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Abstract. We provide new stable linearizability constructions for regular ac-

tions of finite groups on homogeneous spaces and low-dimensional quadrics.

1. Introduction

Let G be a finite group, acting generically freely and regularly on a smooth
projective variety X. Of particular interest are linear actions, i.e., generically free
actions on P(V ) arising from a linear representation V of G. Actions which are
equivariantly birational to a linear action are called linearizable (or linear); in par-
ticular X is a rational variety. The classification of such actions, up to birationality,
is an open problem even for linear actions on P2 (see [DI09], [TYZ24] and references
therein).

A related problem is to understand stable linearizability, i.e., linearizability of
G-actions on X × Pm, with trivial action on the second factor. Apart from its
intrinsic interest, this property is relevant for the study of automorphisms of fields
of invariants [Kol24]. Until recently, the only known instances of stable equivariant
birationalities were those arising from faithful linear actions of G, and a particular
nonlinearizable but stably linearizable action of the dihedral group D6 (of order 12)
on a quadric surface [LPR06]. New tools, such as the G-equivariant version of the
universal torsor formalism of Colliot-Thélène-Sansuc [CTS87] allowed us to settle
the stable linearizability problem for quadric surfaces [HT23, Section 7].

In this note, we focus on quadric hypersurfaces of dimension three and four. This
is an interesting class of examples; indeed, it is already unknown whether or not
every S3-action on a smooth quadric threefold is linearizable. On the one hand,
cohomological obstructions and the universal torsor formalism play a limited role
for these varieties. On the other hand, this is a good testing ground for stable
linearization: the Pfaffian constructions of [BvBT23], interpreted via coincidences
among Lie groups; the reduction to 2-Sylow subgroups, in the spirit of of Springer’s
Theorem, studied in [DR15]; and techniques from the stable birational geometry of
quadrics over nonclosed fields.

In Section 2 we recall basic notions from equivariant geometry and connect it
to versality for group actions on varieties. In Section 3 we investigate the impact
of isotropic subspaces on stable linearizability; see Theorem 3.5. As in the case
of quadrics over nonclosed fields [Tot09], the anisotropic quadrics have the rich-
est birational geometry. In Section 4 we turn to flag varieties for special linear
groups, and establish stable linearizability of translation actions in this context,
in Theorem 4.6. In Section 5, we provide Springer-type results, reducing stable
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linearization to 2-Sylow subgroups. We interpret arguments for special orthogonal
groups in terms of the geometry of Pfaffians. In Section 6, we present key examples
of stable linearizable actions in dimension 3, and reduce the stable linearization
problem to a specific action of the dihedral group D4; see Corollary 6.5.

Acknowledgments: The first author was partially supported by Simons Foun-
dation Award 546235 and NSF grant 1929284, the second author by NSF grant
2301983. We are grateful to Andrew Kresch for helpful suggestions about this
project.

2. Groups actions, twists, and rationality

Throughout, we work over a base field k that is algebraically closed of charac-
teristic zero.

2.1. Notions of linearizability. A G-variety is a smooth algebraic variety over k
with a generically free action of G. Here varieties are assumed to be geometrically
integral.

We use the following four birational properties of a G-action on X:

• strictly linear if there exists an equivariant birational map

V
∼
99K X,

where V is a linear representation of G;
• linear if there exists an equivariant birational map

P(V )
∼
99K X,

where V is a linear representation of G;
• stably linear if X × Pn is linear, with trivial action on the second factor;
• projectively linear if there exists a projective representation of G on P(V )

and an equivariant birational map

P(V )
∼
99K X.

In drawing analogies between equivariant geometry and geometry over nonclosed
fields, one could view (strict, projective) linearizability as analogous to rationality,
stable linearizability as analogous to stable rationality, etc.

Remark 2.1. The No-Name Lemma [CGR06, 4.3] implies that if X ×W is linear
for some linear G-representation W then X is stably linear. In particular, the
notion of strictly stably linear is logically equivalent to the notion of stably linear.

2.2. Projective bundles. Our definition of linearizability requires generically free
actions. Without this assumption, the notion behaves counter-intuitively:

Example 2.2. Consider the dihedral group

G = D4 =
〈
σ, τ : σ4 = τ2 = e, τσ = σ3τ

〉
with representation V given by

σ =

(
i 0
0 i3

)
, τ =

(
0 1
1 0

)
.

