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1. Introduction

Let k be an algebraically closed field, G a finite group and V a faithful
representation ofG over k. In this note we compute cohomological obstructions
to stable rationality of quotients of V by G introduced by Saltman [12] and
[4] and studied in [7], [10], [5].
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Let K = k(V )G be the function field of the quotient variety and

s : GK → G.

the natural homomorphism from the absolute Galois group of K to G. We
have an induced map on cohomology with coefficients in the torsion group Z/`,
with trivial G-action,

s∗i : H i(G,Z/`)→ H i(GK ,Z/`).

Note that s∗i depends on the ground field k, but not on the choice of the faithful
representation V over that field. The groups

H i
k,s(G,Z/`) := H i(G,Z/`)/Ker(s∗i ),

are called stable cohomology groups over k. They form a finite ring. We
may consider them as subgroups of H i(GK ,Z/`). Every divisorial valuation
ν ∈ ValK of K defines a residue map

∂ν : H i(GK ,Z/`)→ H i−1(GKν ,Z/`),

where Kν is the residue field of ν. The groups

H i
k,un(G,Z/`) :=

⋂
ν∈ValK

Ker(∂ν ◦ s∗i ) ⊂ H i
k,s(G,Z/`)

form a subring of H∗k,s(G,Z/`). A basic fact is that if there exists a faithful
representation V of G over k and a unirational parametrization of the quotient
V/G whose degree is prime to ` then

H i
k,un(G,Z/`) = 0, for all i > 0.

In particular, these cohomology groups vanish if this quotient is stably rational.

For example, the rings of invariants of finite groups generated by pseudo-
reflections are polynomial, the corresponding quotient varieties rational, and
the cohomological invariants trivial. In particular, all Weyl groupsW of semi-
simple Lie groups have

H i
k,un(W ,Z/`) = 0, for all i > 0, and all k.

Conjecture 1.1. — Let G be a finite simple group. Then

H i
k,un(G,Z/`) = 0, for all i > 0, all k and all `.
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The i = 2 case of this conjecture was proved for G = PSLn(Fq) and k = C
in [5] and for simple and quasi-simple groups of Lie type in [9]. Examples
of functions fields with vanishing second and nonvanishing third unramified
cohomology were given in [11]. Here we prove that many of these cohomology
groups vanish for finite groups of Lie type, for k = F̄q. In fact, we prove stable
rationality of many associated quotients spaces. Our main theorem is:

Theorem 1.2. — Let G be one of the following groups

SLn(Fq), Sp2n(Fq), or 2SLn(Fq).
Let V be a faithful representation of G over k = F̄p. Then the quotient of V
by G is stably rational over k.

In particular, Conjecture 1.1 holds in these cases, for ` - q. Our main tool is a
theorem of Lang which proves rationality of certain quotient spaces over F̄p.

Theorem 1.3. — Let G be a semi-simple simply-connected Lie group defined
over a finite field Fq. Then the image

H i(G(Fq),Z/`)→ H i
k,s(G/G(Fq),Z/`)

is zero, for k = F̄q, all i > 0 and ` - q.

Combining this with results of Tits [14] we obtain the following:

Theorem 1.4. — Let G be a finite quasi-simple group of Lie type over a
finite field of characteristic p. Put

d(G) :=

 ∅ if G is SLn(Fq), 2SLn(Fq), Spn(Fq), SOn(Fq) or G2(Fq);
{2, 3} if G is of type F4, E6, E7;
{2, 3, 5} if G is of type E8.

Then, for k = F̄p, one has

H i
k,un(G,Z/`) = 0, for all i > 0, and all ` /∈ d(G).

Here is the roadmap of the paper. In Section 2 we study the birational type of
quotients G\G/H, where G is an algebraic group over an algebraically closed
field k and G,H ⊂ G(k) are finite subgroups, acting on G by translations
on the left, resp. on the right. In Section 3 we study the classical groups.
In Section 4 we introduce stable and unramified cohomology over arbitrary
algebraically closed fields and prove their basic properties. In Section 7 we
establish general vanishing results, applying theorems of Lang and Tits.
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2. Equivariant birational geometry

We work over an algebraically closed field k. We say that k-varieties X and
Y are stably birational, and write X ∼ Y , if X ×An is birational to Y ×Am,
for some n,m ∈ N.

Let G be an algebraic group and X an algebraic variety over k, with a
G-action

λ : G×X → X.

We will sometimes consider different actions of the same group. To emphasize
the action we will write λ(G)\X for the quotient of X by the λ-action of G;
we write G\X, when the action is clear from the context.

We say that the action of G is almost free if there exists a Zariski open
subset X◦ ⊂ X on which the action is free. In particular, the quotient map
X → G\X is separable.

