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Abstract. We study rationality properties of real singular cubic
threefolds.

1. Introduction

In this note we focus on rationality properties of singular cubic
threefolds over the real numbers. We are guided by results in equi-
variant birational geometry in [CTZ24], [CMTZ24], which elucidated
birationality constructions as well as obstructions to birationality, in
the equivariant context.

One of the main problems in birational geometry is the (stable) ra-
tionality problem; see, e.g., [MT86], [CT95], [Che05], [Pro18], [Pir18],
[Voi19], [Sch21] for reports on milestones in this area. Classically, one
was interested in algebraically closed ground fields, of characteristic
zero, mostly the complex numbers C. However, many (stable) ratio-
nality constructions rely crucially on results over nonclosed fields, e.g.,
function fields of smaller-dimensional varieties: in [BCTSSD85] this is
used to produce nonrational but stably rational threefolds over C, via a
degree 4 Del Pezzo fibration over P1, and in [AHTVA19] rational cubic
fourfolds, via a degree 6 Del Pezzo fibration over P2. The survey [CT19]
contains many results concerning rationality over arbitrary fields.

Of particular interest are varieties with simple presentations, such
as hypersurfaces in (weighted) projective spaces, or linear sections of
Grassmannians. Among the simplest such varieties are quadric and
cubic hypersurfaces. Rationality of quadrics is completely settled: a
necessary and sufficient condition is the existence of a rational point.
For cubics, we do not currently have such criteria. Smooth complex
cubic threefolds XC ⊂ P4 are irrational [CG72], while the singular ones
are rational unless they are cones over smooth cubic curves.
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In recent years, there have been several results concerning rationality
of geometrically rational varieties over R. For example, it is now known
that rationality of smooth intersections of two quadrics X2,2 ⊂ Pn,
for n = 5, is governed by the existence of rational points and lines
[HT21]. For n = 6, a necessary and sufficient condition is that X(R)
is connected [HKT22]. The papers [BW20], [JJ23], [CTP24] explore
rationality of conic and quadric bundles over R.

Here, we focus on rationality of singular cubic threefolds

X = XR ⊂ P4

over R. Every such X has real points. We recall standard rationality
constructions, in presence of distinguished loci, over R:

• Projection from a singular point gives a birational map to P3,
• Projection from a line and a disjoint plane gives a birational
map X 99K P2 × P1.

In particular, if the cubic is not a cone and there exists a real singular
point, then X is rational over R. Hence, throughout the paper, we
assume that X is not a cone and that

Xsing(R) = ∅.
This implies that either the singularities of XC are isolated and their
number s = s(XC) is even, i.e., s = 2, 4, 6, 8, 10, or that the singular
locus has positive dimension. By [Avi20], a real form of a cubic with
10 isolated singularities is rational over R – geometrically, there is only
one such cubic, the Segre cubic.

Let Γ = Gal(C/R) ≃ Z/2 be the group generated by complex con-
jugation. In addition to an action of Γ on special loci of X, such as
the singular locus Xsing, we have an action on the geometric Picard
group Pic(X̃C) of the minimal resolution of singularities X̃ of X. We
investigate (stable) rationality over R, using the following tools:

• classification: we compute all possibilities for the action of Γ,
configurations of singularities, and normal forms; we freely use
the terminology and techniques of [CTZ24] and [CMTZ24];

• topology: if X(R) is disconnected then X is not stably rational;
• cohomology: if

(1.1) H1(Γ,Pic(X̃C)) ̸= 0,

then X is not stably rational; we refer to this as the (H1)-
obstruction.

We summarize the results:
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• s = 2:
– 2A1, 2A2: not rational over R.
– 2A3 with no plane: criteria for disconnectedness of X(R),
and examples with X(R) connected or disconnected.

– 2A3 with a plane: rational if and only if there is a real line
disjoint from the plane.

– 2A4: criteria for disconnectedness, and examples withX(R)
connected or disconnected.

– 2A5: all not stably rational.
– 2D4: criteria for disconnectedness, examples with rational
X, and examples with X(R) disconnected.

• s = 4:
– 4A1 with no plane, 4A2, 2A2 + 2A1 are birational over R;
criteria for disconnectedness, and examples of connected
and disconnected X(R).

– 4A1 with a plane: rational if and only if there is a real line
disjoint from the plane.

– 2A3 +2A1 with three planes: criteria for disconnectedness,
examples with rational X, and with X(R) disconnected.