This does not act generically freely on P(V ) as σ2 is trivial; the quotient has nonzero
Amitsur invariant [HT23, Section 3.5]. Consider the product P(V )×P1 with a trivial
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action on the second factor; it also has nonzero Amitsur invariant, as this is a stable
birational invariant. The product is not equivariantly birational to P(V ′) for any
three-dimensional representation of G, which would have trivial Amitsur invariant.

Let G be a finite group and V a G-representation such that the induced action
on P(V ) is generically free. The quotient map V 99K P(V ) gives a line bundle

Bl0(V )→ P(V ),

so the No-Name Lemma implies V and P(V )×A1 are equivariantly birational. The
inclusion V ⊂ P(V ⊕ 1) yields that V and P(V ) × P1 are linearizable. Induction
implies that P(V )×Pn is as well. In each case, G acts trivially on the second factor.

We recall observations of [Kat92, §1], retaining the assumptions above:

• Suppose E → P(V ) is a vector bundle of rank n + 1 with a lifting of the
G-action. Then the No-Name Lemma implies that E is birational to On+1

P(V )

over P(V ), hence P(E) is birational to P(V )× Pn.
• Suppose X is a smooth projective variety with generically-free G-action

and E → X a vector bundle with G-action. If X is linearizable then P(E)
is also linearizable.

Here is an extension of these ideas:

Proposition 2.3. Let G and H be finite groups acting generically freely on P(V )
and P(W ) respectively. Then the induced action of G×H on P(V )×P(W ) is stably
linearizable.

Proof. Consider the dominant rational map

P(V ⊕W ) 99K P(V )× P(W )

which induces the morphism

BlP(V )tP(W ) P(V ⊕W )→ P(V )× P(W ).

This is the projectivization of a rank-two vector bundle E → P(V )× P(W ) that is
equivariant for G×H. The G×H-action is generically free on P(V )×P(W ) hence
E is equivariantly birational to P(V ) × P(W ) × A2, with trivial action on the last
factor. Thus P(V )× P(W ) is stably linearizable. �

Example 2.4. This is the best possible; we cannot expect linearizability here. Fix
odd integers k, ` and consider the actions of Dk and C` on P(V ) and P(U), where
V is the standard two-dimensional representation of the dihedral group and U has
weights ζ and ζ−1. Here C` = 〈ζ〉 ' µ`. Keep in mind that

P(V )× P(U) ↪→ P(V ⊗ U)

as a quadric surface. The classification of [DI09] – see the bottom of page 537
– shows that P(V ) × P(U) is not birational to P(V ′) for any three-dimensional
representation of Dk × C`.

2.3. Notions of versality. We recall the terminology of [DR15], restricting to
finite groups:

• weakly versal (WV): for every field K/k and every G-torsor T → Spec(K)
there is a G-equivariant k-morphism T → X,
• versal (V): every G-invariant open U ⊂ X is weakly versal,
• very versal (VV): there exists a linear representation G → GL(V ) and a

dominant G-equivariant rational map V → X,
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• stably linearizable (SL): X ×W is equivariantly birational to a linear rep-
resentation of G, where W is a linear space with trivial G-action.

Note that in the definitions above:

• T is viewed as a k-scheme;
• we could replace W with a non-trivial linear representation or the projec-

tivization of a linear representation without changing the definition.

These notions are related:

(SL)⇒ (VV)⇒ (V)⇒ (WV).

Remark 2.5. Not every projectively linear action is very versal. Indeed, suppose
we are given a projective faithful representation

ρ : G→ PGL(V )

and an associated central extension

(1) 1→ µn → G̃→ G→ 1

admitting a linear representation

ρ̃ : G̃→ GL(V ).

By [DR15, Proposition 9.1], the G-action on P(V ) is very versal if and only if the
exact sequence (1) splits.

We recall the notion of a twisting pair, a tuple (T,K) consisting of a field ex-
tension K/k and a G-torsor T over K; this gives rise to a twist TX, the K-variety
obtained by twisting via T .

