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ABSTRACT. We study rationality properties of real singular cubic
threefolds.

1. INTRODUCTION

In this note we focus on rationality properties of singular cubic
threefolds over the real numbers. We are guided by results in equi-
variant birational geometry in [CTZ24], [CMTZ24], which elucidated
birationality constructions as well as obstructions to birationality, in
the equivariant context.

One of the main problems in birational geometry is the (stable) ra-
tionality problem; see, e.g., [MT86], [CT95], [Che05|, [Prol8], [Pirl§],
[Voil9], [Sch21] for reports on milestones in this area. Classically, one
was interested in algebraically closed ground fields, of characteristic
zero, mostly the complex numbers C. However, many (stable) ratio-
nality constructions rely crucially on results over nonclosed fields, e.g.,
function fields of smaller-dimensional varieties: in [BCTSSDS85| this is
used to produce nonrational but stably rational threefolds over C, via
a degree 4 Del Pezzo fibration over P!, interpreted as a degree 4 Del
Pezzo surface over the nonclosed field k¥ = C(P'). New examples of
rational cubic fourfolds, via a degree 6 Del Pezzo fibration over P2,
can be found in [AHTVAT9|. The survey [CT19] contains many results
concerning rationality over arbitrary fields.

Of particular interest are varieties with simple presentations, such
as hypersurfaces in (weighted) projective spaces, or linear sections of
Grassmannians. Among the simplest such varieties are quadric and
cubic hypersurfaces. Rationality of quadrics is completely settled: a
necessary and sufficient condition is the existence of a rational point.
For cubics, we do not currently have such criteria. Smooth complex
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cubic threefolds X¢ C P* are irrational [CGT2], while the singular ones
are rational unless they are cones over smooth cubic curves.

In recent years, there have been several results concerning rationality
of geometrically rational varieties over R. For example, it is now known
that rationality of smooth intersections of two quadrics X, C P,
for n = 5, is governed by the existence of rational points and lines
[HT21]. For n = 6, a necessary and sufficient condition is that X (R)
is connected [HKT22]. The papers [BW20], [JJ23], [CTP24] explore
rationality of conic and quadric bundles over R.

Here, we focus on rationality of singular cubic threefolds

X =X CP*

over R. Every such X has real points. We recall standard rationality
constructions, in presence of distinguished loci, over R:

e Projection from a singular point gives a birational map to P3,
e Projection from a line and a disjoint plane gives a birational
map X --» P?2 x PL.

In particular, if the cubic is not a cone and there exists a real singular
point, then X is rational over R. Hence, throughout the paper, we
assume that X is not a cone and that

X"E(R) = .

This implies that either the singularities of X¢ are isolated and their
number s = s(X¢) is even, i.e., s = 2,4,6,8,10, or that the singular
locus has positive dimension. By [Avi20], a real form of a cubic with
10 isolated singularities is rational over R — geometrically, there is only
one such cubic, the Segre cubic.

Let I' = Gal(C/R) ~ Z/2 be the group generated by complex con-
jugation. In addition to an action of I' on special loci of X, such as
the singular locus X sing  we have an action on the geometric Picard
group Pic(X¢) of the minimal resolution of singularities X of X. We
investigate (stable) rationality over R, using the following tools:

e classification: we compute all possibilities for the action of I,
configurations of singularities, and normal forms; we freely use
the terminology and techniques of [CTZ24] and |[CMTZ24];

e topology: if X(R) is disconnected then X is not stably rational;

e cohomology: if

(1.1) HY(T, Pic(X¢)) # 0,
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then X is not stably rational; we refer to this as the (H1)-
obstruction.

We summarize the results:

e 5 =2
— 2A1, 2A,5: not rational over R.
— 2A3 with no plane: criteria for disconnectedness of X (R),
and examples with X (R) connected or disconnected.
— 2A3 with a plane: rational if and only if there is a real line
disjoint from the plane.
— 2A4: criteria for disconnectedness, and examples with X (R)
connected or disconnected.
— 2A5: all not stably rational.
— 2Dy criteria for disconnectedness, examples with rational
X, and examples with X (R) disconnected.
o s =4:
— 4A; with no plane, 4A,, 2A, + 2A; are birational over R;
criteria for disconnectedness, and examples of connected
and disconnected X (R).
— 4A; with a plane: rational if and only if there is a real line
disjoint from the plane.
— 2A3 + 2A; with three planes: criteria for disconnectedness,
examples with rational X, and with X (R) disconnected.
— 2A3 + 2A; with one plane: always rational.
— 2Dy + 2A;: rational if and only if it contains three planes.
e s =0:
— 6A; with no plane: rational if and only if it contains a real
cubic scroll.
— 6A; with one plane: always rational.
— 6A; with three planes: criteria for disconnectedness, exam-
ples with rational X, and with X (R) disconnected.
— 2A5 + 4Aq, 2A3 + 4A,: always rational.
e 5 = 8: rational if and only if it contains three planes.

Geometrically, cubic threefolds with nonisolated singularities are of
four types [Yok02], [ATI03]: with X®™& consisting of a plane, a line, a
conic, or a twisted quartic. We show that all real forms of such cubics
are rational, unless X*®"¢ is a conic. In this last case, we have examples
with connected or disconnected X (R). The rationality of such cubics
is open, see, e.g., [CTP24].
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2. COHOMOLOGY

Here, we investigate the (H1)-obstruction for cubics with isolated
singularities.

Proposition 2.1. Let X be a real cubic threefold with isolated singu-
larities over C. We have

HY (I, Pic(X¢)) # 0
if and only if one of the following holds:
(1) Xc¢ has 2As-singularities,
(2) Xc¢ has 2Dy + 2A; -singularities, and only one real plane,
(3) Xc¢ has 6A;-singularities in linearly general position, and con-

tains no normal cubic scrolls over R,
(4) Xc has 8A;-singularities, and only one real plane.

