end{array}\right] \\
& a:=\|A\|_{2}=\max _{\|v\|_{2}=}\|A v\|_{2} \quad A v=\sigma u, \quad v \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}
\end{aligned}
$$

Extend $u_{1} v$ to athonomal bases

$$
\begin{aligned}
& V=\left[v, v_{2}, \ldots v_{n}\right] \in \mathbb{R}_{m \times m}^{n \times h} \text { alloggonal (unwary } \\
& U=\left[u_{1} u_{2}, \ldots u_{m}\right] \in \mathbb{R}^{m \times m} \\
& \text { Remains to show } \omega=0 \\
& A_{1}=U^{\top} A V=\left[\begin{array}{cc}
\alpha & \omega^{\top} \\
0 & B
\end{array}\right]\left[\begin{array}{l}
\left\|A_{1}\binom{\alpha}{\omega}\right\|_{2}^{2} \geqq\left(\sigma^{2}+\|w\|^{2}\right)^{2}+\|B\|^{2} \\
\left\|\binom{\alpha}{\omega}\right\|^{2}=\omega^{2}+\|w\|^{2}
\end{array}\right.
\end{aligned}
$$

Singular value decomposition

$$
\Longrightarrow w=0
$$

Computation: Assume $m \geqslant n \quad A=$
Singular values are square roo \square
of eigavalues of $A^{*} A$ [all these eigenvalues are real and non-negahive because $A^{*} A$ is symmetric, positive semidefinte]

Singular value decomposition
Computation
First find P, Q athogonal such that $P A Q=\left[\begin{array}{cc}* * * & 0 \\ 0 & N_{*}^{*} \\ \hline 0\end{array}\right]=\left[\begin{array}{l}B \\ 0\end{array}\right]$

eigavalus of $A^{*} A$ are identical to agpualues of $B^{*} B$ because $B^{*} B=Q^{*} A^{*} P^{\alpha} P A Q=Q^{*} A^{*} A Q$
$3^{*} B=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ thichaganal matrix. We could compute $B^{\alpha} B$ and then we QR al goithm to find it ergaralus. However, one con papers the $Q R$ iterations for $B^{*} B$ only waking with B, which avoids computation of $B^{a} B$.

Orthogonal polynomials and 3-term recurrence relations

Inner products between vectors and functions

$$
\text { Let } u_{1} v, u_{1}, u_{2} \in V, \alpha \in \mathbb{R}
$$

inn product satisfy:

- $(u, u) \geqslant 0,(u, u)=0 \Longleftrightarrow u=0$
- $(u, v)=(v, u)$
- $\left(\alpha u,+u_{2}, v\right)=\alpha\left(u_{1}, v\right)+\left(u_{2}, v\right)$
$\|u\|:=\sqrt{(u, u)}$ induced nam
Examples in $\mathbb{R}^{n}: \quad(u, v)=u^{\top} v \quad$ Euclidean inner product induces 2-norm
$(u, v)_{W}:=u^{\top} W v, W$ is sped weighted innu products

Choices for inner products between functions:

$$
(f, g)=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

Orthogonal functions w.r. to this inner product are $\cos (k x)$, $\sin (k x)$.
They satisfy a three-term recurrence relation:

$$
T_{k}(x)=2 \cos (x) T_{k-1}(x)-T_{k-2}(x)
$$

where $T_{k}(x)=\cos (k x)$ or $T_{k}(x)=\sin (k x)$.

Orthogonal polynomials

Define an inner products between functions:

$$
(f, g)=\int_{a}^{b} \omega(x) f(x) g(x) d x
$$

where $\omega(x)>0$ for $a<x<b$ is a weight function. The induced norm is $\|f\|:=\sqrt{(f, f)}$.
Examples for $\omega(x)$:

$$
\omega(x) \equiv 1
$$

Denote by \boldsymbol{P}_{k} the polynomials of degree k.
Theorem: There exist uniquely determined orthogonal polynomials $P_{k} \in \boldsymbol{P}_{k}$ with leading coefficient 1 . These polynomials satisfy the 3-term recurrence relation:

$$
P_{k}(t)=\left(t+a_{k}\right) P_{k-1}(t)+b_{k} P_{k-2}(t), \quad k=2,3
$$

with starting values $P_{0}=1, P_{1}=t+a_{1}$, where

$$
a_{k}=-\frac{\left(t P_{k-1}, P_{k-1}\right)}{\left(P_{k-1}, P_{k-1}\right)}, \quad b_{k}=-\frac{\left(P_{k-1}, P_{k-1}\right)}{\left(P_{k-2}, P_{k-2}\right)}
$$