The connection between versality and rationality over nonclosed fields is ad-
dressed in [DR15, Theorem 1.1]:

• (WV) ⇔ TX(K) 6= ∅, for all twisting pairs (T,K),
• (V) ⇔ TX(K) are Zariski dense, for all (T,K),
• (VV) ⇔ TX is unirational over K, for all (T,K),
• (SL) ⇔ TX is stably rational over K, for all (T,K).

Remark 2.6. An analogous statement regarding rationality over K fails: there
are examples of stably linearizable but not linearizable quadric surfaces [HT23].

3. Quadrics and isotropic subspaces

Here we follow [NP23, Section 2]. We continue to assume the base field is alge-
braically closed of characteristic zero.

Let (V, q) be a non-degenerate quadratic form invariant under the action of a
finite group G.

Definition 3.1. An isotropic subspace W ⊆ V is a G-invariant subspace such that
q|W = 0. We say (V, q) is anisotropic if it has no nonzero isotropic subspaces. A
hyperbolic subspace of V is a pair of G-invariant isotropic subspaces W,W∨ ⊂ V
such that

q(w, f) = f(w), for all w ∈W, f ∈W∨.
In other words, the restriction of q to HW := W ⊕W∨ has matrix(

0 I
I 0

)
.
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Suppose an irreducible representation W of G admits a nonzero invariant qua-
dratic form q. When q is non-degenerate, this induces a G-equivariant isomorphism

(2) W
∼→W∨,

unique up to scalar.

Proposition 3.2. Suppose (V, q) is non-degenerate and admits an irreducible isotropic
subspace W . Then we obtain

(V, q) = (V ′, q′)⊕⊥ HW

where (V ′, q′) is non-degenerate.

Proof. Since q is non-degenerate, there exists a copy of W∨ ⊂ V such that

q|(W ⊕W∨) =

(
0 I
I R

)
where R is a G-invariant quadratic form on W∨. If R = 0 then we have our
hyperbolic form HW . If R 6= 0 then, by (2), R = λI for some 0 6= λ ∈ k. Since
k does not have characteristic two, after equivariant row and column operations
q|W ⊕W∨ becomes hyperbolic. �

Applying this inductively gives an equivariant version of Witt decomposition:

Corollary 3.3. Every non-degenerate (V, q) is equivariantly equivalent to the or-
thogonal direct sum of a hyperbolic form and an anisotropic form.

Proposition 3.4. Let X ⊂ P(W ⊕W∨) be a quadric hypersurface associated with
a hyperbolic form HW , where W is a representation of G of dimension d ≥ 2. If G
acts generically freely on P(W ) then X is linearizable. If G acts generically freely
on X then X is stably linearizable.

We already observed in Example 2.4 that we cannot expect X to be linearizable
in general.

Proof. Consider the linear projection from P(W ), which induces

πP(W ) : BlP(W )X → P(W∨),

which is a Pd−1 bundle – indeed, the projectivization of a vector bundle with G-
action. Note that G acts generically freely on P(W ) if and only if it acts generically
freely on P(W∨). When G acts generically freely on P(W∨) then the observations
of Section 2.2 give that X is linearizable. Suppose that G fails to acts generically
freely on P(W ). Since it does act generically freely on X ⊂ P(W⊕W∨), we conclude
there is a cyclic central subgroup

C` = 〈ζ〉 ⊂ G, ` odd, ζ` = 1,

acting via

C` × (W ⊕W∨)→W ⊕W∨

ζ · (w, f) 7→ (ζw, ζ−1f).

Let U be the two-dimensional representation of C` with weights ζ and ζ−1. Take
the basechange of πP(W )

(BlP(W )X)× P(U)→ P(W∨)× P(U)
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which remains the projectivization of a G-equivariant vector bundle; now the base
has a generically free action of G on the base. Since P(W∨) × P(U) is stably
linearizable by Proposition 2.3, X × P(U) is as well. An application of the No-
Name Lemma, as in Section 2.2, implies that X is stably linearizable. �

The same projection argument yields the following:

Theorem 3.5. Let (V, q) be a non-degenerate quadratic form invariant under the
action of a finite group G. Let

X = {q = 0} ⊂ P(V )

and assume that dim(X) > 0. Let 0 6= W ⊂ V be an isotropic subspace for q and

HW 'W ⊕W∨ ⊆ V
the hyperbolic subspace guaranteed by Proposition 3.2. If G acts generically freely
on P(W∨ ⊕H⊥W ) then X is linearizable. If G acts generically freely on X then X
is stably linearizable.

