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This paper focuses on the nature of jamming, as seen in two-dimensional frictional granular systems

consisting of photoelastic particles. The photoelastic technique is unique at this time, in its capability to

provide detailed particle-scale information on forces and kinematic quantities such as particle

displacements and rotations. These experiments first explore isotropic stress states near point J through

measurements of the mean contact number per particle, Z, and the pressure, P as functions of the

packing fraction, f. In this case, the experiments show some but not all aspects of jamming, as expected

on the basis of simulations and models that typically assume conservative, hence frictionless, forces

between particles. Specifically, there is a rapid growth in Z, at a reasonable f which we identify with as

fc. It is possible to fit Z and P, to power law expressions in f – fc above fc, and to obtain exponents

that are in agreement with simulations and models. However, the experiments differ from theory on

several points, as typified by the rounding that is observed in Z and P near fc. The application of shear

to these same 2D granular systems leads to phenomena that are qualitatively different from the

standard picture of jamming. In particular, there is a range of packing fractions below fc, where the

application of shear strain at constant f leads to jammed stress-anisotropic states, i.e. they have a non-

zero shear stress, s. The application of shear strain to an initially isotropically compressed (hence

jammed) state, does not lead to an unjammed state per se. Rather, shear strain at constant f first leads

to an increase of both s and P. Additional strain leads to a succession of jammed states interspersed

with relatively localized failures of the force network leading to other stress-anisotropic states that are

jammed at typically somewhat lower stress. The locus of jammed states requires a state space that

involves not only f and s, but also P. P, s, and Z are all hysteretic functions of shear strain for fixed f.

However, we find that both P and s are roughly linear functions of Z for strains large enough to jam the

system. This implies that these shear-jammed states satisfy a Coulomb like-relation, |s| ¼ mP.
1 Introduction

The collection of papers in this special issue testifies to the intense

interest in jamming of disordered systems, such as dense granular

materials, that are far from equilibrium. The absence of ther-

modynamic equilibrium for granular systems in particular, has

been at the heart of an effort to develop new kinds of statistical

models, some of which we explore here.1–4 A great challenge is to

account for their rich structure, which involves filamentary force

networks5–12 as in Fig. 1. A key part of the focus on these systems

arises from the proposal by Liu and Nagel13 of a universal

jamming diagram for a broad range of systems that includes

foams, colloids, molecular glasses and granular materials, among

others. We sketch this diagram in the left part of Fig. 2. The idea

is that there is a region of low temperature (if that applies), low

shear stress, and high density, where a material is jammed, i.e.

mechanically stable. Density is expressed in terms of the packing

fraction, f, or its inverse in Fig. 2 (left), which is defined as the
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fraction of the system volume (area in two dimensions) that is

occupied by solid material. There have been many studies that

have focused on point J in this diagram for the case of zero or low

shear stress. An important goal of the present studies is to better

understand the role played by shear stress, an issue that has been

relatively unexplored from the point of view of jamming.

However, the role of shear stress has been of interest in the

context of soil and geomechanics for a considerable time.14 A key

issue is the failure of granular systems which are under a load

that includes both isotropic stress (e.g. pressure, P) and also shear
Fig. 1 Photoelastic images for isotropic (a) and anisotropic (b) states.

We discuss below the experimental techniques used to generate these

images.
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Fig. 2 Left: Representation of jamming diagram, after Liu and Nagel.

The three axes are the temperature, which applies in certain systems (e.g.

molecular glasses), inverse packing fraction (f is the volume/area

occupied by solid for 3D/2D systems), and s is the shear stress. Right:

Schematic of a Coulomb picture for mechanically stable states for

a granular material for two dimensions, in terms of the principal stresses,

si. The dashed lines are the failure loci where |s| ¼ mP. Inside this cone,

the material is mechanically stable. From this perspective, point J is at the

origin.
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stress, s. When the shear stress exceeds a critical threshold rela-

tive to the pressure, such a system fails. This type of criterion was

the basis of Coulomb’s famous work of over two centuries ago.15

The basic form of this scenario is sketched in the right part of

Fig. 2 for the two-dimensional case. The si are the principal

stresses, i.e., the eigenvalues of the shear stress tensor, s, and

states within the Coulomb cone denoted by the dashed lines are

mechanically stable. Note that the pressure is given by P ¼ (s1 +

s2)/2 and the shear stress by s ¼ (s2 – s1)/2. If the failure

threshold (for a noncohesive material) is s ¼ � mP, where m is

a constant, then the corresponding failure loci in the s1 – s2 plane

are given by the dashed lines s2 ¼ [(1 � m)/(1 H m)]s1. Note that

the density of the system does not appear explicitly here

(although it is incorporated in models such as Critical State Soil

Mechanics14), but rather the important entities are stresses. The

isotropic jammed states, s ¼ 0, lie along the dotted line. Paths in

stress space starting within the jammed (mechanically stable)

region, such as A, B, or C, lead to failure when they reach the

Coulomb cone. There are a number of interesting cases here,

including paths such as A, B, or the isotropic line which fail at

zero stress, and path C which fails under finite stress. In the Liu–

Nagel picture, all three paths would originate in the jammed

region, with T¼ 0, and densities above the value at point J. Paths

A and B would approach the boundary of the jammed region at

point J, whereas path C would intersect the jammed region at

a point with s s 0.

