
Quadratic forms

We consider the quadratic function f : R2 → R defined by

f(x) =
1

2
xTAx− bTx with x = (x1, x2)

T , (1)

where A ∈ R2×2 is symmetric and b ∈ R2. We will see that, depending on
the eigenvalues of A, the quadratic function f behaves very differently. Note
that A is the second derivative of f , i.e., the Hessian matrix. To study basic
properties of quadratic forms we first consider the case with a positive definite
matrix

A =

(
2 −1
−1 2

)
, b = 0. (2)

The eigenvectors of A corresponding to the eigenvalues λ1 = 1, λ2 = 3 are

u1 =
1√
2

(
1
1

)
u2 =

1√
2

(
−1
1

)
.

Defining the orthonormal matrix U := [u1,u2] we obtain the eigenvalue de-
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Figure 1: Quadratic form with the positive definite matrix A defined in (2).
Left: Contour lines with the red lines indicate the eigenvector directions of A.
Right: Graph of the function. Note that the function is bounded from below
and convex.

composition of A, i.e.,

UTAU = Λ =

(
1 0
0 3

)
.
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Note that U = U−1. The contour lines for f as well as the eigenvector
directions are shown in Figure 1. Defining the new variables x̄ := UTx, the
quadratic form corresponding to (2) can, in the new variables, be written as

f̄(x̄) =
1

2
x̄Λx̄.

Thus, in the variables that correspond to the eigenvector directions, the quadratic
form is based on the diagonal matrix Λ, and the eigenvalue matrix U corre-
sponds to the basis transformation. Thus, to study basic properties of quadratic
forms, we can restrict ourselves to diagonal matrices A.
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Figure 2: Quadratic form with indefinite matrices A1 (upper row) and A2 (lower
row) defined in (3). Left: Contour lines. Right: Graph of the function. Note
that the function is unbounded from above and from below.

We next consider the quadratic form corresponding to the indefinite matrices

A1 =

(
2 0
0 −2

)
, A2 =

(
−2 0
0 2

)
, (3)
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and use b = 0. Visualizations of the corresponding quadratic form are shown
in Figure 2. Note that the functions corresponding to A1 coincides with the
one from A2 after exchanging the coordinate axes. The origin is a maximum
in one coordinate direction, and it is a minimum in the other direction, which
is a consequence of the indefinite matrices A1,A2. These functions are neither
bounded from above, nor from below and thus do not have a minimum nor a
maximum.
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Figure 3: Quadratic form with semi-definite matrix A and b1 (upper row) and
b2 (lower row) defined in (4). Left: Contour lines. Right: Graph of the function.
Note that depending on b, the function does not have a minimum (upper row)
or has infinitely many minima (lower row).

Finally, we study quadratic forms with semi-definite Hessian matrices. We
consider the cases

A =

(
2 0
0 0

)
, b1 =

(
−1
−1

)
, b2 =

(
1
0

)
(4)
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For the indefinite case, the choice of b influences weather there exists a minimum
or not. Visualizations of the quadratic forms can be seen in Figure 3. In the
direction where the Hessian matrix is singular, the function is dominated by the
linear term b. The function based on A and b1 is unbounded from below and,
thus, does not have a minimum. On the other hand, the function based on A
and b2 is independent from x2, and bounded from below. Thus, all points with
x2 = 0 are minima of f .

Convergence of steepest descent for increasingly ill-
conditioned matrices

We consider the quadratic function

f(x1, x2) =
1

2
(c1x

2
1 + c2x

2
2) =

1

2
xTAx (5)

for various c1 and c2, where A = diag(c1, c2) and x = (x1, x2)
T . The function

is convex and has a global minimum at x1 = x2 = 0. Since A is diagonal,
c1 and c2 are also the eigenvalues of A. We use the steepest descent method
with exact line search to minimize (5). A listing of the simple algorithm is given
next.

% s t a r t i n g po i n t
x1 = c2 / s q r t ( c1 ˆ2 + c2 ˆ2 ) ;
x2 = c1 / s q r t ( c1 ˆ2 + c2 ˆ2 ) ;
f o r i t e r = 1:100

e r r = s q r t ( x1 ˆ2 + x2 ˆ2 ) ;
f p r i n t f ( ’ I t e r : %3d : x1 : %+4.8f , x2 : %+4.8 f , e r r o r %4.8 f \n ’ , i t e r , x1 , x2 , e r r ) ;
i f ( e r r o r < 1e−12)

f p r i n t f ( ’ Converged wi th e r r o r %2.12 f .\ n ’ , e r r o r ) ;
b reak ;