– 2A3 + 2A1 with one plane: always rational.
– 2D4 + 2A1: rational if and only if it contains three planes.

• s = 6:
– 6A1 with no plane: rational if and only if it contains a real
cubic scroll.

– 6A1 with one plane: always rational.
– 6A1 with three planes: criteria for disconnectedness, exam-
ples with rational X, and with X(R) disconnected.

– 2A2 + 4A1, 2A3 + 4A1: always rational.
• s = 8: rational if and only if it contains three planes.

Geometrically, cubic threefolds with nonisolated singularities are of
four types [Yok02], [All03]: with Xsing consisting of a plane, a line, a
conic, or a twisted quartic. We show that all real forms of such cubics
are rational, unless Xsing is a conic. In this last case, we have examples
with connected or disconnected X(R). The rationality of such cubics
is open, see, e.g., [CTP24].

Acknowledgments: The first author was partially supported by the
Leverhulme Trust grant RPG-2021-229. The second author was par-
tially supported by NSF grant 2301983.
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2. Cohomology

Here, we investigate the (H1)-obstruction for cubics with isolated
singularities.

Proposition 2.1. Let X be a real cubic threefold with isolated singu-
larities over C. We have

H1(Γ,Pic(X̃C)) ̸= 0

if and only if one of the following holds:

(1) XC has 2A5-singularities,
(2) XC has 2D4 + 2A1-singularities, and only one real plane,
(3) XC has 6A1-singularities in linearly general position, and con-

tains no normal cubic scrolls over R,
(4) XC has 8A1-singularities, and only one real plane.

Proof. When XC has the indicated configurations of singularities, the
proof follows from Propositions 3.5, 4.5, 5.3, and 6.1. In all other cases,
the (H1)-obstruction is trivial, as shown in [CTZ24], [CMTZ24]. □

We now list representative examples with nontrivial cohomology for
each of the cases in Proposition 2.1.

Example 2.2. 2A5: Over C, every such cubic is given by

x1x2x3 + x1x
2
4 + x2x

2
5 + x3

3 + bx3x4x5 = 0, b2 ̸= −4.

Over R, every such cubic is given by

(2.1) X = {(x2
1+x2

2)x3+x3
3−2x1(x

2
4−x2

5)−4x2x4x5+bx3(x
2
4+x2

5) = 0},
for some b ∈ R, with singular points

[1 : i : 0 : 0 : 0], [1 : −i : 0 : 0 : 0].

Consider the projection from the real line through the singularities

π : X 99K P2, (x1, x2, x3, x4, x5) 7→ (x3, x4, x5).

The image π(X(R)), given by{
x2
3 +

b−
√
b2 + 4

2
x2
4 +

b−
√
b2 + 4

2
x2
5 ≤ 0

}
⊂ P2,

is connected; it is easy to see that X(R) is also connected.
The Galois action on Pic(X̃C) is isomorphic to the C2-action consid-

ered in [CMTZ24, Proposition 5.12], which implies that

(2.2) H1(Γ,Pic(X̃C)) = Z/2Z,
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hence X is not stably rational over R. See Proposition 3.5 for details.

Example 2.3. 6A1: In the equivariant context, assuming that the
singularities are in linearly general positions, we obtain nontrivial co-
homology from any C2 ⊆ Aut(X), which does not fix a node [CTZ24,
Proposition 7.5]. Over R, we realize this by

(x2
1 + x2

2)(x3 + 2x4 + 39x5) + 2x1(x
2
3 + x2

4 + 4x2
5 + x3x5)+

+ 2x2(x3x4 − x2
3 + x2

4 + 4x2
5) + x2

4x3 + 4x2
5x3 − 2x2

3x4 + 39x2
3x5 = 0,

with singular points

[0 : 0 : 0 : −2i : 1], [0 : 0 : 0 : 2i : 1], [0 : −1 : −i : 1 : 0],

[0 : −1 : i : 1 : 0], [−i : 1 : 0 : 0 : 0], [i : 1 : 0 : 0 : 0].

The equation
x2
3 + x2

4 + 20x3x5 + 4x2
5 = 0

cuts out two complex conjugate irreducible divisors on XC, so that
complex conjugation acts nontrivially on the class group Cl(XC). Com-
putation in [CTZ24, Proposition 7.5] implies (2.2); it follows that X is
not stably rational over R.