Proof. When X¢ has the indicated configurations of singularities, the

proof follows from Propositions [3.5] [4.5] [5.3] and [6.1] In all other cases,
the (H1)-obstruction is trivial, as shown in [CTZ24], [CMTZ24]. O

We now list representative examples with nontrivial cohomology for
each of the cases in Proposition [2.1]

Example 2.2. 2A5: Over C, every such cubic is given by
T1Tox3 + xlxi + xgxg + x§ + brgzaxs =0, b* # —4.
Over R, every such cubic is given by
(2.1) X = {(23+23)v3+as—22 (0] —23) —4xom475+bTs (25 +22) = 0},
for some b € R, with singular points
[1:9:0:0:0], [1:=i:0:0:0].
Consider the projection from the real line through the singularities
T X -+ P% (31,19, 23, 24, T5) — (T3, T4, T5).
The image 7(X (R)), given by

b— Vb2 44 b— Vb2 44
{:17§+ il 1+ 5 i x%SO}CPQ,

5

is connected; it is easy to see that X (R) is also connected.
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The Galois action on Pic(X¢) is isomorphic to the Ch-action consid-
ered in [CMTZ24, Proposition 5.12], which implies that

(2.2) HY(T', Pic(X¢)) = Z/2Z,
hence X is not stably rational over R. See Proposition for details.

Example 2.3. 6A;: In the equivariant context, assuming that the
singularities are in linearly general positions, we obtain nontrivial co-
homology from any Cy C Aut(X), which does not fix a node [CTZ24,
Proposition 7.5]. Over R, we realize this by

(z7 + 23)(v3 + 224 + 3925) + 271 (23 + 2] + 427 + 2375)+

+ 229 (w34 — 25 + 2 + 472) + xivs + 4airs — 20574 + 397375 = 0,
with singular points

0:0:0:—2¢:1], [0:0:0:2¢:1], [0:—1:—i:1:0],
0:—1:¢:1:0], [-i:1:0:0:0], [i:1:0:0:0].
The equation
73 + 15 + 207375 + 4wE = 0

cuts out two complex conjugate irreducible divisors on X¢, so that
complex conjugation acts nontrivially on the class group Cl(X¢). Com-
putation in [CTZ24, Proposition 7.5] implies ([2.2)); it follows that X is

not stably rational over R.

The image in P%_ . of the projection from the line passing through

the last two singular points is connected, and given by

7
{(23 + 25 + 20w325 + 423) (23 + 27 — —w3w5 + 423) > 0} C P2

5 3,840,157
which shows that X (R) is also connected.
Example 2.4. 8A;: In the equivariant context, X¢ is given by

(azy + zo + bxs)v4xs + v4(x3 — 27) + 25(203 — 23) =0, a,b e C,
and cohomology from C5 generated by

(x) = (ax5 — 1,24 — T2, XT3, Tq, Ts).

Over R, we can realize the corresponding I-action on cohomology
on X given by

ar(z3 + 13)74 + 1472 + ag(z375 + T3T5 + TiT5) + azTzTaTs = O,
with aq, as, a3 € R and singularities at

0:—3:0:1:0[,0:4:0:1:0],[—4:0:0:0:1],[¢:0:0:0:1],
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[—i:—=0:1:0:0],[¢:=¢:1:0:0],[—4:¢:1:0:0],[¢:4:1:0:0].

A direct computation of Cl(X¢) as in Proposition shows that the
[-action gives nontrivial cohomology ([2.2)).

Example 2.5. 2D4 + 2A;: In the equivariant context, X¢ is given by
T1To%3 + T129x4 + T3 (175 + aswy) + azr3r4w5 =0, a1, az,a3 € C,

with nontrivial cohomology from the involution

ap — a2 ap — a2
Ty, T3 —
a3 as

(X) = (1'2,1'1,1'4—|— 275,1’5).

Over R, we can realize this by
(23 + 23) 23 + 25(23 + 27) + (b3 + bawa) 22 + azi = 0
for a,by, by € R with b3 < 4a. The Dy-singularities are
[1:7:0:0:0], [L:=i:0:0:0],
and the A;-singularities are
0:0:1:4:0], [0:0:1:—¢:0].

In these cases, the I'-action gives nontrivial cohomology (|1.1]), see
Proposition [4.5] for more details.

The following diagram shows specialization patterns, obtained in
investigations of equivariant birationalities in [CTZ24], [CMTZ24]. The
red-labeled cases (i.e., cubic threefolds with indicated singularity types)
admit forms over R with nontrivial cohomology H'(T", Pic(X¢)) from
a specific action of I'; and general cubic threefolds, indicated in black
and specializing to these, have trivial cohomology.
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2A; 2D, + 2A, 2A; + 4A, 10A,

N7

9D, 23 +2A,  2A, L 4A, " SA,

2A,

2A3 2A2 + 2A1

\\\\/

2A,
~
2A
Remark 2.6. In contrast to the equivariant case treated in [CTZ24],
specialization arguments do not work over R, and we do not know
whether or not a very general cubic threefold with trivial cohomology
specializing to one with nontrivial cohomology is rational over R. They

can be applied to show the existence of cubics failing stable rationality
over fields such as R(%).

3. TWO SINGULAR POINTS
Assume that X¢ has two complex-conjugated singular points, e.g.,
pr=1[1:9:0:0:0], and py=1[l:—i:0:0:0],
so that X C P4
(3.1) (2] + 23)z3 + 2101 + T22 + f3 = 0,

Los 18 glven by

where ¢, ¢2 € R[zy, x5] are quadratic forms and f3 € R[xg, x4, z5] is a
cubic form. One checks that ¢; and ¢, cannot both vanish if X¢ has
A,-singularities. If ¢; # 0 and g5 = 0, then up to a change of variables,
we have ¢; = ¢o. Thus, we may assume that none of ¢; or ¢s is 0.

Each of ¢; and ¢ deﬁnes two points in P, (C), with one of the
following possibilities:

e one real point with multiplicity 2, or
e two real points, or
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e two conjugate points.