When dim(W ) = 1 the projection is birational, and we obtain the well-known

Corollary 3.6. Retain the notation of Theorem 3.5. If X has a fixed point then
X is linearizable.

In light of Theorem 3.5 and Corollary 3.3, the natural question for future study
is the stable birational classification of anisotropic quadrics, i.e.,

X = {q = 0} ⊂ P(V ),

where

(3) (V, q) = (V1, q1)⊕⊥ · · · ⊕⊥ (Vr, qr)

is an orthogonal direct sum of self-dual irreducible representations of G with their
distinguished quadratic forms.

There are only finitely many possibilities to consider, thanks to our next result:

Proposition 3.7. Suppose that q is direct sum of irreducible non-degenerate qua-
dratic forms as in (3). If q is anisotropic then the factors (Vi, qi) are not isomor-
phic.

Proof. Suppose a summand, say (V1, q1), appears with multiplicity. After rescaling
if necessary, we obtain

(V1, q1)⊕⊥ (V1, q1) ⊂ (V, q).

This contains an isotropic subspace – the image of V1 under v 7→ (v, iv) – contra-
dicting the assumption that (V, q) is anisotropic. �

4. Flag varieties and special groups

Here we consider natural actions of finite groups on homogeneous spaces for
special classes of algebraic groups, with a view toward stable linearizability. The
most fundamental construction is the No-Name Lemma mentioned in Remark 2.1.
We will apply it freely as we present further applications below.

An algebraic group G over k is called special if

H1(K,G) = 0, ∀K/k.
Examples (listed in [CTS07, Section 4.2]) include
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• split connected solvable groups,
• GLn, SLn, Sp2n, split Spinn, with n ≤ 6.

By [Ser58, p. 26], the only special semisimple groups over k are products of SLn
and Spn.

Proposition 4.1. Let G be a special connected linear algebraic group and G ⊂ G
a finite subgroup. Then the translation action of G on G is stably linearizable.

This generalizes [BPT10, Proposition 3.7].

Proof. We are following the strategy of [CTS07, Prop. 4.9]. Choose a representation
G ↪→ GLn for some n. Note that G is rational over k. Consider the diagonal
embedding

G ↪→ GLn × G

and the projection onto G. We claim that this is G-birational to GLn×G, with trivial
action on the first factor. Indeed, a finite group action on GLn is tautologically
linearizable over any field. Since G acts generically freely on G, the No-Name
Lemma implies the desired birational map.

On the other hand, consider the projection

π1 : GLn × G→ GLn.

This is a torsor for G in the sense that it admits a section s after basechange

G× GLn → GLn,

namely,

s(γ, g) 7→ (γ · 1G, γ · g).

However, the speciality assumption implies that there is a section even over the
function field of GLn. Thus G× GLn with the diagonal action of G is equivariantly
birational to G× GLn, with trivial action on the first factor.

Putting this together, we find that G and GLn are stably birational as G-varieties.
It follows that G is stably linearizable. �

Corollary 4.2. Let G be special and U ⊂ G a unipotent subgroup. Fix a finite
subgroup G ⊂ G. Then the induced left action on G/U is stably linearizable.

Proof. Since U is unipotent and the characteristic is zero, G ∩ U = {1} and G acts
generically freely on G/U. Consider the projection

G→ G/U,

which is a vector bundle as the group U is special [CTS07, Section 4.2]. The No-
Name Lemma implies G is G-birational to the product

U× (G/U)

with G acting trivially on the first factor. Since the G-action on G is stably lin-
earizable the same holds for the quotient. �

Remark 4.3. Even when G is not special, one can sometimes establish the lin-
earizability of the translation action. For example, G = PGL2 admits an equivariant
compactification to P3, and the translation action extends as a projectively linear
action on P3. The obstruction to linearizability of this action is captured by the
Amitsur invariant (see, e.g. [HT23, Section 3.5]).
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Proposition 4.4. Let G be special and B ⊂ G a Borel subgroup. Let G ⊂ G be a
finite subgroup such that the induced left action on the quotient G/B is generically
free. Then this action is stably linearizable.