Below, we review recent experimental tests8,12,16 carried out by

the present authors that used photoelastic particles to test models

for isotropic jamming near point J and to probe the role of stress

anisotropy on jamming. From these studies, several important

conclusions follow. First, under isotropic conditions, granular

materials do, by and large, exhibit behavior near point J that is

consistent with expectations from numerical simulations16–20

(MD/DEM) and on theoretical constructs based on generalized

statistical formulations.1–4 The latter were first proposed by

Edwards et al.1 and have been more recently developed by

Snoeijer et al.,2 Tighe et al.21 and Henkes et al.3,4 Second, under

anisotropic stress conditions, careful accounting must be taken
This journal is ª The Royal Society of Chemistry 2010
of not only the density and shear stress, but also the pressure. In

particular, there exist densities below that for isotropic jamming,

which can support jammed stress-anisotropic states.12 Hence, the

T ¼ 0 jamming picture for granular materials must account for

shear stress, density and pressure.

We note that there are some clear differences in isotropic and

anisotropic cases at a heuristic level, as seen in images of the force

chain structures, Fig. 1. We also see at a more microscopic level,

that the distributions of normal contact forces differ between

isotropic and anisotropic states,8 as seen in Fig. 3.

In the remainder of this work, we first briefly describe our

experimental approach, which uses photoelastic particles con-

tained in a two-dimensional (2D) biaxial device. The ‘biax’

allows us to prepare states over a range of stress conditions, and

the use of photoelastic particles allows us to make detailed

quantitative measurements of forces, displacements and rota-

tions. We then review observations for stresses and contact

numbers, Z, for a 2D granular system, first under isotropic

conditions16 near point J, and then for strongly anisotropic

states12 that are produced by applying shear strain to an iso-

tropically unjammed state. Hence, for the latter case, the density

is below the isotropic jamming value. Such states imply the

existence of a jamming diagram that involves not only shear

stress and packing fraction, but also pressure as an independent

variable. We present concluding remarks and a hypothetical

jamming diagram in the final section.
2 Experimental techniques

As noted above, for the experiments discussed in this work, we

used a 2D biax. Fig. 4 (top) illustrates this apparatus, with which

we can deform a given rectangular sample of particles into any

other desired rectangular shape, within the limits of the appa-

ratus. Of particular interest is the case of pure shear (compression

in one direction, equal dilation in the other, and fixed overall

area), and isotropic compression (equal compression in both

directions).

The particles used in these studies are disks manufactured

from photoelastic material. When a photoelastic material is

subject to stress, it becomes birefringent, and when viewed

between crossed polarizers, it exhibits light and dark bands, as in

the bottom left image of Fig. 4. For circular polarizers, the

transmitted light along a ray traversing a 2D section is given by

I ¼ Io sin2 [(s2 – s1)Ct/l], (1)

where Io is the incident intensity of light with wavelength, l, and

where C is the stress optic coefficient. Hence, the bands encode

the detailed stress within each particle. For a granular system,

these stresses are generated by the (vector) forces at the contacts

on each particle. Previous researchers have used photoelasticity

to probe granular systems,5–7 but our approach is unique in that

we use photoelasticity to obtain the contact forces for large

collections of particles. For more details, the reader may

consult.8,11,12,22,23 The basic idea is that we carry out a nonlinear

least-squares fit of the photoelastic image for each particle to the

known solution for the photoelastic response within a particle

due to point contact forces. In turn, this solution is based on the

stress fields given by linear elasticity theory for point contacts
Soft Matter, 2010, 6, 2982–2991 | 2983
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Fig. 3 Distributions for the normal, Fn, and tangential, Ft, interparticle contact forces. Parts a and b pertain to a stress-anisotropic state, such as part

b of Fig. 2. Parts c and d pertain to a stress-isotropic state, such as part a of Fig. 1.
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acting on a disk. This provides the photoelastic response through

eqn (1). In this procedure, the fit parameters are the vector

contact forces on a particle from its neighbors. To demonstrate

the reasonableness of this approach, we contrast an original

color photoelastic image and the image produced using the fit-

determined forces in Fig. 5. Note that the photoelastic response,

as given by eqn (1), is sensitive to the color/wavelength of the

incident light. We take the approach of using white incident light,

and color filter the resulting images. The righthand image of

Fig. 5 is derived from a color filtered version of the lefthand

image. Of course, we must also determine the location of the

particles, and the inter-particle contacts. In the process, we also

track the rotation and displacement of individual particles as the

system is slowly deformed. The rotational motion of the particles

is tracked by means of a thin bar drawn on each particle with

fluorescent ink. Under ordinary light, the bars are nearly invis-

ible, and do not interfere with the photoelastic measurements.