Combining the configuration patterns of four points defined by ¢; and
¢2, we find all possibilities of the pair (g1, ¢2), up to isomorphism:

a1 q2
3 A3 72 a;4x5 , )\(le — x%) AzZ + 22)
T4Ts5 Azgws | Avg(xg — a5) | Mag — 5) | Mxg + 75)
zi+ a2 | 23 + Ma? A > 0 everywhere

Introducing new coordinates
Y1 = 1173 + %7 and Yy = Tox3 + %7
and multiplying (3.1]) by x3, we birationally transform X over R to

4 + 4

(3.2) Y ={y] +y3 + fsas — =0} C Py, oy onas(2,2,1,1,1).

Note that Y is a conic bundle over P?, with

7Y — P? (Y1, Y2, T1, Ta, 23) > (21, T2, X3).

T1,22,T37
The image 7(Y(R)) is given by

4 + ¢

(3.3) ;

— faxs = 0.

In particular, we write

(34) f3 = tlxg + $§(t21’4 + t3[L’5) + l’g(t4.l’i + t5l’§ -+ t6[E4CL’5)+

+ t7$il’5 + tgl‘%l‘;l + tgl’i + tloxg,

for tl,...,tlo € R.

2A; and 2A,-singularities.

Proposition 3.1. Assume that X has no real singular points and that
Xc has 2A; or 2Ay-singularities. Then X is not rational over R.

Proof. Recall that X is birational to the conic bundle . When
X has 2A; or 2As-singularities, the conic bundle has a smooth quartic
discriminant, with trivial double cover. By [BW20] or [KP24, Theorem
6.10], X is not rational over R. O
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2As-singularities with no plane. When p; and ps are As-points and
X¢ contains no plane, one can check (cf. [CMTZ24, Section 5]) that
the only possibility for ¢; and ¢y from the table above is

@ =25 and g2 = (2] — x5).

The As-singularities impose the following conditions on ([3.4])
l7 = t1o, g =to.

Remark 3.2. Consider the conic bundle 7 : Y — P? birational to X
given by . Note that the real locus of the discriminant curve in P?
is smooth. It follows that Y(R) (and thus X (R)) is connected if and
only if the image 7(Y (R)) in P?(R) given by is connected. Using
this, we present examples where X (RR) is disconnected or connected:

e Disconnected: tl = —1,t2 = —10,t3 = —2,t4 = t5 = t6 = t7 =

1, tg = 5,
e Connected: tl = t2 = t3 = t4 = t5 = t6 = t7 = tg = 1.

2As-singularities with one plane. Here, X¢ contains a unique plane
IT, which is thus defined over R. This implies that X is birational to
a smooth intersection of two quadrics Xo5 C P° via unprojection
from the plane, see [CTZ24, Proposition 5]. Rationality of X5 over
R is determined by the existence of a real line, see [HT21]; on X this
translates into the existence of a real line disjoint from II.

Example 3.3. The cubic X given by
(23 + 23) 23 + (21 + 22) 23 + (23 + T4 + T5) (T3 + T475) — 22372 = 0
is rational. Indeed, the line
{1+ 20 =21 — 25 =3+ 24 + 25 = 0}
in X is disjoint from the unique plane {z3 =z, =0} C X.

Topological types of X; o with real points but without real lines are
listed in [HT21, Section 11.4].

2A,-singularities. Cubic threefolds X¢ with 2A,-singularities do not
contain a plane. As in the case of 2As-singularities with no plane, we
find that
1
Q1 = 45, Qo = 5(55421 —37), lr=tyo, ts=1to,

together with the following conditions ensuring 2A4-singularities
te = —8tyty, ty =t5+ 4t2 — 4t2.
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Example 3.4. Similarly as before, X (R) can be connected or discon-
nected depending on the parameters. We give examples:
e Disconnected: t; = 2,1y = —10,t3 = t5 = tg = t; = 0,1, =
—16,t3 = —2.
e Connected: t1 =1y = t3 =1y = t5 = t7 = tg = 17 t6 = —8.
Again, this can be seen via checking the connectedness of .

2As-singularities. Such cubics X are given by
1
(3.5) (iU%JFSU%)1‘3+$§+§$2($i—$§)+x1$4x5+b$3(ﬂfﬂrfg) =0, beR

Note that X (R) is connected, see Example [2.2l However X is not
stably rational:

Proposition 3.5. Assume that X has no real singular points and that
Xc has 2A5-singularities. Then X is not stably rational.

Proof. We may assume that X is given by (3.5). The equation
, B VIETD , - VP2,

q(z1, ..., x5) = 23 1 Tt —— %
cuts out complex conjugated divisors on X¢, we have
{g=0}NX=SUS,

where

S ={q=x3(x1 +ixe) + Z(a:4 — zx5)2 = X1%4 + 1ToTy — ToTs+

+ixiws + (VA2 4+ 2 4 2b)izszy + (V4D + 2 + 2b)xzzs = 0},

By [CMT7Z24, Section 5], the class group CI(Xc¢) is generated by the
classes of S, S5 and the class of a hyperplane section I subject to the
relation S + S = 2F. As in [CMTZ24l, Proposition 5.12],

HY(T', Pic(X¢)) = Z/2,
hence X is not stably rational over R. O

Here we also record an explicit specialization pattern. See Remark[2.6]
for a discussion of specializations over R.

Example 3.6. Consider the family of cubics X — A}, given by

1
(22 + 23)13 + 212475 + §I2(xi — 2) + 123 + 25 (tamy + t3w5)+

+ l’g(t4l’i + t5ZL’§ + t6$4l’5) + (.Z‘i + xg)(t7x5 + t8$4) = 0.
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Let X be the subfamily of X consisting of fibers above the locus
{te + Strtg = t5 — t4 + 412 — 413 = 0} C A®,
and X5 be the subfamily of X consisting of fibers above the line
{th —l=ty=ty3=1t5 —ty =tsg =t; =tg = 0} C A®.