Proof. Express B = Uo T where T is a maximal torus which gives

$ : G/U→ G/B =: Fl

with fibers isomorphic to T Indeed, if L1, . . . , Lr are line bundles forming a basis
for Pic(Fl) then we may interpret

G/U = L∗1 ×Fl · · · ×Fl L
∗
r , L∗i = Li \ 0;

in particular, the action of our finite group linearizes to each of the Li. Our generic-
freeness assumption means that G/U is equivariantly birational to Ar × Fl with
trivial action on the first factor. Thus G/B is stably linearizable. �

We record an application of the Serre-Grothendieck classification of special groups
[Ser58, Section 4]:

Lemma 4.5. Let G denote a special semisimple linear algebraic group and P ⊂ G
a (split) parabolic subgroup. Then the Levi factors of P are also special.

Theorem 4.6. Let G denote a special semisimple group, P ⊂ G a split parabolic
subgroup, and G ↪→ G a finite group. If G acts generically freely on G/P then this
action is stably linearizable.

Proof. We proceed by induction on the dimension of G.
Choose a maximal sequence of parabolic subgroups

P =: P1 ( P2 ( · · ·Pm−1 ( Pm = B

and consider the tower

G/B→ G/Pn−1 → · · · → G/P.

Each step of this tower is fibered in projective homogeneous spaces for L, a Levi
subgroup of some parabolic subgroup of G. These groups are special by Lemma 4.5,
and their homogeneous spaces are stably linearizable by induction. As before,
iterating the No-Name Lemma yields

G/B stab. lin.⇒ G/Pn−1 stab. lin.⇒ · · · ⇒ G/P stab. lin.

�

5. Quadric hypersurfaces

5.1. Arbitrary dimensions. Before considering specific actions of finite groups
on quadrics, we record general considerations regarding the presentation of such
actions. Let

X ⊂ Pn

be a smooth quadric hypersurface. Let q be the associated quadratic form, which
is unique, up to scalars. We consider finite subgroups G ⊂ PGLn+1 preserving X.

The Amitsur invariant [HT23, Section 3.5] yields:

Proposition 5.1. If the action of G on X is stably linearizable then we can lift
G ⊂ GLn+1.
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When the number of variables is odd, we can always work with the special
orthogonal group:

Proposition 5.2. If n = 2m is even then we may assume G ⊂ SL2m+1.

Proof. Given
% : G ↪→ O2m+1

there is a modified representation

ρ = det(%) · % : G→ SO2m+1

that is projectively equivalent to %. Note that ρ is injective if and only if the image
of % does not contain −I, i.e. % acts generically freely on P2m. �

5.2. Pfaffian constructions. We recall the Pfaffian construction, for quadric hy-
persurfaces; see [BvBT23, Section 7] for further details.

Let M denote an antisymmetric 2r × 2r matrix. The Pfaffian form Pf(M) is a
homogeneous form of degree r such that

Pf(M)2 = det(M).

When r = 2

M =


0 m12 m13 m14

−m12 0 m23 m24

−m13 −m23 0 m34

−m14 −m24 −m34 0


we have

Pf(M) = m12m34 −m13m23 +m14m23

the Plücker relation for the Grassmannian

Gr(2,W ) ⊂ P(∧2W ), dim(W ) = 4.

We recall a few properties:

• Let (V, q) be a non-degenerate quadratic form where V is a six-dimensional
representation of G. This is Pfaffian if and only if

V ' ∧2W, dim(W ) = 4

and q coincides with the (symmetric!) wedge pairing

∧2W × ∧2W → ∧4W.
• Let V be a non-degenerate quadratic form with dim(V ) = 5. Then V is

Pfaffian if and only if there exists a symplectic representation

(W,ω), dim(W ) = 4

of G, with
∧2W = 〈ω〉 ⊕ V.

• In either case, assuming G acts generically freely on

X = {q = 0} ⊂ P(V ),

then X is stably birational to W .

The last statement arises from the inclusion and projection morphisms

S|X ↪→W ×X →W,

where S → Gr(2,W ) is the universal subbundle.
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5.3. Springer-type results. The following is a corollary of [DR15, Theorem 10.2]:

Proposition 5.3. Let X ⊂ Pn, n ≥ 2, denote a smooth quadric hypersurface, with
a generically-free action by a finite group G. Let G2 ⊆ G denote a 2-Sylow subgroup.
Then the G-action on X is stably linearizable if and only if the G2-action on X is
stably linearizable.