Example 2.1. — Let V be a faithful complex representation of G. Then G
acts almost freely on V .

Lemma 2.2. — Let G be a finite group and V a faithful representation of G
over an algebraically closed field k. Let Y be an affine variety over k, with a
free G-action, and y ∈ Y (k) a point.

For every Zariski open U ⊂ V there exist a G-equivariant k-morphism φU :
Y → V and a Zariski open G-invariant subset Y ◦ ⊂ Y such that

– y ∈ Y ◦(k);
– φU(Y ◦) ⊂ U .

Proof. — It suffices to consider V := A|G|k , the affine k-space, with the induced
faithful G-action. For any divisor D ⊂ V there exists a Zariski open subset
U ⊂ V such that for every point v ∈ U(k) its G-orbit G · v /∈ D. For every
Zariski open U ⊂ V there exists a G-equivariant k-morphism φU : Y → V
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such that φU(y) ∈ U(k) (functions separate points). This implies the existence
of a Zariski open G-invariant subset Y ◦ ⊂ Y with the claimed properties.

A G-variety X is called G-affine, and the corresponding action affine, if
there exists a G-equivariant birational isomorphism between X and a faithful
representation of G. Let V and X be affine G-varieties. A G-morphism π :
V → X is called an affine G-bundle if it is an affine bundle over some open
subset X◦ ⊂ X and the G-action is compatible with this structure of an affine
bundle.

By Hilbert 90, an affine G-bundle V → X is G-birational to a finite dimen-
sional G-representation over the function field of K = k(X), compatible with
the given G-action on K. A morphism ρ : X → B of G-varieties will be
called a G-ruling (and X - G-ruled) over B if there exists a finite set of affine
G-varieties

Xn = X,Bn−1, Xn−1, Bn−2, Xn−2, . . . , X1, B0 = B

such that Xi → Bi−1 is an affine G-bundle and Bi ⊂ Xi a G-stable Zariski
open subset, for i = 1, . . . , n.

Lemma 2.3. — Assume that ρ : X → B is a G-ruling over B and that the
action of G on X is almost free. Then X is G-affine.

Proof. — Follows from Hilbert 90.

Let X, Y be smooth varieties with an almost free action of G. We write

X
G
 Y if there exist a G-representation V , a Zariski open G-stable subset

X◦ ⊂ X and a G-morphism (not necessarily dominant) β : X◦ × V → Y .

We write X
G
! Y , and say that the G-actions are equivalent, if X

G
 Y and

Y
G
 X.

Lemma 2.4. — If X
G
 Y then the morphism

β : G\(X × Y )→ G\X
has a rational section.

Proof. — Consider the morphism

β′ : G\(X × V × Y )→ G\X,
where G acts diagonally. The graph of the map X → (Y × V ) is G-stable and
gives a section of β′. The projection of this section to G\(X × Y ) is a section
of β.
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Lemma 2.5. — Let G be a Lie group over an algebraically closed field k. Let
G ⊂ G(k) be a finite subgroup. Let X be an algebraic variety over k with an

almost free action of G. Assume that X
G
 G, where G is considered as a

G-variety, with a left action. Then

G\(X × G) ∼ G\X.

Proof. — By Lemma 2.4, there is a Zariski open subset G-stable subset X◦ ⊂
X so that the G-morphism (projection to the first factor)

β : G\(X × G)→ (G\X)

has a section. We also have a right action of G, which preserves the fibration
structure given by β. Thus it is a principal homogeneous space over G\X◦,
for some G-stable Zariski open X◦ ⊂ G, with a section. Hence it is birational
to (G\X)× G. It suffices to recall that G is rational over k.

Let G be a connected algebraic group and F ∈ Autk(G) a k-automorphism
of G. Let G ⊂ G(k) be finite subgroup, with a natural left action

λ : G× G → G
(γ, g) 7→ γ · g

We also have an F -twisted right action

ρF : G× G → G
(γ, g) 7→ g · F (γ−1).

and an F -conjugation

κF : G× G → G
(γ, g) 7→ γ · g · F (γ−1).

Lemma 2.6. — Assume that G ⊂ G(k) has the following properties:

(1) there exists a faithful G-representation V such that V
G
 G, where G acts

on G via λ;
(2) the twisted action ρF on G is almost free.

Then the quotient of G by the F -twisted conjugation κF of G is stably birational
to the quotient of G by λ.
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Proof. — Consider the diagonal action of G on G× G:

G× G× G
(λ,ρF )−→ G× G

(γ, g, g′) 7→ (γ · g, g′ · F (γ−1)).