The image in P2
x3,x4,x5

of the projection from the line passing through
the last two singular points is connected, and given by

{(x2
3 + x2

4 + 20x3x5 + 4x2
5)(x

2
3 + x2

4 −
77

2
x3x5 + 4x2

5) ≥ 0} ⊂ P2
x3,x4,x5

,

which shows that X(R) is also connected.

Example 2.4. 8A1: In the equivariant context, XC is given by

(ax1 + x2 + bx3)x4x5 + x4(x
2
3 − x2

1) + x5(x
2
3 − x2

2) = 0, a, b ∈ C,
and cohomology from C2 generated by

(x) 7→ (ax5 − x1, x4 − x2, x3, x4, x5).

Over R, we can realize the corresponding Γ-action on cohomology
on X given by

a1(x
2
1 + x2

3)x4 + x4x
2
5 + a2(x

2
2x5 + x2

3x5 + x2
4x5) + a3x3x4x5 = 0,

with a1, a2, a3 ∈ R and singularities at

[0 : −i : 0 : 1 : 0], [0 : i : 0 : 1 : 0], [−i : 0 : 0 : 0 : 1], [i : 0 : 0 : 0 : 1],

[−i : −i : 1 : 0 : 0], [i : −i : 1 : 0 : 0], [−i : i : 1 : 0 : 0], [i : i : 1 : 0 : 0].

A direct computation of Cl(XC) as in Proposition 6.1 shows that the
Γ-action gives nontrivial cohomology (2.2).
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Example 2.5. 2D4 + 2A1: In the equivariant context, XC is given by

x1x2x3 + x1x2x4 + x2
5(a1x3 + a2x4) + a3x3x4x5 = 0, a1, a2, a3 ∈ C×,

with nontrivial cohomology from the involution

(x) 7→ (x2, x1, x4 +
a1 − a2

a3
x5, x3 −

a1 − a2
a3

x5, x5).

Over R, we can realize this by

(x2
1 + x2

2)x3 + x5(x
2
3 + x2

4) + (b1x3 + b2x4)x
2
5 + ax3

5 = 0

for a, b1, b2 ∈ R with b22 < 4a. The D4-singularities are

[1 : i : 0 : 0 : 0], [1 : −i : 0 : 0 : 0],

and the A1-singularities are

[0 : 0 : 1 : i : 0], [0 : 0 : 1 : −i : 0].

In these cases, the Γ-action gives nontrivial cohomology (1.1), see
Proposition 4.5 for more details.

The following diagram shows specialization patterns, obtained in
investigations of equivariant birationalities in [CTZ24], [CMTZ24]. The
red-labeled cases (i.e., cubic threefolds with indicated singularity types)
admit forms over R with nontrivial cohomology H1(Γ,Pic(X̃C)) from
a specific action of Γ; and general cubic threefolds, indicated in black
and specializing to these, have trivial cohomology.

10A12A5 2D4 + 2A1 2A3 + 4A1

2A4 4A2 2D4 2A3 + 2A1 2A2 + 4A1 8A1

2A3 2A2 + 2A1 6A1

4A12A2

2A1
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Remark 2.6. In contrast to the equivariant case treated in [CTZ24],
specialization arguments do not work over R, and we do not know
whether or not a very general cubic threefold with trivial cohomology
specializing to one with nontrivial cohomology is rational over R. They
can be applied to show the existence of cubics failing stable rationality
over fields such as R(t).

3. Two Singular Points

Assume that XC has two complex-conjugated singular points, e.g.,

p1 = [1 : i : 0 : 0 : 0], and p2 = [1 : −i : 0 : 0 : 0],

so that X ⊂ P4
x1,...,x5

is given by

(x2
1 + x2

2)x3 + x1q1 + x2q2 + f3 = 0,(3.1)

where q1, q2 ∈ R[x4, x5] are quadratic forms and f3 ∈ R[x3, x4, x5] is a
cubic form. One checks that q1 and q2 cannot both vanish if XC has
An-singularities. If q1 ̸≡ 0 and q2 ≡ 0, then up to a change of variables,
we have q1 = q2. Thus, we may assume that none of q1 or q2 is 0.

Each of q1 and q2 defines two points in P1
x4,x5

(C), with one of the
following possibilities:

• one real point with multiplicity 2, or
• two real points, or
• two conjugate points.