However, they glow brightly under UV light, Fig. 4 (bottom,

right). Hence, our most general experimental procedure for

measuring particle properties requires three separate images, as

typified by the blow-ups in Fig. 4: one with polarizers for the

photoelasticity measurements, one under ordinary light without

polarizers for identifying particle centers, and a third taken under

UV illumination and without polarizers to determining particle

rotation.

From the determination of the contact forces, we obtain as

an immediate consequence the distributions of the contact

forces, P(F). Since the forces are vectoral, it is useful, as in

Fig. 3, to separately consider the normal and the tangential

components, Fn and Ft respectively, where the latter are due to

friction.
2984 | Soft Matter, 2010, 6, 2982–2991
We use several approaches for characterizing the force and

contact networks. Since these need not be isotropic, it is impor-

tant to maintain full tensoral characterizations. The force

anisotropy is evident in Fig. 1(b) and 9. In particular, the contact

network becomes manifestly anisotropic during cyclic shear. A

simple geometric measure of the network is then the fabric

tensor, Rij:

Rij ¼
1

N

XN

k¼1

Xck

c¼1

nc
iknc

jk: (2)

The summation and N include only non-rattler disks, ck is the

number of contacts on disk k, and nlk
c is the lth component of the

unit branch vector pointing from the center of the disk k to

a contact c. The definitions of relevant quantities are illustrated

in Fig. 6. We consider a rattler disk to have less than two

detectable contacts. The average contact number, Z, is then given

by the trace of the fabric tensor Rij. Here, we do not extensively

explore the geometric anisotropy, but the interested reader can

obtain more information elsewhere12 for the present system

regarding this issue.

Additionally, we consider the stress tensor sij and the force

moment tensor, ŝij. These quantities reflect the anisotropy of the

force networks. The local force moment tensor is

ŝij ¼
Xck

c¼1

f c
ikrc

jk; (3)

and the system-averaged stress tensor is

sij ¼
1

A

XN

k¼1

ŝij : (4)
This journal is ª The Royal Society of Chemistry 2010
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Fig. 4 Sketch of apparatus (top row) and small sections of the three image types that we obtain. Top row: Left: top view of the biaxial apparatus (biax),

a 2D ‘biax’. Pairs of opposing boundaries in the x and y directions move under precise computer control to produce desired quasi-static strains. These

boundaries confine photoelastic particles which also lie on a smooth slippery sheet of Plexiglas. Right: Sketch showing a side view to indicate the

photoelastic imaging process. A camera is mounted above the biax, and the whole apparatus, including the disks, are sandwiched between crossed

circular polarizers. Following each small strain step, we obtain three images, as shown in the bottom row: one with crossed polarizers (left), one without

polarizers (center), and one without polarizers but with UV illumination (right).

Fig. 5 Original color photoelastic image (left) and the image produced

by the contact forces computed by the force-inverse algorithm for a color-

filtered version of this image (right).

Fig. 6 Sketch explaining the notation for definitions of the fabric, force-

moment and stress tensors.

This journal is ª The Royal Society of Chemistry 2010
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A is the system area; N, ck, i, rjk
c and j are the same as in

the expression of Rij (e.g. Fig. 6); fik
c is the ith component of

the contact force on particle k at contact c. The sum and

difference of s1 and s2, the eigenvalues of s, divided by 2, yield

P and s, as defined in the introduction. Below, we take s1 # s2, so

that s $ 0.

We note one final experimental issue which is important in

determining Z, and to a lesser extent, s, for states very near

jamming. The most sensitive and accurate way to determine

contacts is to look for a photoelastic response from particles that

are in apparent contact.16 However, when the stresses are small,

the photoelastic response at some contacts may fall below our

detection threshold. Nevertheless, we can correct for missed

contacts very close to jamming. As discussed below, we find that

the distribution of normal contact forces scales with the mean

normal force, hFni.
P(Fn) ¼ hFni�1f(Fn/hFni), (5)

where f is to a reasonable approximation, the same function for

all mean forces. We can use this fact to estimate the number of

the missed contacts reasonably well. Forces below our

measurement threshold also affect the stresses, but to a smaller

extent. We expect that we miss a fraction of contacts given by
Ð
F
0cP(Fn)dFn/

Ð
N
0 P(Fn)dFn, (6)
Soft Matter, 2010, 6, 2982–2991 | 2985
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where Fc is a small known cut-off force below which we cannot

detect the photoelastic response. For the particles used here, this

force is roughly the weight of a particle. Hence, the measured Z’s

are lower than their true values by

Ð
N
FcP(Fn)dFn/

Ð
N
0 P(Fn)dFn. (7)

We also underestimate the pressure by a factor of

Ð
N
FcFnP(Fn)dFn/

Ð
N
0 FnP(Fn)dFn. (8)

To simplify the calculation, this last expression assumes that

all particles have the same radius, which is a reasonably good

assumption. The resulting correction in Z is �15% very near

jamming, but negligible once Z is slightly bit above 3.0. Due to

the fact that the stresses depend linearly on the contact forces,

corrections for missed contacts for these quantities are signifi-

cantly smaller, only 1–2% close to the jamming transition, and

entirely negligible above jamming. We consider these corrections

in data below, where to simplify the correction, we assume that

the force distribution is an exponential.