Orthogonal polynomials
Sketch of proof: $\quad P_{0} \equiv 1, P_{1}=t, P_{0}, \ldots, P_{k-1}$ constuched do be

$$
\begin{aligned}
& P_{k}(d)=t^{k}+* t^{k-1}+\ldots . \\
& P_{k}-t P_{k-1} \text { degree } \leq k-1 \Rightarrow P_{k}-t P_{k-1}=\sum_{j=0}^{k-1} c_{j} P_{j} .
\end{aligned}
$$

P_{k} must be athogonal to P_{0}, \ldots, P_{k-1}

$$
\begin{aligned}
& \left(P_{k}-t P_{k-1}, P_{l}\right)=\left(\sum_{j=0}^{k-1} c_{j} P_{j}, P_{l}\right)=c_{l}\left(P_{l}, P_{l}\right) \\
& l=0, \ldots, k-3: \quad C_{l}=\left(P_{k}-t P_{k-1}, P_{l}\right)=0 \quad \text { because }\left(P_{k}, P_{l}\right)=0 \\
& \begin{array}{ll}
\left(P_{l}, P_{l}\right) & \left(P_{l}\right)
\end{array}=0\left(P_{k-1}, P_{l}\right)= \\
& l=k-2: C_{k-2}=\frac{\left(P_{k}-t P_{k-1}, P_{k-2}\right)}{\left(P_{k-2}, P_{k-2}\right)} \quad(-P_{k-1}, \underbrace{t P_{l}}_{\text {dipole } \leq k-2})= \\
& l=k-1: \quad C_{k-1}=\frac{\left(P P_{k}-t P_{k-1}\left(P_{k-1}\right)\right.}{\left(P_{k-1} P_{k-1}\right)} \rightarrow P_{k}=\left(t+C_{k-1}^{a_{k}} P_{k-1}+C_{13 / 42}^{C_{k-2}} P_{k-2}\right.
\end{aligned}
$$

Orthogonal polynomials

Theorem: The orthogonal polynomials $P_{k} \in \boldsymbol{P}_{k}$ have exactly k simple roots in (a, b).

Note that 3-term recurrence can be used to

- Compute polynomials P_{k} completely, or
- Evaluate P_{k} at a point x_{0}.

Orthogonal polynomials

Chebyshev polynomials
Chebyshev polynomials, for $-1 \leq x \leq 1$:

$$
T_{k}(x)=\cos (k \arccos (x))
$$

3-term recursion: $T_{0}(x)=1, T_{1}(x)=x$,

$$
\begin{aligned}
& T_{k}(x)=2 x T_{k-1}(x)-T_{k-2}(x) \quad \text { for } k \geq 2 \\
& T_{2}(x)=2 x^{2}-1
\end{aligned}
$$

- T_{k} are polynomials,
- T_{k} can be defined for all $x \in \mathbb{R}$.

Chebyshev polynomials

In what inner product are Chebyshev polynomials orthogonal?

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} T_{n}(x) T_{m}(x) d x= \begin{cases}0 & n \neq m \\ \pi & n=m=0 \\ \pi / 2 & n=m \neq 0\end{cases}
$$

The roots of Chebyshev polynomials play an important role in interpolation.

Orthogonal polynomials

Legendre polynomials
Orthogonal polynomials with for weight function $\omega \equiv 1$, satisfy $L_{0}=1, L_{1}=x$, and

$$
L_{k+1}(x)=\frac{2 k+1}{k+1} x L_{k}(x)-\frac{k}{k+1} L_{k-1(x)}
$$

legendre polynomials

Source: Wikipedia.

Orthogonal polynomials

Spherical harmonics
Orthogonal polynomials on the sphere (defined in spherical coordinates (θ, φ); also satisfy a 3-term recursion

- Simple application of 3-term recurrence might not always be stable due to cancellation.
- Adjoint summation (Sec 6.3 in Deuflhard/Hohmann) can avoid cancellation errors.