Let ∆F := {(g, F−1(g))} ⊂ G × G be the F -twisted (anti)diagonal. Then ∆F

is preserved under the (λ, ρF )-action of G and descends to a section of the
principal (right) G-fibration

(λ, ρF )(G)\(G× G)→ ρF (G)\G,

projection to the second factor. It follows that

ρF (G)\G ∼ (λ, ρF )(G)\(G× G).

Observe that

ρF (G)\G ∼ λ(G)\G.
Now we show that

(2.1) κF (G)\G ∼ (λ, ρF )(G)\(G× G).

Let V be a faithful representation of G as in (1) and V ◦ ⊂ V a G-stable
Zariski subset admitting a G-map into G, considered with the λ-action of G.
We know that there exists a G-morphism ξ : G → V , where G is considered
with the κF -action of G, such that ξ(G) ∩ V ◦ 6= ∅ (see Lemma 2.2). It follows

that G
G
 G, where the source carries the κF -action of G and the image the

λ-action of G. Equation (2.1) now follows from Lemma 2.4.

Corollary 2.7. — Let G ⊂ G(k) by a finite subgroup satisfying Assumption
(1) of Lemma 2.6. Let V be a faithful representation of G over k. Then

G\G ∼ G\V

More generally, for any X with an almost free action of G we have

G\(X × V ) ∼ G\X.

Proof. — Note that G\(G×V ) is a vector bundle over G\G, and hence stably
birational to it. On the other hand, it is a right G-fibration over G\V with
section defined by the G-equivariant map V → G.

To prove the statement for X it suffices to notice that a dense Zariski open
G-stable subset X◦ ⊂ X admits a nontrivial G-morphism to V .
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3. Equivariant birational geometry of classical groups

In this section, k is an algebraically closed field, of any characteristic.

Lemma 3.1. — The conjugation action κ : SL2 → SL2 is equivalent to a
linear action.

Proof. — Realize SL2 as a nonsingular quadric in A4 = M2. The conjugation
action is linear on M2 and has a fixed point corresponding to the identity.
The projection of SL2 from the identity to the locus of trace zero matrices
is equivariant and has degree 1. Hence the conjugation action is rationally
equivalent to the action on trace zero matrices.

Lemma 3.2. — Let G = (Z/2)n and X be a G-affine variety over k. Then
G\X is rational.

Lemma 3.3. — Let G ⊂ PGL2(k) ' SO3(k) ⊂ M2(k) be a finite subgroup.
Then the action of G on PGL2 by conjugation is equivalent to the left (linear)
action of G on trace zero matrices M0

2 ⊂ M2. In particular, G\PGL2 is stably
rational.

Lemma 3.4. — The left action of (Z/2)2 ⊂ SO3 ↪→ SO4 is linear.

Proof. — Consider the subgroup (Z/2)3 ⊂ SO4. It contains a central sub-
group Z/2 and a complementary subgroup H2 = (Z/2)2 ⊂ SO3 = PGL2. By
Lemma 3.1, the conjugation action H2 ⊂ PGL2 is linear.

This is a subgroup of the diagonal subgroup SO3 = PGL2 ⊂ SL2×SL2/(Z/2).
Note that SO4 is a product of SO3 = (h, h) and Spin3 = (g, 1), and that conju-
gation by elements in (Z/2)2 respects this decomposition. Thus the action is a
vector bundle over SL2/(Q8)conj = SL2/(Z/2)2 (where Q8 are the quaternions).

Hence the action on SO4 is linear and the automorphism F is the identity
on the diagonal SO3. The same holds for the twisted F -action.

Lemma 3.5. — Let G be an algebraic group over k. Assume that G admits
an affine action on itself, e.g., G = GLn, SLn, Spn. Let G ⊂ G(k) be a finite
subgroup which has trivial intersection with the center of G.

Then the conjugation action of G on G is stably birationally equivalent to a
linear action.

Proof. — By Corollary 2.7, the diagonal left translation action of G on G×G
is equivalent to the action on a principal G-bundle over G, with G acting on
the base by conjugation. This proves the equivalence.
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Corollary 3.6. — Let G ⊂ G(k) be a finite subgroup as in Lemma 3.5.
Assume that the action of G on G by left translations is affine. Then both
the left and the conjugation action of G on G are stably birational to a linear
action.

Proposition 3.7. — Let G be a classical simply-connected Lie group of type
A or C, i.e., G = SLn or G = Sp2n over k. Let G ⊂ G(k) be a finite subgroup.
Then G is a G-affine variety, for the standard left action of G.