2.1 Experimental procedures for compression/decompression:

Isotropic case

The experimental approaches are somewhat different depending

on whether we are considering isotropic or aniostropic systems.

For the isotropic case, we probed the region near point J using

two different protocols. In the first protocol, we gradually

compressed the system from an initially stress-free state, taking

small strain steps until the system was above the jamming

density. In the second approach, we decompressed the system,

again by small strain steps, starting in an already compressed/

jammed isotropic state. The end state was a (nearly) stress-free

state. The results for both protocols are similar above fc;

however, for densities below jamming, the data for Z obtained by

compression are a few percent below those for decompression. In

what follows, we show data obtained by the second approach.

After each decompression step, we apply tapping to relax stress

in the system. We conclude that the preparation protocol does

have an effect, and that other methods might produce somewhat

different results. The approach used here is designed to produce

as low-energy state as possible, which is roughly analogous to the

annealing process invoked in some simulations.19 After each

decompression, we obtain two images, with and without polar-

izers, respectively. The former is used to compute contact forces

and eventually stresses. The latter is used to obtain the disk

centers. In this case, we did not track particle rotations.

For the data presented below, we performed two sets of

experiments. The first experiment was carried out using a larger

range, 0.8390 # f # 0.8650, and a correspondingly larger step

size, Df ¼ 0.016. After we had identified the jamming region, we

carried out a second set of experiments at a finer scale with

0.840745 # f # 0.853312, and with a finer step size, Df ¼
0.000324.

2.2 Experimental procedure for pure shear: anisotropic case

The experiments considered here probe the evolution of a system

under pure shear, where the density f ¼ 0.795 � 0.003, is lower
2986 | Soft Matter, 2010, 6, 2982–2991
than what is required to obtain a jammed isotropic state. Pure

shear consists of compression in one direction, the ‘y-direction’

and a corresponding dilation in the x-direction, such that the

total system area remains fixed. We start with an initially square

set of boundaries that are filled with 1568 bidisperse (so as to

avoid crystallization) photoelastic disks. The sample consists of

roughly 80% particles of diameter z 0.74 cm, and 20% particles

of diameter z 0.86 cm. We determined the area mass density by

two independent measurements, from which we then obtain f

from the photoelastic material mass density. We estimate that the

resulting f’s are accurate to � 0.003.

We prepare the initial state as closely as possible to isotropic

and stress-free. We then shear the system by compression and

dilation along the two independent axes, as in Fig. 4 (top-left),

keeping the system area constant. We characterize the defor-

mation in terms of the strain, e, along the x-axis with e¼ (x – x0)/

x0. Here, x0 is the initial size of the square. After reaching

a maximum deformation emax, we reverse the shear by

compression along the x-axis and expansion along the y-axis

until the system boundaries have reached their initial square

configuration. We then continue to shear in the reverse direction,

(In other experiments,12 we have also carried out cyclic shear, but

here we chiefly focus on only one shear cycle.) We carry out this

process in small incremental quasi-static steps such that |e|

changes by de ¼ � 3.3 � 10�3. After each step, we stop and

acquire three sets of images, as typified by Fig. 4; blow-ups from

such figures are shown in the bottom row of Fig. 4. Thus, we

obtain an image with polarizers in place (left-most image),

without the polarizers (middle) and under UV light (right) so as

to determine the rotation of the particles.
3 Experimental results

3.1 Jamming for the isotropic case

The point of the isotropic studies was two-fold. First, we sought

to test recent simulations and theory16–20,24 which indicate that

near jamming, collections of spherical particles, should exhibit

a discontinuous increase in Z, at a critical volume fraction, fc.

Below fc, Z and P are expected to be 0. At fc, Z is expect to jump

discontinuously, and above fc, Z and P are predicted to increase

as power laws in f – fc. The exponent b for Z – Zc is expected to

be 1/2 (or nearly so20), and the exponent, j ¼ af – 1, for P is

expected to depend on the inter-particle contact force, which in

turn is parameterized by the exponent,af. We note that the

systems studied theoretically were typically frictionless, and

subjected to isotropic overall strains. In view of the second point,

the shear stress was s ¼ 0.