We have a natural inclusion X D &} D A5. Then a very general fiber of
X is a real cubic with 2Az-singularities, that of A} has 2A,-singularities,
and that of X5 has 2As-singularities, over C.

2D4-singularities. As in the proof of [CMTZ24, Proposition 5.15], we
find that such X are given by

(3.6) (2% + 23)w3 + t125 + 25 (tawy + t3ws)+
+ w3(tsx] + tsx2 + teraxs) + T4q(74, 75) = 0,
for general parameters ¢y, ...,ts € R, and
q(wg,75) =25 — 22 or ]+ ;.
In the first case, X contains three real planes
I = {x3 =24 =0}, 1y = {x3 = x4+x5 = 0}, 1[5 = {3 = 24—25 = 0}.

In the second case, X contains only one real plane II;. In both cases,
projection from II; induces a quadric surface bundle

T:X - Pl

T3,Tq°
Note that the discriminant curve of the conic bundle structure in
this case has real singularities. It is therefore more appropriate to use
the quadric surface bundle structure to study the topology of X (R).
We have

# components of X (R) = # components of (X (R)).

First, we consider the case ¢ = x5 — 22, There are three possibilities:

(1) X contains a line disjoint from a plane, then X is rational,

(2) X(R) has two components, and X is not stably rational,

(3) X(R) is connected but X does not contain any line disjoint
from one of the planes Iy, 115, II3.

In the third case, we do not know whether or not X is rational. Each
possibility is realized, e.g., by
(1) (21 +23)ws — 2§ + 2a(2] — 23),
(2) (34 23)w3+30023 +22(35x4 +24v/2125) + 102372 + 14 (75 — 22),
(3) (2% + 2d)z3 + 23 + 242 — 23).



12 I. CHELTSOV, Y. TSCHINKEL, AND ZH. ZHANG

Let us explain when these possibilities occur, using w. Alternatively,
we can use projection from Iy or Il3, but this is essentially the same,
up to a change of coordinates. Put

1
A(l’;;, ZE4) = —$i + (t5 — t4)$3l’i + (t4t5 - tg — Zt%)x%xi—i—

+%h%—%1—%@%ﬂ%q+@ﬁy—iﬁné
Then A(xs,z4) - 23 is the discriminant of 7. Set Di(z) = A(1,z).
Note that D;(x) can only have simple real roots since X has only three
planes and no real singular points. Every line in X intersects exactly
one plane among 11y, [Ty, I3, since I1; + II; 4 II3 is cut out on X by the
hyperplane x3 = 0.

Lemma 3.7. The cubic X contains a line disjoint from Iy and Il3 if
and only if t3 = —tstg and t| + taots +t4t§ +t§ < 0, or Dy has real roots
and ts is smaller than its largest root.

Proof. Observe that X contains a line disjoint from I, and II3 if and
only if this line is contained in a fiber of 7 over (w3, z4) # (0,1) € PL.
Thus, we may set x3 = 1. We have to understand when the real locus
of the quadric 7—!(z4) contains a real line. If x4 = t5, the real locus of

7~ !(t5) is isomorphic to the quadric in Py - given by

U2 4 ud + (ty + tots + tat? + t3)u — (ts + tsto) u2 =0
LT I TS T A+ ot + byl - £3)

If t3 = —tstg and t; + tot5 + t4t2 + 2 < 0, the real locus of this quadric
is a cone, so the fiber 77!(t5) contains a line that is disjoint from II,
and II3. Similarly, if t3 = —t5ts and ¢ + tats + t4t2 + t3 > 0, the real
locus of this quadric is just a point. In all other cases, the real locus is
a sphere, so it does not contain lines either.

When x4 # t5, the fiber 771(¢5) is isomorphic to the quadric surface

D
(3.7) S ={ud+ui+ (ts— x4)u§ + ; 1(za)

2 3
Uy = 0} - PU17U2,U3,U47
5 — T4

and we may have the following possibilities:
e Di(x4) <0, S(R) a sphere;
e Di(z4) > 0 and x4 > t5, S(R) is a hyperboloid, so the fiber
contains a line disjoint from Il and Il3;
e Di(xy) >0 and x4 < t5, S(R) is empty;
e Di(z4) =0 and x4 < t5, S(R) is a point;
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e Di(z4) = 0 and z4 > t5, S(R) is a quadric cone, so the fiber
contains a line disjoint from Il and II3.

This implies the required assertion. U
Similarly, we obtain:

Lemma 3.8. The locus X(R) has two connected components if and
only if Dy has 4 real roots and t5 is greater than these roots.

Now, we consider the case ¢ = 25 + z2. In this case X contains only
one real plane, X does not contain real lines disjoint this plane, and the
fiber of m over x3 = 0 is empty. As before, we have two possibilities:

(1) X(R) is disconnected, so X is not stably rational over R,
(2) X(R) is connected.

In the second case, we do not know whether or not X is rational. Both
possibilities are realized:

(1) X = {(2? + 23)z3 + 25 + x4(af + 22) = 0},

(2) X = {(&7 +a3)ws+ 25 — wiws + 2w(wf — ) + wa (2 +23) = 0}
To explain these cases in terms of the defining equation (3.6)), set

1
Da(a) := a* + (b4 + t5)2° + (t2 + tats — J15)a”+

1 1,
+ (tl + t2t5 — §t3t6)$ + t1t5 — 1t3

We have:

Lemma 3.9. The locus X(R) is connected if and only if one of the
following holds:

e Dy has no real root,
e Dy has 2 real roots ay < g and oy < —ts,
e Dy has 4 real roots a; < ag < ag < ay and az < —ts.