Combining the configuration patterns of four points defined by q1 and
q2, we find all possibilities of the pair (q1, q2), up to isomorphism:

q1 q2
x24 λx24 x25 x4x5 λ(x24 − x25) λ(x24 + x25)

x4x5 λx4x5 λx4(x4 − x5) λ(x24 − x25) λ(x24 + x25)
x24 + x25 x24 + λx25 λ > 0 everywhere

Introducing new coordinates

y1 = x1x3 +
q1
2
, and y2 = x2x3 +

q2
2
,

and multiplying (3.1) by x3, we birationally transform X over R to

Y = {y21 + y22 + f3x3 −
q21 + q22

4
= 0} ⊂ Py1,y2,x1,x2,x3(2, 2, 1, 1, 1).(3.2)

Note that Y is a conic bundle over P2, with

π : Y → P2
x1,x2,x3

, (y1, y2, x1, x2, x3) 7→ (x1, x2, x3).
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The image π(Y (R)) is given by

q21 + q22
4

− f3x3 ≥ 0.(3.3)

In particular, we write

(3.4) f3 := t1x
3
3 + x2

3(t2x4 + t3x5) + x3(t4x
2
4 + t5x

2
5 + t6x4x5)+

+ t7x
2
4x5 + t8x

2
5x4 + t9x

3
4 + t10x

3
5,

for t1, . . . , t10 ∈ R.

2A1 and 2A2-singularities.

Proposition 3.1. Assume that X has no real singular points and that
XC has 2A1 or 2A2-singularities. Then X is not rational over R.

Proof. Recall that X is birational to the conic bundle (3.2). When XC
has 2A1 or 2A2-singularities, the conic bundle has a smooth quartic dis-
criminant, with trivial double cover. By [BW20] or [KP24a, Theorem
6.10], X is not rational over R. □

2A3-singularities with no plane. When p1 and p2 are A3-points and
XC contains no plane, one can check (cf. [CMTZ24, Section 5]) that
the only possibility for q1 and q2 from the table above is

q1 = x4x5 and q2 =
1

2
(x2

4 − x2
5).

The A3-singularities impose the following conditions on (3.4)

t7 = t10, t8 = t9.

Remark 3.2. Consider the conic bundle π : Y → P2 birational to X
given by (3.2). Note that the real locus of the discriminant curve in P2

is smooth. It follows that Y (R) (and thus X(R)) is connected if and
only if the image π(Y (R)) in P2(R) given by (3.2) is connected. Using
this, we present examples where X(R) is disconnected or connected:

• Disconnected: t1 = −1, t2 = −10, t3 = −2, t4 = t5 = t6 = t7 =
1, t8 = 5,

• Connected: t1 = t2 = t3 = t4 = t5 = t6 = t7 = t8 = 1.
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2A3-singularities with one plane. Here, XC contains a unique plane
Π, which is thus defined over R. This implies that X is birational to
a smooth intersection of two quadrics X2,2 ⊂ P5, via unprojection
from the plane, see [CTZ24, Proposition 5]. Rationality of X2,2 over
R is determined by the existence of a real line, see [HT21]; on X this
translates into the existence of a real line disjoint from Π.

Example 3.3. The cubic X given by

(x2
1 + x2

2)x3 + (x1 + x2)x
2
4 + (x3 + x4 + x5)(x

2
3 + x4x5)− 2x3x

2
5 = 0

is rational. Indeed, the line

{x1 + x2 = x1 − x5 = x3 + x4 + x5 = 0}

in X is disjoint from the unique plane {x3 = x4 = 0} ⊂ X.

Topological types of X2,2 with real points but without real lines are
listed in [HT21, Section 11.4].

2A4-singularities. Cubic threefolds XC with 2A4-singularities do not
contain a plane. As in the case of 2A3-singularities with no plane, we
find that

q1 = x4x5, q2 =
1

2
(x2

4 − x2
5), t7 = t10, t8 = t9,

together with the following conditions ensuring 2A4-singularities

t6 = −8t7t8, t4 = t5 + 4t27 − 4t28.

Example 3.4. Similarly as before, X(R) can be connected or discon-
nected depending on the parameters. We give examples:

• Disconnected: t1 = 2, t2 = −10, t3 = t5 = t6 = t7 = 0, t4 =
−16, t8 = −2.

• Connected: t1 = t2 = t3 = t4 = t5 = t7 = t8 = 1, t6 = −8.

Again, this can be seen via checking the connectedness of (3.3).