Second, we sought to test recent predictions, based on novel

entropy approaches (i.e. the force/stress ensemble) by Henkes

et al.3,4 These predictions, which are a first attempt at con-

structing a field theory of the transition at point J led to the

particular P–Z relation, involve a generalized ‘temperature’-like

variable, with both Z and P given as specific functions of this

quantity. We are able to test these predictions by determining the

relation between P and Z and observing whether the data are

consistent with the Henkes et al. prediction.

As noted above, the models of interest typically involve fric-

tionless particles, whereas the experiments are inherently
This journal is ª The Royal Society of Chemistry 2010
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frictional. The presence or absence of friction affects Zc, and

perhaps other aspects of the jamming transition. For instance, in

the isostatic limit, Z is 4 for frictionless disks, whereas for fric-

tional disks, Z is around and slightly above 3, for friction coef-

ficients that are typical of many physical grains.25 Predictions

such as those for critical exponents, amplitudes, etc. may also

need modification. Nevertheless, one might expect that the

systems of frictional particles and systems of frictionless particles

would exhibit similar behavior, if the frictional forces are typi-

cally small relative to the normal forces. In recent experiments,

we have found that statistically this is true, and that in the mean,

the typical inter-grain frictional forces are �10% of the normal

forces.8

We now turn to experimental data for Z and P. In the inset of

Fig. 7, we show data for Z over a broad range of f. Here, we

show data both with rattlers (stars) and without rattlers

(squares). Specifically, the average Z can be computed either by

counting only the force bearing disks, or by counting all the disks

including rattlers which do not contribute to the mechanical

stability of the system. Here, we consider as rattlers, all the disks

which have less than two observable contacts. The data show

a significant, but not discontinuous, rise in Z at the transition

density corresponding to fc x 0.84, indicating the onset of

system-wide jamming. We note that below, we apply corrections

to data for Z obtained from a sheared system. The correction in

this case is possible because we have sufficient data to be
Fig. 7 Data for the average contact number and pressure at the jamming

transition. Top and bottom panels show Z – Zc and P vs. f – fc,

respectively. Different symbols indicate rattlers included (stars) or

excluded (diamonds). Dashed and full curves in the top panel are power-

law fits (f – fc)
b with b ¼ 0.495 and 0.561 (with and without rattlers,

respectively). Lower panel: Full curve gives the fit (f – fc)
j with j ¼ 1.1;

dashed line shows a linear law for comparison. Inset: Z vs. f over a larger

range in f.

This journal is ª The Royal Society of Chemistry 2010
confident that P(F) is constant regardless of the shear strain.

However, the data for the isotropic case has not been corrected

because we do not have enough data to be sure that P(F) is

invariant with strain in the compressive case.

Above this f, the variations of P(f) with/without rattlers tend

to merge, although at lower f, they differ. Data for P(f) in Fig. 7

remain at a nearly flat background below jamming, and then

grow above fc. The onset of increasing P occurs at a f where Z

begins its rapid increase. In fact, neither P nor Z are identically

zero below jamming. Insight into this behavior follows from

studies of shear carried out at f’s below jamming, which we

discuss in the next subsection.

We compare these experimental results to predictions above fc

by means of least squares fits of Z – Zc and P – Pc to f – fc, as in

Fig. 7. Necessarily, fit values for b and j depend on the choice of

fc and whether rattlers are excluded or not. And, there is some

ambiguity, due to the rounding in both quantities. Using several

different approaches, described more fully in Majmudar et al.,16

we obtain fc in the range 0.840 to 0.843. In the former case, we

obtain, 0.494 # b # 0.564, and for the latter case, 0.363 # b #

0.525. Overall, a logical choice for fc is fc ¼ 0.84220 where P

rises above the background level. This choice, which corresponds

to the results in Fig. 7, yields a consistent fit for both P and Z. On

balance, we, find that our values of b z 0.55 for the data without

rattlers are larger than the value of 0.5 reported in,17,19 but

smaller than those of Donev et al.,20 who found 0.6 in 3D.

Fig. 7 also shows the variation of P with f (lower panel).

These results indicate a clear transition at fc ¼ 0.8422 � 0.0005.

Least squares fitting P – Pc above fc to P – Pc f (f – fc)
j yields

j ¼ 1.1 � 0.05 for this choice of fc. (Here, Pc corresponds to the

background P.) This exponent is consistent with the measured

interparticle interaction force, and the expected exponent based

on the simulations of Silbert and O’Hern et al.17,19 More detailed

discussion is available in Majmudar et al.16

Finally, we consider the predictions of Henkes et al.,3 by

parametrically plotting the data of Fig. 7 in the form P – Pc vs. Z

above fc. We remove the background pressure Pc at fc (which we

believe is due to induced shear strains). In this fit, we also

normalize P by Pc. These authors’ predictions (which, as noted

above, are a first attempt at constructing a field theory of the
Fig. 8 Experimental data for P vs. Z (symbols) and a fit to the model of