Recall the equivalences stated in Section 2.3: In particular, a group action on X
is weakly versal if each twist by the group admits rational points and stably lineariz-
able if each twist is stably rational. However, Springer’s Theorem and stereographic
projection guarantee that, for a smooth positive-dimensional quadric hypersurface
Y over a field L, the following are equivalent:

• Y is rational over L;
• Y is stably rational over L;
• Y has a rational point over L;
• Y has a rational point over an odd-degree extension of L.

Now the last condition corresponds to passing from G to a 2-Sylow subgroup G2,
thus Proposition 5.3 follows.

Remark 5.4. This argument is a bit vexing, as we are not showing that linearizabil-
ity can be checked on passage to a 2-Sylow subgroup! The dictionary of Section 2.3
leaves out birational equivalence to a G-representation or its projectivization.

Example 5.5. Consider the action of G = S3 × C2 on

X = {x21 + x22 + x23 + x24 = 0} ⊂ P3

where C2 acts via x4 7→ −x4 and S3 permutes x1, x2, and x3. By [Isk08] this action
is not linearizable; a proof using Burnside invariants may be found in [HKT21,
Section 7.6]. On the other hand, the 2-Sylow subgroup G2 fixing x3 has fixed
points {x4 = x1 − x2 = 0} ∩X. The stable linearizability of this action has been
shown, using different techniques, in [LPR06] and [HT23, Section 6].

5.4. Quadric threefolds. Theorem 4.6 – combined with the symplectic interpre-
tation of Spin5 and the fact that symplectic groups are special – yields the following:

Theorem 5.6. Let X ⊂ P4 be a smooth three-dimensional quadric. Suppose that
G ⊂ SO5 acts on X generically freely. The action of G is stably linearizable if the
induced extension

1 // µ2
// G̃� _

��

// G //� _

��

1

1 // µ2
// Sp4 // SO5

// 1

is trivial, i.e., the restriction homomorphism

H2(SO5, µ2)→ H2(G,µ2)

vanishes on the distinguished extension.

Here is a geometric interpretation of this theorem: An action of G ⊂ SO5 on
X ⊂ P4 lifts to the spin group if and only if there is a G-equivariant imbedding

X ↪→ Gr(2, 4)
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arising from a representation G → SL4 leaving a non-degenerate 2-form invariant.
This is the Pfaffian construction from Section 5.2.

Example 5.7. The converse of Theorem 5.6 is not true: There are linearizable
quadric threefolds X ⊂ P4 such that G ⊂ SO5 does not lift to Sp4. In geometric
terms, the variety of lines F1(X) – a four-dimensional projective representation of
G – may have non-vanishing invariant.

Here is a construction: Let C denote a conic with non-trivial Amitsur invariant,
corresponding to a projective representation

φ : G→ PGL2

not lifting to a linear representation. Let V denote the linear representation asso-
ciated with the symmetric square of φ; there is an embedding

C ↪→ P(V ) ⊂ P(1⊕ V ).

The blowup of this projective space along C admits a morphism

$ : BlC(P(1⊕ V ))
∼−→ X ⊂ P4

given by the linear system of quadrics vanishing along C. Write

x = $(P(V )) ∈ X

for the image of the proper transform of the plane spanned by C. Consider the
lines in P(1⊕V ) meeting C at a point, a projective plane bundle W → C. (Secants
to C are counted twice!) The No-Name Lemma implies that

W
∼
99K P2 × C,

where the first factor has trivial G-action. The morphism $ induces

π : W
∼−→ F1(X)

that blows up the lines

{` : x ∈ ` ⊂ X} ' C.
We conclude that F1(X) – birational to C × P2 – also has non-trivial Amitsur
invariant.

5.5. Quadric fourfolds. Similarly, we observe:

Theorem 5.8. Let X ⊂ P5 be a smooth four-dimensional quadric. Suppose that
G ⊂ SO6 acts on X generically freely. The action of G is stably linearizable if the
induced extension

1 // µ2
// G̃� _

��

// G //� _

��

1

1 // µ2
// SL4 // SO6

// 1

is trivial, i.e., the restriction homomorphism

H2(SO6, µ2)→ H2(G,µ2)

vanishes on the distinguished extension.