Proof. — Note first that any finite subgroup G ⊂ GLn(k) induces a G-affine
structure on GLn. Indeed, GLn ⊂ Mn×n = ⊕ni=1V

(i), a direct sum of n copies of
the standard representation V of GLn. Put B0 = 0, a point, and X1 := V (1) =
V . We have a canonical projection X1 → B0. Define Xj ⊂ ⊕ji=1V

(i) as the

set of those vectors, whose projections to ⊕j−1
i=1V

(i) are linearly independent,
and Bj ⊂ Xj as the subset of vectors in Xj, which are linearly independent in

⊕ji=1V
(i), under the standards identification V = V (i). For any G ⊂ GLn this

defines the structure of a G-ruling on GLn over a point.
For G = SLn, and G ⊂ G we have a similar G-ruling: For j = 1, . . . , n − 1

it is the same as above. For j = n, put Xn := SLn. The map Xn → Bn−1

is the restriction of the map above. Explicitly, it is the projection to the
first (n− 1)-vectors (v1, . . . , vn−1), with fiber an affine subspace F(v1,...,vn−1) ⊂
V (n) = V , given by the affine equation in the coordinates of the last vector
det(v1, . . . , vn) = 1. Now we can apply Lemma 2.3 to conclude that SLn is
G-affine.

Note that by Tsen’s theorem, the morphism GLn → GLn/SLn has a section.
This gives a G-equivariant birational isomorphism SLn ×Gm → GLn.

The group G = Sp2n has a canonical embedding into M2n×2n, defined by the
equations

(3.1) ω(vi, vi′) = δi′,n+i, for i < i′,

(ω is the standard bilinear form and δ is the delta function). The system of
projections is induced from the one above:

Xj = {(v1, . . . , vj)} ⊂ ⊕ji=1V
(i),

satisfying equations (3.1), for indices 1 ≤ i < i′ ≤ j, and the property that
the vectors v1, . . . , vj−1 are linearly independent in V , under the identifications
V (i) = V . The subvariety Bj ⊂ Xj is given as the locus where v1, . . . , vj are
linearly independent. Each map Xj → Bj−1 is an affine G-bundle, for any
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finite subgroup G ⊂ G(k) - its fibers are given by a system of linear equations
on the coordinates of vj.

Proposition 3.8. — Let G = SOn and G ⊂ G(k) be a finite subgroup. Then
there exist a G-ruling X, a variety Y with trivial G-action and a G-equivariant
finite morphism

π : G× Y → X.

Moreover, deg(π) | 2n−1.

Proof. — Keep the notations in the proof of Proposition 3.7: G ⊂ Mn.
Assume that char(k) 6= 2. Every quadratic form can be diagonalized over k.

Let Xn ⊂ Mn be the subvariety given by:

(3.2) (vi, vi′) = δi′,n+i, for i < i′.

The system of projections is the same as above: Xj ⊂ ⊕ji=1V
(i) is the subset

of vectors satisfying equations (3.2), for indices 1 ≤ i < i′ ≤ j, and the
condition that v1, . . . , vj−1 are linearly independent. The subvariety Bj ⊂ Xj

corresponds to j-tuples (v1, . . . , vj) which are linearly independent (as vectors
in V = V (i)). Each map Xj → Bj−1 is a G-equivariant vector bundle, for any
finite subgroup G ⊂ G(k). Each Xj carries the action of a j-dimensional torus
Gj
m, over k, commuting with the action of G. The action of G × Gn

m on Xn

is transitive, and the stabilizer of a general k-point has order 2n−1. The claim
follows, for Y := Gn

m.
Assume that char(k) = 2. In this case, SO2n+1 ' Sp2n and we can apply

Proposition 3.7. We also have SO2n ⊂ Sp2n, where Sp2n(k) is the set of elements
of GL2n(k) which preserve a symplectic bilinear form ω, and SO2n(k) the set
of those elements which in addition preserve a quadratic form f . The forms
are related by the condition

f(x+ y) = f(x) + f(y) + ω(x, y).

We may identify a general element γ ∈ Sp2n(k) with a choice of an orthogonal
basis {v1, . . . , v2n}. Observe that the map

Sp2n → Sp2n/SO2n ∼ A2n

{v1, . . . , v2n} 7→ (f(v1), . . . , f(v2n)).
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Indeed, γ ∈ SO2n(k) iff and only if f(γx) = f(x), for all x ∈ V . We have

f(
2n∑
i=1

aivi) =
2n∑
i=1

a2
i f(vi) +

∑
i 6=j

aiaj(vi, vj)

=
2n∑
i=1

a2
i f(γvi) +

∑
i 6=j

aiajω(γvi, γvj)

= f(γ(
2n∑
i=1

aivi)),

since f(γvi) = f(vi) and γ preserves ω.
We claim that the bundle Sp2n → Sp2n/SO2n ∼ A2n admits a multisection

of degree 22n. Explicitly, it can be constructed as follows: fix an orthogonal
basis {v1, . . . , v2n} such that f(vi) 6= 0, for i = 1, . . . , 2n. We have an action
of the affine group B = Gm o Ga ⊂ SL2 given by

(xi, xn+i) 7→ (λxi, µxi + λ−1xn+i), for i = 1, . . . , n.