Henkes and Chakraborty3 (solid line).
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Fig. 9 Sequence of photoelastic images showing the evolution of the

force chains as the system is sheared in the forward (a, b), and reverse

direction (c, d). These four images are chosen at different steps from the

1st shear cycle, out of a set of six complete cycles. The strains are e ¼
0.033, 0.267, 0.267, and 0.033, for a, b, c, d, respectively. The original

nearly stress-free state of (a) has the same density and boundary

configuration as (d), which is jammed. In images b and c, the sidewall of

the biax has moved into view, creating dark bands at the bottom of

the images. Also, (c) was obtained following a small reverse strain step

from (b).
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transition at Point J) can be cast as (P – Pc)/Pc¼ u – [(4u2 + 1)1/2 –

1]/2, where u ¼ C(Z – Zc). C ¼ e/ac is a system-dependent

constant, where e characterizes the grain elasticity, and ac is the

critical value for their generalized Boltzmann factor, a. We have

fitted to this form where Pc, Zc, and C are sensible fitting

parameters. Fig. 8 shows reasonable, although not perfect,

agreement with this prediction. From this fit, we obtain Zc ¼
3.04, which is close to the nominal minimum isostatic value Zc ¼
3, and is consistent with the analysis above.

The present experiments are consistent with predictions on

many, but not all, fronts. We find a rapid, but not totally sharp

increase in Z at fc. We also find power-law behavior above fc for

Z and P with exponents b x 1/2 and an exponent for P of j x
1.1. These exponents are in good agreement with simulations. We

also find reasonable agreement with the Henkes et al. theory. We

note that the simulations and theory in question are for fric-

tionless particles. Thus, agreement here is interesting, but not

necessarily completely expected. There are some additional

departures from the theory/MD pictures noted above. In addi-

tion, to the rounded transition in Z near fc, the amplitude of Z –

Zc vs f – fc differs from simulations. A comment on the presence

of a background pressure is also relevant here. It is conceivable

that this arises because the particles experience frictional forces

with the base on which they rest. In fact, Majmudar et al.16

present analysis indicating the base friction is well below the level

needed to produce the observe background pressure. Rather, we

believe that this is due to small shear-induced stresses that are

very difficult to remove in physical experiments. The discussion

below on shear-induced jamming provides some additional

insight into the role played by shear.
Fig. 10 Mean contact number Z vs. strain e for the second cycle.

Fig. 11 Pressure, P vs. strain, e, for the second cycle, showing strong

hysteresis.
3.2 Jamming under shear: anisotropic case

We now turn to results for pure shear, as typified by Fig. 9. As

noted in the experimental section, the initial state of this system is

unjammed, i.e., f ¼ 0.795 is below the value for isotropic

jamming. When shear is applied at constant density, a strong

force chain network evolves, and for shear strains of a few

percent, the system reaches a jammed state. Associated with

jamming is the obvious formation of an oriented force chain

network, as seen in the photoelastic images. The presence of this

network is also manifested in the fabric, i.e. a purely geometric

measure of inter-grain contacts. In Zhang et al.,12 we show that

statistically, the principal eigendirection of the fabric tensor

aligns with the compressive direction at roughly the same time

that the force chain network makes its appearance. In Fig. 9, we

show the results of applying shear strains of up to 27%, followed

by a return to the original system geometry, all at fixed f. This

corresponds to one half of a full shear cycle. Note that the final

state, which corresponds to zero global strain, is jammed and

contains a strong force network. We show data for a complete

shear cycle, in Fig. 10, 11, and 12. These correspond to a shear

strain to a maximum value, emax x 0.29 from the initial state,

followed by a shear strain reversal back to the original square

shape of the boundaries, then a negative shear strain to e x 0.16,

and a return once again to the original boundary configuration.

This particular shear cycle was the second in a series of six cycles.

Hence, the data for Z start at a value of well above 3.0. Similarly,

the data for P and s start at values above 0. (In Zhang et al.,12 we
2988 | Soft Matter, 2010, 6, 2982–2991 This journal is ª The Royal Society of Chemistry 2010
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Fig. 12 Shear stress s vs. strain, e for the second cycle. Fig. 14 Shear stress, s vs. average contact number, Z.

Fig. 15 Pressure, P, vs. average contact number, Z. Same data as the

previous figure for P, but with a correction applied for weak contacts.

Different colors correspond to data from the same shear cycles as above.
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show results for the full six cycles.) These figures show

unequivocally that the stresses and Z are hysteretic in the strain.

Particularly striking is the observation that the final state, part

(d), of Fig. 9 is jammed, with a strong force network clearly

visible, whereas the initial state before any shear strain was

applied (a), was nearly unjammed. Again, we emphasize that the

density is constant throughout. This means that neither the

density nor the strain provide a unique characterization of

a state. Hence, we must re-evaluate the nature of the jamming

diagram when s s 0.