Compare this with the Pfaffian interpretation in Section 5.2.
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Example 5.9. Let V be a 4-dimensional representation of S5. Its exterior square
is the 6-dimensional representation; and there is a unique invariant quadric X ⊂ P5.
The S5-action on X is not known to be linearizable. Theorem 5.8, combined with
the Pfaffian construction, yields stable linearizability for the action on X.

6. Applications to threefolds

In this section, we present examples of stable linearizability constructions, fo-
cusing on cases where linearizability is not known.

We let X be a smooth quadric threefold with a generically free regular action of
a finite group G. We recall a “nonstandard” linearizability construction, see, e.g.,
[ACC+23, Sect. 5.8]: The infinite dihedral group Gm o µ2 acts on the quintic del
Pezzo threefold V5 ⊂ P6 – which has automorphism group PGL2. The action lifts
to a linear representation in GL7; and it stabilizes

• a twisted cubic curve R3 ⊂ V5;
• a conic R2 ⊂ V5;
• a line R1 ⊂ V5,

see [ACC+23, Cor. 5.39]: Projection from R2 gives an equivariant birational map

V5
∼
99K P3.

Projection from R1 gives an equivariant birational map

πC1
: V5

∼
99K X

onto a smooth quadric threefold.
The action on

X = {x1x2 = x3x4 + x25} ⊂ P4
x1,...,x5

is given by

τ : (x1, x2, x3, x4, x5) 7→ (x2, x1, x4, x3, x5)
σ : (x1, x2, x3, x4, x5) 7→ (λ−3x1, λ

3x2, λ
−1x3, λx4, x5),

where λ is a character of Gm.
For example, setting λ = e2πi/3 gives a linearization of the S3-action

X ⊂ P(V ), V = V± ⊕ V2 ⊕ 1,

where V± is the permutation representation on x1, x2, and V2 is the unique faith-
ful 2-dimensional representation of S3. To our knowledge, linearizability of other
actions of S3 is unknown. For D8 (λ = eπi/4) we obtain linearizability when

X ⊂ P(V ) V = V2 ⊕ V ′2 ⊕ 1,

where V2 and V ′2 are different faithful 2-dimensional representations of D8.

Proposition 6.1. Let

X := {x1x2 = x3x4 + x25}

and G = D4n with n odd, acting via faithful 2-dimensional representations on
{x1, x2} and {x3, x4}, and trivially on x5. Then the G-action on X is stably lin-
earizable.
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Proof. Proposition 5.3 reduces us to the 2-Sylow subgroup D4 ⊂ D2n, which acts
via

τ : (x1, x2, x3, x4, x5) 7→ (x2, x1, x4, x3, x5)
σ : (x1, x2, x3, x4, x5) 7→ (ix1, i

3x2, ι
3x3, ιx4, x5),

where i and ι are primitive fourth roots of unity. This has an isotropic subspace
by Proposition 3.7 and hence is linearizable (for D4) by Theorem 3.5. �

We now turn to the diagonal quadric

(4) X = {x21 + x22 + x23 + x24 + x25 = 0} ⊂ P4,

with an action of a subgroup G ⊂ W (D5), the Weyl group of D5, via signed per-
mutations. In [TYZ24, Section 9], there is a classification of G such that

• all abelian subgroups H ⊂ G have fixed points,
• G does not have a fixed point.

Recall that existence of fixed points for generically free actions of abelian groups
is a birational invariant of smooth projective varieties and that linear actions of
abelian groups have fixed points. Furthermore, a fixed point yields a linearization
for the action.

The maximal groups on the list in [TYZ24] are:

S5, S4, C4 o C2, GL2(F3), S3 ×D4, D8,

and the maximal 2-Sylow subgroups without fixed points are

D4 ⊂ S4, C4 o C2, SD16 ⊂ GL2(F3), D8,

with specific 5-dimensional representations V , giving rise to X ⊂ P(V ).

Proposition 6.2. The G-action on X in (4) is stably linearizable if:

(1) G = S5, with the standard permutation action,
(2) G = S3 × C2

2 ⊂ S3 ×D4, with the standard permutation action of S3 on
the first variables and sign changes on x4, x5.