We claim that this gives a generically surjective map:

SO2n × Bn → Sp2n

of degree 22n. The image of Bn · {f(v1), . . . , f(v2n)} is dense in A2n. Consider
the intersection Bn ∩ SO2n:

f(vi) = λ2f(vi), and f(vi+n) = µ2f(vi) + λµω(vi, vi+n) + λ−2f(vi+n).

These equations can be solved in k, for each i = 1, . . . , n, and we have a
dominant map SO2n × B → A2

i of degree 4, for each i. This concludes the
proof.

4. Stable cohomology

In this section we collect background material on stable cohomology of finite
groups, developing the theory over arbitrary algebraically closed fields k. We
will omit k from the notation when the field is clear from from the context.

For every finite group G and a G-module M we have the notion of group
cohomology, as the derived functor M 7→ MG, the G-invariants, or, topolog-
ically, as the cohomology of the classifying space BG = X/G, where X is a
contractible space with a fixed point free action of G.
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Passing to algebraic geometry, let X be an algebraic variety over k, with an
almost free action of a G. Let X◦ ⊂ X be the locus where the action is free.
Let M be a finite G-module. It defines a sheaf on X̃ := X◦/G. This gives a
homomorphism from group cohomology of G to étale cohomology of X̃:

H i(G,M)→ H i
et(X̃,M).

Composing with restriction to the generic point we get a homomorphism

σ∗i : H i(G,M)→ H i(GK ,M),

where GK is the absolute Galois group of the function field K = k(X̃). There
are canonical isomorphisms

H i(GK ,M) = lim
−→
D

H i(X \D,M),

where the limit is taken over divisors of D. We can interpret elements in the
kernel of σ∗ as classes vanishing on some Zariski open subvariety Ũ ⊂ X̃.

Remark 4.1. — Note that for fixed G and M , the groups σ∗i (H
i(G,M)) = 0,

for all i > dim(X), while the usual group cohomology need not vanish.

Proposition 4.2. — There exist a finite group G̃ and a sequence

GK
σ̃−→ G̃

ρ−→ G

of homomorphisms σ̃ and ρ such that for all 0 ≤ i ≤ dim(X) one has

Ker(σ∗i ) ⊂ Ker(ρ∗i ),

where ρ∗i : H i(G̃,M)→ H i(G,M) is the induced map on group cohomology.

Proof. — The cohomology classes in H i(GK ,Z/`) are represented by continu-
ous cocycles (in the natural topology on GK). Any element is induced from a
finite group H. If it vanishes it also vanishes on a finite quotient G̃ of GK and
the maps GK → G̃ → G are continuous. Since the initial group H i(G,Z/`)
is finite there exists a G̃ where all elements from H i(G,Z/`), which vanish on
GK are killed.

A special case of the above construction arises as follows: let % : G→ V be
a faithful representation over an algebraically closed field k and let K = k(V )G

be the function field of the quotient. We have induced maps

s∗i : H i(G,M)→ H i(GK ,M)
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and we can define the stable cohomology groups over k:

H i
k,s(G,M) := H i(G,M)/Ker(s∗i ),

which we will often identify with their image in H i(GK ,M).

Proposition 4.3. — The cohomology groups H i
k,s(G,M)

(1) do not depend on the representation;
(2) are functorial in G;
(3) are universal for G-actions: for any G-variety X over k the homomor-

phism H i(G,M)→ H i(Gk(X),M) factors through H i
k,s(G,M);

(4) if M is an `-torsion module, then

H i
k,s(G,M) = H i

k,s(Syl`,M)N`

where Syl` = Syl`(G) is an `-Sylow subgroup of G and N` = N`(G) its
normalizer in G.

Proof. — We apply Lemma 2.2. Choosing an appropriate Zariski open G-
invariant subvariety X◦ ⊂ X we can reduce to the affine case, with free G-
action. Let V ◦ ⊂ V be a Zariski open subset where the action of G is free.
Put X̃ := G\X◦ and Ṽ := G\V ◦. We need to show that a class α ∈ H i(G,M)
whose image in H i(Gk(Ṽ ),M) is zero also vanishes in H i(Gk(X̃),M). Such a

class vanishes in H i
et(Ũ ,M), where Ũ ⊂ Ṽ is an affine Zariski open subset.

The preimage U of Ũ in V is a nonempty G-invariant affine Zariski open
subset. Thus there exist an affine nonempty G-invariant Zariski open subset
UX ⊂ X◦ and a G-morphism φU : X◦ → V such that φU(UX) ⊂ U . This
descends to a morphism X̃ ⊃ ŨX → Ũ ⊂ Ṽ . The image of α under the
composition

H i(G,M)→ H i
et(Ũ ,M)→ H i

et(ŨX ,M)→ H i
et(Gk(X̃),M)

is zero. This proves (3). Applying this to X = V ′, for another faithful repre-
sentation, we get (1).