end
% exac t l i n e s e a r c h
a lpha = ( c1 ˆ2∗ x1ˆ2 + c2 ˆ2∗ x2 ˆ2) / ( c1 ˆ3∗ x1ˆ2 + c2 ˆ3∗ x2 ˆ2 ) ;
g1 = c1 ∗ x1 ;
g2 = c2 ∗ x2 ;
x1 = x1 − a lpha ∗ g1 ;
x2 = x2 − a lpha ∗ g2 ;

end

Running the above script with c1 = c2 = 1, the method terminates after a
single iteration. This one-step convergence is a property of the steepest descent
when the eigenvalues c1, c2 coincide and thus the contour lines are circles; see
Figure 4.
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Figure 4: Contour lines and iterates for c1 = c2 = 1 (left plot) and c1 = 5, c2 =
1 (right plot).

I t e r a t i o n 1 : x1 : +0.70710678 , x2 : +0.70710678 , e r r o r 1 .00000000
I t e r a t i o n 2 : x1 : +0.00000000 , x2 : +0.00000000 , e r r o r 0 .00000000
Converged wi th e r r o r 0 .000000000000 .

For c1 = 5, c2 = 1, the iteration terminates after 36 iterations; the first iterations
are as follows:

I t e r a t i o n 1 : x1 : +0.19611614 , x2 : +0.98058068 , e r r o r 1 .000000000000
I t e r a t i o n 2 : x1 : −0.13074409 , x2 : +0.65372045 , e r r o r 0.666666666667
I t e r a t i o n 3 : x1 : +0.08716273 , x2 : +0.43581363 , e r r o r 0 .444444444444
I t e r a t i o n 4 : x1 : −0.05810848 , x2 : +0.29054242 , e r r o r 0.296296296296
I t e r a t i o n 5 : x1 : +0.03873899 , x2 : +0.19369495 , e r r o r 0 .197530864198
I t e r a t i o n 6 : x1 : −0.02582599 , x2 : +0.12912997 , e r r o r 0.131687242798
I t e r a t i o n 7 : x1 : +0.01721733 , x2 : +0.08608664 , e r r o r 0 .087791495199
I t e r a t i o n 8 : x1 : −0.01147822 , x2 : +0.05739110 , e r r o r 0.058527663466
I t e r a t i o n 9 : x1 : +0.00765215 , x2 : +0.03826073 , e r r o r 0 .039018442311
I t e r a t i o n 10 : x1 : −0.00510143 , x2 : +0.02550715 , e r r o r 0.026012294874

Taking coefficients between errors of two consecutive iterations, we observe that

errk+1

errk
=

2

3
=

5− 1

5 + 1
=
κ− 1

κ+ 1
,

where κ denotes the condition number of the matrix A, i.e.,

κ = cond

(
c1 0
0 c2

)
=
λmax(A)

λmin(A)
=
c1
c2
.

The contour lines of f for c1 = c2 = 1 and c1 = 5, c2 = 1 are shown in Figure 4.
Now, we study the function (5) with c2 = 1 and with different values for c1,
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namely c1 = 10, 50, 100, 1000. The number of iterations required for these
cases are 139, 629, 1383 and 13817, respectively. As can be seen, the number
increases significantly with c1, and thus with increasing κ. The output of the
first iterations for c1 = 10 are

I t e r a t i o n 1 : x1 : +0.09950372 , x2 : +0.99503719 , e r r o r 1 .000000000000
I t e r a t i o n 2 : x1 : −0.08141213 , x2 : +0.81412134 , e r r o r 0.818181818182
I t e r a t i o n 3 : x1 : +0.06660993 , x2 : +0.66609928 , e r r o r 0 .669421487603
I t e r a t i o n 4 : x1 : −0.05449903 , x2 : +0.54499032 , e r r o r 0.547708489857
I t e r a t i o n 5 : x1 : +0.04459012 , x2 : +0.44590117 , e r r o r 0 .448125128065
I t e r a t i o n 6 : x1 : −0.03648282 , x2 : +0.36482823 , e r r o r 0.366647832053
I t e r a t i o n 7 : x1 : +0.02984958 , x2 : +0.29849582 , e r r o r 0 .299984589862
I t e r a t i o n 8 : x1 : −0.02442239 , x2 : +0.24422386 , e r r o r 0.245441937160
I t e r a t i o n 9 : x1 : +0.01998195 , x2 : +0.19981952 , e r r o r 0 .200816130403
I t e r a t i o n 10 : x1 : −0.01634887 , x2 : +0.16348870 , e r r o r 0.164304106694
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Figure 5: Contour lines and iterates for c1 = 10 (left plot) and c1 = 50 (right
plot).