It is interesting that the hysteresis loops for all three of Z and P

and s vs. e are qualitatively similar, which suggests that there may

exist a relation among them. The existence of such a relationship

is demonstrated in Fig. 13 to 16, where we have accumulated

data over six shear cycles,12 which are indicated by the various

colors. In particular, results for P vs. Z and s vs. Z, respectively,

fall on nearly common curves.

There are several aspects of these figures that deserve discus-

sion. In the first two of these figures, there is clearly rounding.

This is due to several causes. These data have not been corrected

for weak contacts, as discussed above. This correction is

substantive, i.e. �15%, when Z ( 3.0. This effect is within the

noise of the data for larger Z. The effect of missed contacts on the
Fig. 13 Pressure, P, vs. average contact number, Z, without corrections

for weak contacts. Different colors correspond to data from different

shear cycles. Data points from the first shear cycle, shown in red, deviate

slightly from other shear cycles.

Fig. 16 Shear stress, s vs. average contact number, Z after removal of

data points from the first shear cycle and data points where the strong

network direction is reforming.

This journal is ª The Royal Society of Chemistry 2010
pressure is much weaker than on Z. For s vs. Z, the relative

scatter is higher than for P vs. Z. A significant cause for the

apparent scatter is the fact that during the first of the six shear

cycles, the system exhibits transient behavior. Also, in relatively

small ranges of strain following a reversal, the stresses and Z

depart from mean behavior, until a new network is formed. If we

remove data from the first cycle and immediately after reversals,

and correct for missed contacts, the results for s vs. Z yield
Soft Matter, 2010, 6, 2982–2991 | 2989
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a collapse that is comparable to that for P vs. Z as seen in Fig. 16.

We note that although P and Z do collapse, the spread of the

data points around the curve is larger than the experimental

errors. In fact, every time a new network of force chains is

formed, following a shear reversal, there are small systematic

differences in the stresses. The width of the scatter in these figures

is primarily caused by these differences. Note that except for the

switching regimes, the mean of the ratio s/P is constant.

We conclude this section by considering the distributions of

contact forces, as shown in Fig. 17 for the normal forces and in

Fig. 18 for the tangential forces. In these distributions, we have

normalized the data for Fn or Ft after each step by hFni, the mean

normal force at that strain step. We have combined the data for

several adjacent steps within a cycle, but binned them separately

for each shear cycle number. Specifically, ten for most data

points and three to five for data near a reversal, are combined for

each data point on the plots. We note that in general, distribu-

tions of Fn/hFni or Ft/hFni for single strain steps within a given

shear cycle yield the same type of collapse, although the data are

noisier.
Fig. 17 Data for the distribution of normal forces, Fn, expressed as Fn/

hFni of all six shear cycles. We show data from all strain steps collectively

for each cycle. Here, data for Fn/hFni are normalized by hFni for the given

step.

Fig. 18 Data for the distribution of normalized tangential forces, Ft/hFni
of all six shear cycles. As for the distribution of normal forces, the

statistics are combined for all steps within each cycle, where the

normalization, hFni is made for each step.

2990 | Soft Matter, 2010, 6, 2982–2991
A key point is that the distributions show a common form for

all data of a given force type (i.e. normal vs. tangential forces).

For normal forces, the distributions consist of a nearly expo-

nential fall-off at large Fn/hFni and a peak at low Fn/hFni. P(Ft/

hFni) also shows an exponential decay, but a weaker peak near 0.

Although some of the fall-off of both distributions at low force is

due to the experimental lower limit of force detection, we believe

that this is a relatively minor effect. The tangential force distri-

butions, P(Ft/hFni), decay faster than that for the normal forces,

which is due simply to the choice of normalization by hFni rather

than by hFti.
4 Concluding remarks

In this work, we have contrasted novel measurements of granular

properties near jamming. These experiments are unique, to our

knowledge, in their capacity to provide detailed grain-scale

information on granular systems. These experiments are also

highly novel because they have probed jamming behavior of

anisotropic states.

We have sought to compare these experiments to theories of

several types for the jamming transition: global scenarios, after

Liu and Nagel,13 simulations, and statistical models.3,4,17–20,24 At

the most qualitative level, we have explored the paths in state

space that granular systems follow for two contrasting cases:

isotropic strain, and pure shear strain. The first case has

produced experimental results that resemble several of the

theoretical results discussed above, even though these typically

apply to frictionless particles. In particular, we see jamming over

a narrow range of packing fractions, and exponents for Z and P

(but not necessarily amplitudes) that are consistent with fric-

tionless models. And, we find reasonable consistency with the

work of Henkes et al.3,4

The second, anisotropic, case yields results that deviate

substantially from the usual jamming scenario. Specifically, we

find that for f’s which have unjammed states under isotropic

conditions, it is possible to generate anisotropic jammed states by

applying pure shear strain. The evolution of jammed states under

shear strain is a manifestation of the same principle as Reynolds

dilatancy. In his classic experiments,26 an elastic bag filled with

granular material was subject to shear strain, with the result that

the material expanded/dilated against the compliant container.