Property (2) is proved as follows: First, let H ⊂ G be a subgroup and V
a faithful G-representation. Consider the morphism H\V → G\V . A class
vanishing on a Zariski open subset of G\V also vanishes on a Zariski open
subset of H\V . Next, let G→ H be a surjective homomorphism and VG, resp.
VH , a faithful representation of G, resp. H. Then WG := VH ⊕ VG is a faithful
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representation of G and we have a commutative diagram

Gk(G\WG) → Gk(H\VH)

↓ ↓
G → H,

giving natural maps on cohomology.
We proceed with the proof of Property (4). Since ` and the cardinality of

G/Syl` are coprime, the map Syl`\V → G\V induces an invertible map on
cohomology of open subvarieties of G\V . The group N`(G)/Syl`(G) has order
prime to `. The action of N`(G)/Syl`(G) on M decomposes the module into
a direct sum; so that

H i(Syl`(G),M) = H i(Syl`(G),M)N`(G) ⊕R,
so that the restriction of the trace map is zero on the module R.

We have

H i(G,M)
∼−→ H i(Syl`(G),M) ⊂ H i(Syl`(G),M)N(Syl`(G)).

Consider the image of r ∈ R in H∗k,s(Syl`(G),M). We get a direct decomposi-

tion H i
s(Syl`(G),M)N(Syl`(G)) ⊕ Rs, with Tr(r) = 0. Thus H i

k,s(G,M) surjects

onto H i(Syl`(G),M)N(Syl`(G)), and the map is an isomorphism.

Lemma 4.4. — Let V be a representation space for a faithful representation of
group G over an algebraically closed field k. Assume that G\V is isomorphic
to affine space. Then any nontrivial element α ∈ Hk,s(G,Z/`) has nontrivial
restriction to the stable cohomology of a centralizer of a quasi-reflection in G.

Proof. — If α ∈ H∗k,s(k(An),Z/`) is nontrivial then the residue of α is non-
trivial on some irreducible divisor D ⊂ An = G\V (see [6]). The preimage of
D in V is a union of irreducible divisors D1, . . . , Dr. For each i, there exists
a nontrivial γi ∈ G acting trivially on all points of Di. Thus each Di is a
hyperplane in V . Hence γi is a quasi-reflection.

Corollary 4.5. — Let W be a Weyl group. Then

H i
k,s(W ,Z/`) = 0, for all i > 0 and all ` 6= 2.

We have
H i
k,s(W ,Z/2) ↪→ ⊕τH i

k,s(τ, (Z/2)rτ ),

where τ runs over the set of 2-elementary abelian subgroups of W, modulo
conjugation, and rτ ∈ N.
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Proof. — The quasi-reflections in the standard faithful representation of W
have order 2. Their centralizers are products of powers of Z/2 with smaller
Weyl groups. It suffices to apply induction.

Remark 4.6. — It is possible to obtain a more precise vanishing result fol-
lowing the approach for W = Sn in [8].

5. Comparison with Serre’s negligible classes

Stable cohomology was defined by the first author in [2] and [3]. J.P. Serre
defined a related but somewhat different notion [13, p. 170].

In his terminology, negligible elements α ∈ H∗(G,M) are those which are
killed under every surjective homomorphism GK → G, where K = k(X̃) is the
function field of a quotient X̃ = G\X◦. Negligible elements form an ideal in
the total ring H∗(G,M).

We are considering a smaller set of homomorphisms GK → G, namely from
Galois groups of fields of type K = k(V )G, and the ideal of negligible classes
defined by Serre is smaller. The resulting groups are different (for example, for
Z/2-coefficients). The quotient ring obtained by Serre’s construction surjects
onto the ring H∗k,s(G,M), for any algebraically closed k.

6. Unramified cohomology

Let K = k(X) be a function field over an algebraically closed field k, and
M an étale sheaf on X. For every divisorial valuation ν ∈ ValK of K we have
a split exact sequence

1→ Iν → GKν → GKν → 1

where Kν is the completion of K with respect to ν, Kν the residue field and
Iν is the inertia group. This gives an exact sequence in Galois cohomology

H i(GKν ,MIν )→ H i(GKν ,M)
δν−→ H i−1(GKν , IνM)

where MIν , resp. IνM , are the sheaves of invariants, resp. coinvariants. Un-
ramified cohomology is defined by

H i
k,un(GK ,M) := ∩ν∈ValK Ker(δν) ⊂ H i(GK ,M).
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Lemma 6.1. — Let π : X → Y be a surjective morphism of algebraic vari-
eties over k, and M an étale sheaf on Y . Then there is a natural homomor-
phism:

π∗ : H i
k,un(Y,M)→ H i

k,un(X, π∗(M)).