Proof. Recall that X(R) is connected if and only if 7(X(R)) is. Set
x3 = 1. When x4 = —t5, the real locus of 7~ !(x,) is isomorphic to the
quadric in P3 given by

Up,u2,u3,uq

2 2 2 3y,,2 (t3 — t5t6)2 2
uy +uy + (81 — tats + 4ty — t5)uy — uy = 0.
1 2 (1 245 4ts5 5) 3 4(t1—t2t5+t4t§—t§) 4
One can check that the real locus of this quadric is always nonempty.
When x4 # —t5, a general fiber of 7 is isomorphic to the quadric surface




14 I. CHELTSOV, Y. TSCHINKEL, AND ZH. ZHANG

1n P?"l7u2)u37u4

Dy(4)
Tyt 15
and we may have the following possibilities:
when Ds(x4) < 0, S(R) is a sphere,
when Dy(z4) > 0 and x4 < —t5, S(R
when Dy(z4) > 0 and x4 > —t5, S(R
when Ds(x4) =0 and z4 < —t5, S(R
when Ds(x4) =0 and z4 > —t5, S(R
From this, one obtains the cases when X (R) is connected, based on
roots of Ds, as is stated. [l

SZ{Uf+u§+(x4+t5)u§+ ui = 0}

is a hyperboloid,
is empty,

is a quadric cone,
is a point.

— — N

4. FOUR SINGULAR POINTS

When four singular points are not in general position, by [CTZ24],
all of them are 4A;-singularities, contained in a plane II C X.

Proposition 4.1. Assume that X has no real singular points and that
Xc has 4A;-singularities in a plane I1 C X . Then X is rational if and
only if X contains a real line disjoint from 11.

Proof. Unprojecting from II, X is birational to a smooth intersection
of two quadrics Xy 5 in P°) which is rational if and only if it contains a
real line, by [HT21]. The existence of a real line in X5, is equivalent
to the existence of a real line in X disjoint from II. O

Example 4.2. The cubic X given by
(x] 4+ 23 + 23) 24 + To(2375 + 27) — 25(23 + 3475 + 23) = 0
is rational. Indeed, the line
{r1—29=121 — 23 =21 — 5 =0}
in X is disjoint from the unique plane {z4 = z; = 0} C X.

For the rest of the section, we assume that the singular points of X¢
are in general position and have coordinates

pr=1[1:9:0:0:0], po=[l:—i:0:0:0],

p3=[0:0:1:9:0], pys=[0:0:1:—i:0].
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Then the defining equation of X is

(4.1)  (rioy + rowo) (23 + 23) + (r3xs + raxy) (23 + 23)+
+ axi + x2(b1zy + boxo + b3z + bywy)+
+ z5(t1 2103 4 tar1Ty 4 t3mams + tawazy + t5 (2] 4 73) + te(25 + 273)),

with parameters ry,...,74,01,...,04,t1,...,t5,a € R.

4A1, 2A5 4+ 2A;, 4As-singularities. In these cases, at least one of the
r1 and ry, and one of the r3 and 74 is nonzero. After changing variables,

ri=re=r3=ry=1 t1=ty, ta=1t3, t5=15=0.

It follows that X is given by

(4.2) (w1 +w2) (w3 +a) + (23 + 2a) (2] + 23) + ax3+
+ 22(b1a1 + bots + byxs + baa)+
+ {L'5(t1 (1‘1273 + 1'2234) + t2($1$4 + 1'2373)) = 0,

with parameters a, by, b, b, by, t1,to € R. The singularity types of X
are determined by the parameters as follows

(1) 4A12 general a, bl, bz, bg, b4, tl, t2 € R,

(2) 2A2 + 2A1: bl — b2 — _%,

(3) 4Ag: by = by = by = by — =t
Cubics in the second and third cases are in fact birational to cubics
with 4A;-singularities. Common birational models for all three types
are forms of smooth divisors in (P')* of degree (1,1,1,1), see [CTZ24,
Section 5]. We describe these models over R.
Let 7: X — X be the blowup of the singularities of X. Then there

exists a commutative diagram:

X--"-+X
Wl )
X---"“-sY

where

e p is a composition of flops in the strict transform of the lines
passing through pairs of singular points,

e ¢ is a contraction of the strict transform of the hyperplane
section containing p; ..., ps to a smooth point g of the threefold
Y, and



16 I. CHELTSOV, Y. TSCHINKEL, AND ZH. ZHANG

e YV is a form of a smooth divisor in (P!)* of degree (1,1,1,1)
with Picard rank 2. Such divisors with Picard rank 1 are con-
jecturally irrational, see [KP24, Conjecture 1.3].

. 3 3 . .
Over R, Y can be embedded in P, xP;  with equations

yi=ys +y3 + vi,
2 =25+ 25 + 25,
y-M- -zt =0,

where y = (y1,...,Y4),2 = (21,...,24), and M is a 4 X 4 matrix with
real entries. Finding simple normal forms of YV is related to the singular
value decomposition in Minkowski space [Ren96].

The map x ! is given by the linear system |¢*(—Ky)—3E)|, where E
is the exceptional divisor of ¢ above ¢. Different choices of ¢ on Y lead
to birational maps to different cubic threefolds with 4 singular points.
This allows to find birational maps between cubics with 4A;,4A; and
4A, + 2A;-singularities. Explicitly, let X be a cubic given by with
2A5 + 2A; or 4A,-singularities. Let ps be a general point on X. Then
the restriction to X of the linear subsystem in |Ops(4)| consisting of
quartics having singularities of multiplicity 3 at the points py,..., ps
gives a birational map X --+ X', where X’ is a cubic threefold with
4A;-singularities in general position.

We study the topology of X(R). As in (3.2), X is birational to the
conic bundle

2, 2
V= o+ 9+ (s 2 fy = TR} C Py (2,21, 11),
with
(4.3) T:Y — IP’:%S’M@S, (Y1, Y2, T3, Ta, T5) > (T3, T4, Ts5),
where

g = mg + Z‘i + b1x§ + t123T5 + toxsxs,
G2 = $§ + 23 + bzxg + t1x425 + tox3s,
fs= aa:é + bgmgarg + b4w4x§.