In the present case, the boundaries do not allow for expansion

during shear strain, and consequently, the pressure and shear

stress grow. It is also interesting that anisotropic sheared states

occur at the end of a shear cycle, when the boundaries of the

system have been returned to the initial unstrained conditions. It

seems likely that this last point is important for our studies of

nominally isotropically deformed states. In particular, any small

induced shear associated with the motion of the biax boundaries

may lead to shear-induced stresses and hence, the observed

background pressures and rounding in Z observed for the

isotropic jamming experiments.

The existence of jammed states below fc for isotropic jamming

necessitates a new look at the jamming diagram, and we sketch

a possibility that is consistent with the present experiments in

Fig. 19. In part (a) of this figure, we sketch nominal paths for

different packing fractions, projected onto the s – P plane (light

solid curves labelled 1 and 2). The dashed line corresponds to the
This journal is ª The Royal Society of Chemistry 2010
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Fig. 19 Sketch of boundaries for jammed states. (a) Sketch of projec-

tions of special paths (see text) onto the s – P plane. The curves labelled

1 and 2 are curves of constant density; the dot-dashed line is a nominal

Coulomb line; and the dashed line is the limiting line P ¼ s. (b) A

rendering of these paths in the full s – P – f plane.

D
ow

nl
oa

de
d 

by
 N

ew
 Y

or
k 

U
ni

ve
rs

ity
 o

n 
19

 O
ct

ob
er

 2
01

0
Pu

bl
is

he
d 

on
 0

2 
Ju

ne
 2

01
0 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
00

01
47

C
View Online
formal limit where P¼ s. Since P¼ (s1 + s2)/2, and s¼ (s2 – s1)/

2 (taken here to be always positive), it is not possible to have

a state where s > P, as long as the material is noncohesive, since

the si are both positive (or zero). The disallowed region of the s –

P plane is crosshatched out. In the present experiments, there

exist states for some range fSJ < f < fc where it is possible to

generate shear-jammed states. These states arise out of P¼ s¼ 0,

and to reasonable approximation, lie along a line s ¼ mP, where

m < 1. Such a locus is indicated by the dashed-dot line in the s – P

plane. Although not discussed here in detail, we have also carried

out pure shear, again at constant f, but this time with f > fc, i.e.

starting from isotropically compressed states. Necessarily, in

these cases, the densities are above that for isotropic jamming,

the initial pressure is positive, and the initial s is zero. In such

cases, s starts at 0, but grows as the system is strained. However,

P also grows under such strains, and the paths labeled ‘1’ and ‘2’

are hypothetical examples of such shear protocols, projected

onto the s – P plane. Under sufficient shear strain, individual

contacts (and sometimes as a consequence multiple contacts) fail.

However, it is worth remarking that after such a failure, the

system typically finds a new jammed state, at somewhat reduced

stress. Thus, there is always available a ‘nearby’ jammed state.

From the Coulomb point of view, shear strain in these experi-

ments leads to states that live on or close to the Coulomb cone.

The application of shear at constant f > fc leads to relatively

localized failures that reduce s and maintain the system in the

jammed region. In this sense, the present experiments indicate

that for granular materials, the boundary in the f – s plane when

f > fc is not so much a limit between states in and out of

mechanical equilibrium, e.g. jammed vs. unjammed. Rather, it is

a limit which the system does not cross while maintaining a fixed

density. It is presumably the presence of such states that allow

nearly rate-independent continuous shear strain of granular

samples at low shear rates and in geometries (e.g. Couette27) that

allow unbounded shear strain. If we then fill in the third direction

of this state diagram, we obtain something like the sketch of

Fig. 19.

An important issue concerns the variables used in Fig. 19. One

could sketch a jamming diagram in the usual variables, where
This journal is ª The Royal Society of Chemistry 2010
there is a line segment between fSJ and fJ, but that does not very

well represent the fact that this region has multiple states. That is,

below Point-J, there are intrinsically anisotropic definitively

jammed states that arise under shear strain, as well as isotropic

unjammed states. Alternatively, one could replace 1/f with 1/P.

This has some drawbacks too. First, the jamming point moves to

infinity, and second, all states at zero P are now squeezed into the

same point. One might also look for other variables, such as s/P,

but this is awkward near Point-J. We have chosen the repre-

sentation in Fig. 19 because it does provide a means of dis-

tinguishing the various states in question. We conclude by noting

that granular systems (in the literal sense of ‘granular’) may be

special due to the presence of non-zero friction in intergranular

forces. This conclusion is supported by the recent numerical

studies of Huessinger and Barrat28 which do not yield the same

shear-jammed states seen in the present experiments.
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