Moreover, if π is finite, then there is a natural homomorphism

π∗ : H i
k,un(X, π∗(M))→ H i

k,un(Y,M)

and the composition π∗ ◦ π∗ is multiplication by the degree of π.

Proof. — We have an embedding π∗ : k(X) ↪→ k(Y ) of function fields and
a the corresponding map π∗ : Gk(Y ) → Gk(X) of Galois groups. A divisorial
valuation ν of k(Y ) is either trivial on π∗(k(X)) or defines a divisorial valuation
ν∗ on k(X). If ν is trivial on π∗(k(X)) then π∗(Iν) for the inertia subgroup
Iν ⊂ Gk(Y )ν and hence δν is zero on π∗H∗(Gk(X),M). If ν on π∗(k(X)) coincides
with ν∗ then under the induced map π∗ : Gk(Y )ν → Gk(X)ν′

we have π∗(Iν) ⊂
Iν∗ . Thus δν∗(α) = 0 implies that δνπ

∗(α) = 0 for all α ∈ H∗k,un(Gk(X),M).

Let G be a finite group and V a faithful G-representation as above. Let
K = k(V )G be the function field of the quotient. We can consider its stable
cohomology groups H i

k,s(G,M) as subgroups of H i(GK ,M). Define unramified
cohomology groups

Hk,un(G,M) := H i
k,s(G,M) ∩H i

k,un(GK ,M).

Proposition 6.2. — Assume that char(k) - |M |. Then the unramified coho-
mology groups H i

k,un(G,M)

– do not depend on the representation V ;
– are functorial in G.

Proof. — Let V, V ′ be two faithful representations of G and consider the dia-
gram:

G\(V × V ′) → G\V ′
↓

G\V
The case of constant coefficients follows from [7] and the observation that both
arrows in the above diagram are natural vector bundles on the quotients. A
small modification of the argument proves the claim for a general G-module
M .
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7. General vanishing results

In this section, we work over k = F̄p. Here we collect general arguments
proving triviality of stable and unramified cohomology groups.

Theorem 7.1. — Let G be a finite group and M a finite p-torsion G-module.
Then, H i

k,s(G,M) = 0, for all i > 1.

Proof. — See [13, Chapter 2, Proposition 3].

The main reason for introducing unramified cohomology group is:

Theorem 7.2. — Let V be a faithful representation of G. If K = k(V )G is
a purely transcendental extension of k then, for all i > 0, we have

H i
k,un(G,Z/`) = 0.

Theorem 7.3 (Lang). — Let G be an algebraic group over k. Let F be an
automorphism of G(k) which is a composition of an element in Aut(G)(k) and
a Frobenius of k = F̄p. Let G = GF ⊂ G(k) be the finite subgroup fixed by F .
Then G\G ' G, hence is a rational variety.

Proof. — Consider the map

τ : G → G
x → F (x)−1x.

The action of τ on the Lie algebra of G is surjective with kernel a finite subgroup
G = GF . Note that τ coincides with the composition

τ : G→ G\G→ G.

Indeed, if τ(x) = τ(y) then F (x)−1x = F (y)−1y, or F (xy−1)−1xy−1 = 1, or
xy−1 ∈ G. If follows that x = gy, g ∈ G. The converse is clear. Thus G\G is
rational.

Lemma 7.4. — Let ` be a prime and π : X → Y a separable morphism k-
varieties of finite degree prime to `. Assume that H i

k,un(X,Z/`) = 0. Then

H i
k,un(Y,Z/`) = 0.

Proof. — Immediate from Lemma 6.1: the degree deg(π) is prime to ` and
multiplication by deg(π) is invertible on H i

k,un(Y,Z/`).

This lemma will be applied to Y = G\V . The goal will be to construct X
with vanishing unramified cohomology.
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Corollary 7.5. — Let G = GF ⊂ G(k) be as above. Let X be a G-linear
variety over k. Assume that there exist a variety Y over k, with trivial G-
action, and a G-equivariant finite morphism

π : G× Y → X.

Let S be the set of all primes dividing the degree of π. Then

H i
k,un(G,Z/`) = 0, for all i > 0 and ` /∈ S ∪ {p}.

Proof. — Any affine connected algebraic group over k = F̄p is rational. By
Lang’s theorem, the quotient G\G is isomorphic to G, and thus rational. For
primes ` /∈ S∪{p} not dividing the degree of π, the induced map on cohomology
is injective. This concludes the proof.