Proof. This is another corollary of Proposition 5.3: the 2-Sylow subgroup G2 ⊂ G
has fixed points. �

Remark 6.3. The G-action in Case (1) is known to admit only two Mori fiber
space models, and in particular is not linearizable, by [CSZ23, Theorem 3.1]; in
Case (2), the Burnside obstructions of [KT22] prevent linearizability, see [TYZ24,
Example 9.2].

Theorem 3.5 yields the stronger result:

Proposition 6.4. The following G-actions on the quadric

X := {x21 + x22 + x23 + x24 + x25 = 0} ⊂ P4,

are linearizable:

• the unique (up to conjugation) G = C4 o C2 ⊂W (D5),
• the unique semidihedral group SD16 ⊂W (D5),
• the unique dihedral group D8 ⊂W (D5).
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Proof. The restriction of the W (D5)-action to the (unique) C4 o C2 has character
(5,−3, 1, 1, 1, 1, 1,−3, 1, 1,−3, 1,−1,−1). Concretely, the action is given by

σ1 :=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , σ2 :=


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , σ3 :=


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 ,

σ4 := diag(−1,−1, 1, 1), σ5 := diag(1, 1,−1,−1),

with σi acting on the variables x1, . . . , x4 as indicated, with σ1 : x5 7→ −x5, and all
other generators acting trivially on x5. In particular,

X ⊂ P4 = P(V2 ⊕ V ′2 ⊕ χ),

where the characters are given by

char(V2) = (2,−2, 0, 0, 2i,−2i, 1− i, 0, 1 + i,−1− i,−1 + i, 0, 0, 0),
char(V ′2) = (2,−2, 0, 0,−2i, 2i, 1 + i, 0, 1− i,−1 + i,−1− i, 0, 0, 0).

Theorem 3.5 applies.
We turn to SD16: the restriction of the W (D5)-action to G = SD16 yields a

representation with character (5,−3,−1, 1, 1,−1,−1). The action is given by

σ1 :=


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1

 , σ2 :=


0 1 0 0
0 0 0 −1
1 0 0 0
0 0 1 0

 , σ3 :=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

σ4 := diag(−1,−1,−1,−1),

with σi acting on x1, . . . , x4 as indicated and σ1, σ2 acting via x5 7→ −x5, and σ3, σ4
acting trivially on x5. Thus

X ⊂ P4 = P(V2 ⊕ V ′2 ⊕ χ)

as an invariant quadric with generically freeG-action, where V2, V
′
2 are 2-dimensional

faithful, complex conjugate, representations of G, and χ is a character. Since
V ′2 = V ∨2 , Theorem 3.5 applies.

We repeat the analysis for G = D8. The restriction of the W (D5)-action to G
yields a representation V with character (5,−3,−1, 1, 1,−1,−1), which decomposes
as

V = V2 ⊕ V ′2 ⊕ χ,
where the characters are given by

char(V2) = (2,−2, 0, 0, 0,
√

2,−
√

2)

char(V ′2) = (2,−2, 0, 0, 0,−
√

2,
√

2)
χ = (1, 1,−1, 1, 1,−1,−1),

and the standard linearizability via a twisted cubic applies. �

Corollary 6.5. Let G ⊂ W (D5) be such that the induced action on the diagonal
quadric

X ⊂ P4 = P(V ),

via the standard irreducible 5-dimensional representation V of W (D5) satisfies the
following properties:

• for every abelian H ⊆ G one has XH 6= ∅,



EQUIVARIANT GEOMETRY OF LOW-DIMENSIONAL QUADRICS 15

• G does not contain a subgroup H ' D4 such that the restriction of the
representation V to H decomposes as

V |H = V2 ⊕ χ⊕ χ′ ⊕ χ′′,

where χ, χ′, χ′′ are pairwise distinct characters of H.

Then the G-action on X is stably linearizable.

Remark 6.6. The methods above give no information about (stable) linearizability
of the following G-actions on smooth quadric threefolds X ⊂ P(V ):

• G = D4 and V = V2 ⊕ χ ⊕ χ′ ⊕ χ′′, where V2 is the unique irreducible
2-dimensional representation and χ, χ′, χ′′ are pairwise distinct characters.
• G = D8 and V = V2 ⊕ V ′2 ⊕ 1, where V2 is the non-faithful 2-dimensional

irreducible representation and V ′2 is a faithful representation of G.
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