The real locus of the discriminant curve in P? is smooth for all three
singularity types of X. It follows that Y (R) and X (R) are connected
if and only if (Y (R)) is.
Example 4.3. We provide examples with X (R)

e disconnected: a = —3,by = by =b3 =0y =0,t; = 3,15 =4,
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e connected: a = O,bl = b2 = bg = b4 = tl = t2 =1.

2A3 + 2A-singularities. Assume that p;, ps are Az-singularities and
ps, ps are Aj-singularities. From [CMTZ24, Section 7], we know that
the defect of X¢ is 1 or 2. When the defect is 1, by [CMTZ24, Lemma
7.3], X is rational over R. When the defect is 2, X¢ contains three
planes. Two of them are spanned by

Iy = (p2, p3,pa), Mo = (p1,D3,D4),

and thus are complex conjugate. This implies that r = ro = 0 in (4.1]).
The normal form of such X is

l’4($? + J]g) —+ axg + x?(blxl + bQIQ + b3l‘3 + b4l‘4)+
+ @5 (Lo (w1 + w9) s + t6(23 + 23)),

with parameters by, by, b3, by, t2,t6,a € R. The third plane is defined
over R and is given by

I3 = {z4 = 25 = 0}.
As before, projecting from II3, the projection map
7 X =P (%) (24, 5),
endows X with the structure of a quadric surface bundle.

Proposition 4.4. Let A € Rzs] be given by

b+ b 3, —2tate(by + by) — b2 + 4atg

1
Axg) := 05 1 T2+ (by— =t3)w5+16.

2

The locus X (R) is disconnected if and only if A(xs5) has three real roots
a1 < ag < ag and one of the following holds

e tsg>0and0 < aq, or
o s <0 and a3 < 0.

Proof. Set x4 = 1. The fiber 7~!(z5) is isomorphic to the quadric
surface

{ui + uj + tewsui + x5 A(z5)ui = 0} C PP

yeee U4

Its real locus is empty if and only if ¢g, 25 and A(x5) have the same
sign. Note that ts # 0 due to the singularities of Xc. 0
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2D4 + 2A;-singularities. Assume p; and ps are Dy-singularities and
p3 and py are Aj-singularities of X¢. We recall some basic geometry
from [CMT7Z24l, Section 7]. The class group Cl(Xc¢) is generated by
the classes of five planes Iy, ...,II5 in X¢ and the class of a general
hyperplane section F', subject to relations

II; + 10y + I, = 115 + 11, + 115 :FGCI(X((;)
One observes that 11, is defined over R. We have

(4.4) II; D {p2,p3,pa}, 1o D {p1,ps,pa}, 13,114, 15 D {p1, p2}.

The line passing through p3 and py is disjoint from II3 and II;.
Now consider the equation (4.1)). The inclusions in (4.2)) imply that

ry = ro = 0. Up to isomorphism, we may assume

ry,=1t =t,=1t;=0, r3=1.
The Dy-singularities impose the conditions

ty + ity = —itsts — by + iby = 0.
Since all parameters are real numbers, we have

to =t3=">by =by =0.

After a change of variables, the normal form of X is given by
(4.5) (z3 4 23)x3 + 5(23 + 275) + (b3ws + byxy) 72 + axd =0,

for a € R* and b3, by € R. Note that a further change of variables can
set a = £1. Over C, the 5 planes are given by

I = {@) +ixvg = x5 = 0}, Iy = {z; —izy = x5 = 0},

H3:{$3:$5:0}, H4:{x3:2:c4—|—<b4+\/bi—4a)x5:0},
H5:{ZL’3:21'4+ (b4—\/b421—4a) 1'5:0}

Rationality of X is determined by the (H1)-obstruction. The fol-
lowing is analogous to [CMTZ24l, Corollary 7.8].

Proposition 4.5. Assume that X has no real singular points and that
Xc has 2Dy + 2A; singularities. Then X is not (stably) rational over
R if and only if X contains only one real plane.
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Proof. From the equations we see that either X contains only one plane
14 or three planes I3, Iy, II5. Assume X contains only II,. Then the
Galois group I' switches II; <+ Il and II3 <+ II;. One computes, cf.
[CMTZ24, Proposition 7.7], that

(4.6) HY (T, Pic(X¢)) = Z/2,

and thus X is not stably rational over R.
When X contains three planes, the real line passing through ps and
p4 is disjoint from II3, thus X is rational over R. O

Corollary 4.6. Let X be given by (4.5). Then X is (stably) rational
if and only if b2 > 4a.

Remark 4.7. The quadric surface bundle structure 7= : X — P! ob-
tained via projection from II4 has been used, in [CTP24] Section 11.2],
to establish the nontriviality of cohomology in (4.6)), via a computation
of the Brauer group and the identity

H' (T, Pic(X¢)) = Br(Xg)/Br(R).

5. SIX SINGULAR POINTS
6A;-singularities with no plane.

Proposition 5.1. Let X be a cubic without real singular points and
such that X¢ has 6A1-singularities in linearly general position. Then X
is (stably) rational over R if and only if X contains a normal rational
cubic scroll defined over R.

Proof. Recall from [CTZ24l Section 7] that the class group of X¢ is gen-
erated by the hyperplane section H and two classes of normal rational
cubic scrolls S7 and Ss, subject to the relation 2H = 57 + 5s.

First we show that X contains a real normal rational cubic scroll if
and only if the classes S; and Sy are [-invariant. Assume that S; and
Sy are I'-invariant, then a general section of the linear system |Si| is
such a cubic scroll. The other direction is easy to see.

When X does not contain a real cubic scroll, I'" switches S; and S,
and one can compute, cf. [CTZ24, Proposition 7.5], that

HY(T, Pic(X¢)) = Z/2Z.