Theorem 7.6. — Let G be a Lie group over k. Let G = GF ⊂ G(k) be a
finite subgroup. Put

s(G) :=

 {p, 2} for G of type C or Dn, n ≥ 5;
{p, 2, 3} for G of type D4, F4, E6, E7;
{p} otherwise.

Then

H i
k,un(G,Z/`) = 0

for all ` /∈ s(G).

We have a natural homomorphism

H i(G,Z/`)→ H i(G\G,Z/`).

By Lang’s theorem 7.3, G\G ' G, as algebraic varieties. Thus we get a homo-
morphism

ρ : H i(G,Z/`)→ H i
et(G,Z/`).

Assume that G is semi-simple. Then Pic(G) ' π1(G) is a finite group and

G = G̃/Pic(G), where G̃ is the universal cover of G. We obtain a natural
homomorphism

η : H i
et(Pic(G),Z/`)→ H i

et(G,Z/`).

Theorem 7.7. — Let G be a semi-simple Lie group over k. Let G = GF ⊂
G(k) be a finite subgroup. Consider the diagram
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H i
et(Pic(G),Z/`)

σi∗◦ η
��

H i(G,Z/`)
σi∗◦ ρ // H i

k,s(G,Z/`).

Then the image of ρ is contained in the image of η.

Proof. — Standard computation using restriction of the fibration G→ G/T to
G◦ = T× AN and the transgression homomorphism.

Corollary 7.8. — Assume that G is simply-connected and that the natural
translation action of G on itself is affine. Then

H i
k,s(G,Z/`) = 0,

for all i > 0 and ` - q.

8. Reduction to Sylow subgroups

Let G be a finite group. For H ⊂ G let NG(H) denote the normalizer of H.
Let Syl`(G) be an `-Sylow subgroup of G. Recall the following classical result
(see, e.g., [1, Section III.5]):

H i(G,Z/`) = H i(Syl`(G),Z/`)NG(Syl`(G)).

Theorem 8.1. — Let G be a finite group. Let ` be a prime distinct from the
characteristic of k. Then there is an isomorphism

H i
k,s(G,Z/`)

∼−→ H i
k,s(Syl`(G),Z/`)NG(Syl`(G)).

Similarly,

H i
k,un(G,Z/`) ∼−→ H i

k,un(Syl`(G),Z/`)NG(Syl`(G)).

Proof. — Let V be a faithful representation of G over k. Then the map

π : Syl`(G)\V → G\V

is a finite, separable and surjective map of degree prime to `. Hence π∗ ◦ π∗ is
invertible in cohomology. This implies the first claim.

The fact that local ramification indices of π are coprime to ` implies the
second claim.
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Lemma 8.2. — Let G,H be finite groups. Let ρ : H → W be a faithful k-
representation of H. Assume that H\W is stably rational. Let U be a faithful
representation of G̃ := H oS G, where S is a finite G-set. Then G̃\U is stably
birationally equivalent to G\V , where V is a faithful representation of G.

Proof. — Put

ρS = ⊕s∈Sρs : HS :=
∏
s∈S

Hs → Aut(WS), WS = ⊕s∈SWs,

where Hs = H, Ws = W , for all s ∈ S, and ρs = ρ on the factor Hs and
trivial on Hs′ , for s′ 6= s. We construct U := V ′ ⊕WS, where V ′ is a faithful
representation of G and extend the action of G to VS via the G-action on S.
This gives a representation of G̃ = H oS G in Aut(U). The quotient space
is a fibration over G\V ′ with fibers (H\W )|S|. We can assume that H\W is
rational. The action of G on (H\W )|S| permutes the coordinates. It follows
that G̃\U is birationally equivalent to a vector bundle over G\V ′.

Corollary 8.3. — Let G = Syl`(Sn) and let V be a faithful representation
of G. Then G\V is stably rational.

Proof. — The `-Sylow subgroups of Sn are products of wreath products of
groups Z/` o · · · o Z/` (see [1, VI.1]). The quotient H\W is rational, for a
faithful representation W of H = Z/`. We apply induction to conclude that
the quotient G\V is stably rational.

Corollary 8.4. — Let G = Syl`(GLn(Fq)), with ` - q, and let V be a faithful
representation of G. Then G\V is stably rational.

Proof. — The structure of `-Sylow subgroups of GLn(Fq) is known (see [1,
VII.4]: it is also a product of iterated wreath products of cyclic `-groups.
Thus we can apply Lemma 8.2.

Corollary 8.5. — Let k be an algebraically closed field of characteristic
zero. Then

H i
k,un(GLn(Fq),Z/`) = 0 for all i > 0, and ` - q.

Remark 8.6. — Similar computations can be performed for some other finite
groups of Lie type, e.g., for O±2m(Fq) and Spn(Fq).
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