Taking quotients of consecutive errors, we again observe the theoretically ex-
pected convergence rate of (κ−1)/(κ+1) = 9/11 = 0.8182. The large number
of iterations for the other cases of c1 can be explained due to the increasingly ill-
conditioning of the quadratic form. The theoretically proved convergence rates
for c1 = 50, 100, 1000 are 0.9608, 0.9802 and 0.9980, respectively. These are
also exactly the rates we observe for all these cases. Contour lines and iterates
for c2 = 10, 50 are shown in Figure 5.
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Convergence examples for Newton’s method

Here, we study convergence properties of Newton’s method for various functions.
We start by studying the nonlinear function f : R→ R defined by

f(x) =
1

2
x2 − 1

3
x3. (6)

The graph of this function, as well as of its derivative are shown in Figure 6.
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Figure 6: Graph of nonlinear function defined in (6) (left plot) and of its deriva-
tive (right plot).

We want to find the (local) minimum of f , i.e., the point x = 0. As expected,
at the local minimum, the derivative of f vanishes. However, the derivative
also vanishes at the local maximum x = 1. A Newton method to find the local
minimum of f uses the stationarity of the derivative at the extremal points
(minimum and maximum). At a given point xk, the new point xk+1 is computes
as (where we use a step length of 1)

xk+1 =
x2k

2xk − 1
(7)

This expression is plotted in Figure 7. First, we consider a Newton iteration
starting from x = 20. We obtain the iterations

I t e r a t i o n 1 : x :+20.0000000000000000
I t e r a t i o n 2 : x :+10.2564102564102573
I t e r a t i o n 3 : x : +5.3910172175612390
I t e r a t i o n 4 : x : +2.9710656645912565
I t e r a t i o n 5 : x : +1.7861182949934302
I t e r a t i o n 6 : x : +1.2402508292312779
I t e r a t i o n 7 : x : +1.0389870964455772
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Figure 7: The Newton step (7) plotted as a function.

I t e r a t i o n 8 : x : +1.0014100464549898
I t e r a t i o n 9 : x : +1.0000019826397768
I t e r a t i o n 10 : x : +1.0000000000039309
I t e r a t i o n 11 : x : +1.0000000000000000

Thus, the Newton method converges the local maximum x = 1. Observe that
initially, the convergence rate appears to be linear, but beginning from the 6th
iteration we can observe the quadratic convergence of Newton’s method, i.e.,
the number of correct digits doubles in every Newton iteration.

Next we use the initialization x = −20, which results in the following itera-
tions:

I t e r a t i o n 1 : x :−20.0000000000000000
I t e r a t i o n 2 : x : −9.7560975609756095
I t e r a t i o n 3 : x : −4.6402366520692562
I t e r a t i o n 4 : x : −2.0944362725536236
I t e r a t i o n 5 : x : −0.8453981595529151
I t e r a t i o n 6 : x : −0.2656083788656865
I t e r a t i o n 7 : x : −0.0460730399974074
I t e r a t i o n 8 : x : −0.0019436273713611
I t e r a t i o n 9 : x : −0.0000037630593883
I t e r a t i o n 10 : x : −0.0000000000141605
I t e r a t i o n 11 : x : −0.0000000000000000

Now, the iterates converge to the local minimum x = 0. Again we initially ob-
serve linear convergence, and as we get close to the minimum, the convergence
becomes quadratic.
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To show how sensitive Newton’s method is to the initial guess, we now
compute initialize the method with values that are very close from each other.
Initializing with x = 0.501 results in convergence to x = 1:

I t e r a t i o n 1 : x : +0.5010000000000000
I t e r a t i o n 2 : x :+125.5004999999998745
I t e r a t i o n 3 : x : +63.0012499959999559
I t e r a t i o n 4 : x : +31.7526249580009043
I t e r a t i o n 5 : x : +16.1303121430340468
I t e r a t i o n 6 : x : +8.3231533526241517
I t e r a t i o n 7 : x : +4.4275548879571378
I t e r a t i o n 8 : x : +2.4956038610665341
I t e r a t i o n 9 : x : +1.5604396125094859
I t e r a t i o n 10 : x : +1.1480954481351822
I t e r a t i o n 11 : x : +1.0169205491424664
I t e r a t i o n 12 : x : +1.0002769332576908
I t e r a t i o n 13 : x : +1.0000000766495756
I t e r a t i o n 14 : x : +1.0000000000000058

Initialization with x = 0.499 leads to convergence to the local minimum x = 0:

I t e r a t i o n 1 : x : +0.4990000000000000
I t e r a t i o n 2 : x : −124.5004999999998887
I t e r a t i o n 3 : x : −62.0012499959999630
I t e r a t i o n 4 : x : −30.7526249580009114
I t e r a t i o n 5 : x : −15.1303121430340521
I t e r a t i o n 6 : x : −7.3231533526241543
I t e r a t i o n 7 : x : −3.4275548879571387
I t e r a t i o n 8 : x : −1.4956038610665345
I t e r a t i o n 9 : x : −0.5604396125094862
I t e r a t i o n 10 : x : −0.1480954481351824
I t e r a t i o n 11 : x : −0.0169205491424666
I t e r a t i o n 12 : x : −0.0002769332576907
I t e r a t i o n 13 : x : −0.0000000766495756
I t e r a t i o n 14 : x : −0.0000000000000059

Finally, if the method is initialized with x = 0.5, it diverges since the second
derivative (i.e., the Hessian) of f is singular at this point.

Next, we study the function

f(x) =
x4

4

which is shown, together with its derivative in Figure 8. This function has a
singular Hessian at its minimum x = 0. Using the Newton matrix to find the
global minimum results in the with starting guess x = 1 results in the following
iterations (only the first 15 iterations are shown):

I t e r a t i o n 1 : x : +1.0000000000000000
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Figure 8: Function f(x) = x4/4 (left) and its derivative (right).

I t e r a t i o n 2 : x : +0.6666666666666666
I t e r a t i o n 3 : x : +0.4444444444444444
I t e r a t i o n 4 : x : +0.2962962962962963
I t e r a t i o n 5 : x : +0.1975308641975309
I t e r a t i o n 6 : x : +0.1316872427983539
I t e r a t i o n 7 : x : +0.0877914951989026
I t e r a t i o n 8 : x : +0.0585276634659351
I t e r a t i o n 9 : x : +0.0390184423106234
I t e r a t i o n 10 : x : +0.0260122948737489
I t e r a t i o n 11 : x : +0.0173415299158326
I t e r a t i o n 12 : x : +0.0115610199438884
I t e r a t i o n 13 : x : +0.0077073466292589
I t e r a t i o n 14 : x : +0.0051382310861726
I t e r a t i o n 15 : x : +0.0034254873907817

Note that the iterates converge to the solution x = 0, but they only converge
at a linear rate due to singularity of the Hessian at the solution. For the initial
guess x = −1, the iterates have the negative values of the ones shown above.

Finally, we consider the negative hyperbolic secant function

f(x) = −sech(x).

The graph of the function and its derivative are shown in Figure 9. This function
changes its curvature, and thus Newton’s method diverges if the initial guess is
too far from the minimum. The Newton iteration to find the minimum x = 0
of this function computes, at a current iterate xk the new iterate as

xk+1 = xk +
sinh(2xk)

cosh(2xk)− 3
. (8)

We first study the Newton iterates for starting value x = 0.1 and observe
quadratic convergence (actually, the convergence is even faster than quadratic,
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Figure 9: Function f(x) = −sech(x) (left) and its derivative (right).

which is due to properties of the hyperbolic secant function):

I t e r a t i o n 1 : x : +0.1000000000000000
I t e r a t i o n 2 : x : −0.0016882781843722
I t e r a t i o n 3 : x : +0.0000000080201476
I t e r a t i o n 4 : x : −0.0000000000000000

Starting the iteration from x = 0.2 or x = 0.5, the method also converges to
the local (and global) minimum. The iterates for starting guess of x = 0.5 are:

I t e r a t i o n 1 : x : +0.5000000000000000
I t e r a t i o n 2 : x : −0.3066343421104646
I t e r a t i o n 3 : x : +0.0546314000372350
I t e r a t i o n 4 : x : −0.0002727960502389
I t e r a t i o n 5 : x : +0.0000000000338348
I t e r a t i o n 6 : x : +0.0000000000000000

However, if the method is initialized with x = 0.6 (or any value larger than
that), the method diverges. The first 10 iterates for a starting guess of x = 0.6
are:

I t e r a t i o n 1 : x : +0.6000000000000000
I t e r a t i o n 2 : x : −0.6691540935844730
I t e r a t i o n 3 : x : +1.1750390494712146
I t e r a t i o n 4 : x : +3.4429554757227767
I t e r a t i o n 5 : x : +4.4491237147096072
I t e r a t i o n 6 : x : +5.4499441189054147
I t e r a t i o n 7 : x : +6.4500548922755296
I t e r a t i o n 8 : x : +7.4500698791442161
I t e r a t i o n 9 : x : +8.4500719073107184
I t e r a t i o n 10 : x : +9.4500721817916382

This divergence is explained by the fact that the function is concave at x = 0.6.
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