It follows that X is not stably rational over R.
When X contains a real normal rational cubic scroll. The linear
system |Ox(2) — S| gives a rational map X --+ P? whose resolution
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gives X the structure of a P!-bundle over P2, see [CTZ24, Section 7].
Such a P!-bundle over R admits a section and is therefore rational. [

Remark 5.2. In [CTZ24, Proposition 7.1}, it is shown that any invo-
lution ¢ € Aut(X¢) not fixing any singular points acts nontrivially on
Cl(X¢), see also Example [2.3]

However, this does not hold for the Galois action. For example, let
X be the cubic given by

vy (23 — 22 — 22) + bwywswy — w527 4 423 — 23) = 0.

Then X¢ has three pairs of conjugate A;-singular points in linearly
general position. But I' acts trivially on Cl(X¢). In particular, X
contains a real cubic scroll given by

{—dxqz3 — x§ + X124 + X125 = X123 + Toky — T3T4+
+ o5 + T35 = 25 + 405 — 3T973 — X3 + 27175 = 0} C X,
Therefore X is rational. In this case, the Galois action does not fix any
singular points but acts trivially on Cl(X¢) and satisfies (H1). This
does not happen in the equivariant setting.

Recall that there are also examples where the Galois action fails (H1)
and the corresponding cubic is not stably rational, see Example [2.3

6A-singularities with one plane. All such cubics are rational:

Proposition 5.3. Let X be a cubic such that X¢ has 6A;-singularities
and one plane. Then X 1s rational over R.

Proof. The unique plane is defined over R and contains four of the
A;-points, see [CTZ24] Section 7]. The line through the two other A;-
points is also defined over R and is disjoint from the plane. This implies
rationality of X over R. O

6A;-singularities with three planes.

Proposition 5.4. Let X be a cubic without real singular points and
such that X¢ has 6A;-singularities and three planes. Then up to iso-
morphism, one of the following holds:

e X contains three real planes, and is given by

(5.1)

3. .2 2 2 2 2
TowsTy + axy + xi(a1T2 + asxs + azry) + (25 + 25 + x5 +25) =0

with a, a1, as,as € R.
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e X contains only one real plane, and is given by
(5.2)
To (23 + 22) + ax® + 22 (a175 + ags + aszy) + 21 (25 — w475 + 22) = 0,

with a,ay,as, a3 € R.

Proof. One may assume that the three planes of X¢ are contained in
the hyperplane {z5 = 0}. If the planes are defined over R then we may
assume that they are given by

I ={x;=2,=0}, Ih={x;=23=0}, I3={x;=u1z4=0}
and that the singular points of X are
pr=[0:0:0:1:4], po=[0:0:0:1:—i], p3=1[0:1:0:0:74],
ps=100:1:0:0:—4], ps=[0:0:1:0:4], ps=1[0:0:1:0:—3.
All cubic threefolds singular at py, ..., pg are given by
To3y + axs + 12(a109 + asr3 + a3ry + ayxs)+
+ by (23 + 22 + 25 + 23) + 21 (Cra0w3 + CoTomy + c31314) = 0
with a, b, aq, as, asz, ay, cq,co,c3 € R. Up to a change of variables,
as=c=c=c=0 and b=1.

We obtain (j5.1]).

If only one plane is defined over R, the three planes on X¢ can be

given by
I, = {x; = 25 = 0},
I, = {xy = 23+ ixy =0}, I = {x; = x3 —ixy = 0},

and the singular points of X¢ are
pr=[0:0:1:4:0], p3=[0:1:0:0:4], ps;=1[0:0:1:—i:0],
po=100:0:1:49:4], ps=100:1:0:0:—3], pg=[0:0:1:—i:—i].
Similarly as above, one can check that X is given by . U

Projecting from II;, the projection map
(5.3) T X =P (x) = (21, 79),
endows X with the structure of a quadric surface bundle.
Proposition 5.5. Let X be a cubic given by . Put
Ai(ty, ty, ts, x) i= 2 + 1 2° + (a — 4)2? — (4t +tots)x + (—4a + 13 +13).
Then one of the following holds:
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(1) When at least one of the following polynomials (in xs)
Al(a17a27a/37x2)7 Al(a‘27al7a3ax2)7 Al(a37a27a17x2)
has real roots, then X is rational.

(2) When none of the polynomials (in xs)
Al(a17a27a371'2); Al(a/27a17a37m2); A1(a/37a27al;l72)
has a real root, then X(R) is connected and contains no line
disjoint from any of the planes 11;,7 =1,2,3 in X.

Proof. In the affine chart {z; = 1}, the general fiber 7~!(z3) is isomor-
phic to the quadric surface
2

x Al(alaa27a37m2)
(5.4) {ui+(1— f)u% + uj + 21 ui =0} C Pil,...,w‘

When A;(ay,as,as, ), as a polynomial in x5, has a real root ¢, the
fiber above xo = t is a quadric cone (including the cases t = +2),
which contains a line intersecting II; at one point. Thus, the line is
disjoint from Ily. It follows that X is rational. By symmetry, when
Aq(ag, ay,as3, o) (respectively, Aq(as,as,a1,x2)) has a real root, there
exists a line in X disjoint from IIy (respectively, I13), and X is rational.

When none of these three polynomials has a real root, the image of
7 is connected but none of the fibers of 7 is a hyperboloid. Therefore,
X (R) is connected but contains no line disjoint from II;, I1y or II3. O

Proposition 5.6. Let X be a cubic given by (5.2)), and
a; 4 2, 2),.3 2
Ao(z) == =2 — (a+ a5+ a3)z° + (da — ay)x” + (4day — 1)z + 4 € R[z].

-2
4
Then X (R) is disconnected if and only if one of the following holds:

(1) Ag has 2 distinct real roots oy and as, and 0 < oy < g < 4,

(2) Ag has 4 distinct real roots cy < g < az < ay and 0 < a1 <
Qp < 4,

(3) Ag has 4 distinct real roots c; < g < az < ay and a; < 0 <
as < oy < 4.

Proof. In the affine chart {zy = 1}, when z; # 0,4, the fiber 771(x)
is isomorphic to the quadric surface given by
2

T
S = {uj +uj +ru3 + 4—; - Ag(x1)ui =0} C Pil;~~~7u4’
where
171(1'1 — 4)
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One can check that the fiber 7!(x1) is empty if and only if > 0 and
Ay(z1) > 0. Since X has no real singular points and X¢ only contains
three planes, Ay(z1) can only have simple roots. It follows that X (R)
is disconnected in the cases described in the statement.

O

2A5 + 4A; and 2A; + 4A;-singularities.

Proposition 5.7. Let X C P* be a cubic such that X¢ has singularities
of type
2A2 + 4A1, or 2A3 + 4A1

Then X 1is rational over R.

Proof. Geometrically, the four A;-points lie on one plane and the line
passing through the other two singular points is disjoint from this plane,
see [CMTZ24l, Section 9]. The plane and the line are defined over R;
thus, X is rational over R. O

6. EIGHT SINGULAR POINTS

Proposition 6.1. Let X be a cubic without real singular points and
such that X¢ has 8A;-singularities. Then X is (stably) rational over R
if and only if it satisfies (H1) if and only if X contains three planes
over R.

Proof. We recall the geometry of X, over C: it has five planes I1, ... Il5
and 8 singular points p;. ..., ps with the following inclusion relations:

IT; D {p1,p2.p6, D3},
Iy O {p1,p2, ps, 7},
I3 O {ps, ps, P7; P8},
Iy O {p3, pa, s, P},
ITs > {p3, pa, 7, s}-

Enumerating involutions ¢« € Gg preserving the configuration of singu-
lar points and planes as above, we find that [" acts on the eight singular
points via one of the following possibilities for ¢:
(1) v =(1,2)(3,4)(5,6)(7,8): the planes II3, I1, IT5 are defined over
R and the line through p; and ps is disjoint from I, (cf. [CTZ24,
Section 8]). It follows that X is rational over R.
(2) v =(1,2)(3,4)(5,7)(6,8): the planes II;, Iy, IT5 are defined over
R and the line through p; and p, is disjoint from II;, thus X is
rational over R.
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(3) ¢ = (1,2)(3,4)(5,8)(6,7): only II3 is defined over R. One can
compute (cf. [CTZ24 Section 8]) that
HY((1), Pic(X¢)) = Z/2.

It follows that X is not stably rational over R.
O

Remark 6.2. All three cases in the proof of Proposition [6.1] can be
indeed realized, e.g.,

(1) ay(2? + 223)xy + T47E + ag(x325 — 325 + 2375) + azrzzaws = 0,
(2) a1 (x? — 23) x4 + 2472 + ag(T305 + 2325 + 2375) + azvzTaTs =0,
(3) a1 (x? + 22wy + T4k + ag(x3T5 + Tix5 + ¥375) + azvzTaws =0,

with general parameters aq, as, as € R.

7. NON-ISOLATED SINGULARITIES

Let X be a real cubic threefold such that X¢ has non-isolated sin-
gularities. As before, we assume that X®*"8(R) = () and X(C) is not
a cone. It easily follows from [Yok(02, Proposition 4.2] that X*"8 is ei-
ther a pointless conic or a pointless form of the rational normal quartic
curve. We proceed to analyze these cases.

X8 js a smooth conic. Over R, the normal form of such X is
(7.1) ¢+ T1q1 + T2go + T3q3 + Ta(2F + 25+ 23) = 0,
where
c= alxi + a2x4m§ + a3x2x5 + a4x§,

¢ = as; + agTaTs + arry,

G2 = s + agT4T5 + a1oT,

(3 = a1173 + 123425 + a1373,
with general parameters aq,...,a;3 € R. We have

X8 = L2yl + a3 =xy =25 =0} C PL

Note that X contains the plane Il = {x; = z5 = 0}. As before,
projection from II yields a quadric surface bundle

7: X — P!

T4,T5"°
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Proposition 7.1. Let X be a cubic given by (7.1). Then X(R) is
disconnected if and only if A(z) has four distinct real roots, where
A(x) is the quartic polynomial given by
— (a7 + a10)* + a23)x* + (4ay — 2(ag + ag) (a7 + ay) — 2a10a,3)2>+
+ (4@2 — 2(@5 —+ CLg)(CL7 + alo) — (aﬁ + &9)2 — 2@11@13 — CL%Q)SLQ‘F
+ (4(13 — 2((1,5 + ag)(a(; + CLg) — 2&11&12)1’+
+ 4a, — (&5 + a8)2 — a%l

Proof. Set x4 = 1. The fiber 771(x5) is isomorphic to the quadric
surface given by

{u? +u3 +u3 + Azs)uj = 0} C P?

U1,u2,u3,uq4”

It is clear that its real locus is empty if and only if A(xs) > 0. It
follows that X (R) is disconnected if and only if A € R[x] as a quartic
polynomial has four distinct real roots. U

Remark 7.2. When X (R) is connected, the rationality of X is open,
see [CTP24]. We provide examples with X (R)

e disconnected: a; = ay = az = 100,a4 = 5,a5 = 20,a6 = a7 =

ag = ...=aj3 = 1.
e connected: ay = —1l,a0 = l,a1 = a3 = a5 = ag = ay = ag =
...:a13:0.

The connected example also appeared in [CTP24, Section 11.3].

Chordal cubic. A cubic X¢ singular along a rational normal quartic
curve C' is unique: it is the secant variety of C, also known as the
chordal cubic, see, e.g., [AlI03] or [Yok02]. Over R, and under the

assumption C'(R) = (), there is a unique such cubic X, given by
(7.2)  A{alzy + 2125 + 1973 + 1175 — 237475 — (71 + T2)7E = 0}.
Proposition 7.3. The chordal cubic X given by (7.2)) is rational.
Proof. Let C' = X®™8. The linear system |Ox(2) — C| has dimension 5
and gives a contraction

p: X --» 5,

where S = P? < P’ is the Veronese surface. Projection from a general
plane IT in P* gives a rational map

7 X --» PL.

The product
X p: X --» P! x P?
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is a birational map. It follows that X is rational over R. O
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