2A5-singularities. Such cubics X are given by

(3.5) (x2
1+x2

2)x3+x3
3+

1

2
x2(x

2
4−x2

5)+x1x4x5+bx3(x
2
4+x2

5) = 0, b ∈ R.

Note that X(R) is connected, see Example 2.2. However X is not
stably rational:

Proposition 3.5. Assume that X has no real singular points and that
XC has 2A5-singularities. Then X is not stably rational.
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Proof. We may assume that X is given by (3.5). The equation

q(x1, . . . , x5) = x2
3 +

2b−
√
4b2 + 2

4
x2
4 +

2b−
√
4b2 + 2

4
x2
5

cuts out complex conjugated divisors on XC, we have

{q = 0} ∩X = S ∪ S̄,

where

S = {q = x3(x1 + ix2) +
i

4
(x4 − ix5)

2 = x1x4 + ix2x4 − x2x5+

+ ix1x5 + (
√
4b2 + 2 + 2b)ix3x4 + (

√
4b2 + 2 + 2b)x3x5 = 0}.

By [CMTZ24, Section 5], the class group Cl(XC) is generated by the
classes of S, S̄ and the class of a hyperplane section F subject to the
relation S + S̄ = 2F . As in [CMTZ24, Proposition 5.12],

H1(Γ,Pic(X̃C)) = Z/2,

hence X is not stably rational over R. □

Here we also record an explicit specialization pattern. See Remark 2.6
for a discussion of specializations over R.

Example 3.6. Consider the family of cubics X → A8
t1,...,t8

given by

(x2
1 + x2

2)x3 + x1x4x5 +
1

2
x2(x

2
4 − x2

5) + t1x
3
3 + x2

3(t2x4 + t3x5)+

+ x3(t4x
2
4 + t5x

2
5 + t6x4x5) + (x2

4 + x2
5)(t7x5 + t8x4) = 0.

Let X1 be the subfamily of X consisting of fibers above the locus

{t6 + 8t7t8 = t5 − t4 + 4t27 − 4t28 = 0} ⊂ A8,

and X2 be the subfamily of X consisting of fibers above the line

{t1 − 1 = t2 = t3 = t5 − t4 = t6 = t7 = t8 = 0} ⊂ A8.

We have a natural inclusion X ⊃ X1 ⊃ X2. Then a very general fiber of
X is a real cubic with 2A3-singularities, that of X1 has 2A4-singularities,
and that of X2 has 2A5-singularities, over C.



REAL CUBIC THREEFOLDS 11

2D4-singularities. As in the proof of [CMTZ24, Proposition 5.15], we
find that such X are given by

(3.6) (x2
1 + x2

2)x3 + t1x
3
3 + x2

3(t2x4 + t3x5)+

+ x3(t4x
2
4 + t5x

2
5 + t6x4x5) + x4q(x4, x5) = 0,

for general parameters t1, . . . , t6 ∈ R, and

q(x4, x5) = x2
4 − x2

5 or x2
4 + x2

5.

In the first case, X contains three real planes

Π1 = {x3 = x4 = 0},Π2 = {x3 = x4+x5 = 0},Π3 = {x3 = x4−x5 = 0}.

In the second case, X contains only one real plane Π1. In both cases,
projection from Π1 induces a quadric surface bundle

π : X 99K P1
x3,x4

.

Note that the discriminant curve of the conic bundle structure (3.2) in
this case has real singularities. It is therefore more appropriate to use
the quadric surface bundle structure to study the topology of X(R).
We have

# components of X(R) = # components of π(X(R)).

First, we consider the case q = x2
4−x2

5. There are three possibilities:

(1) X contains a line disjoint from a plane, then X is rational,
(2) X(R) has two components, and X is not stably rational,
(3) X(R) is connected but X does not contain any line disjoint

from one of the planes Π1, Π2, Π3.

In the third case, we do not know whether or not X is rational. Each
possibility is realized, e.g., by

(1) (x2
1 + x2

2)x3 − x3
3 + x4(x

2
4 − x2

5),
(2) (x2

1+x2
2)x3+300x3

3+x2
3(35x4+24

√
21x5)+10x3x

2
5+x4(x

2
4−x2

5),
(3) (x2

1 + x2
2)x3 + x3

3 + x4(x
2
4 − x2

5).

Let us explain when these possibilities occur, using π. Alternatively,
we can use projection from Π2 or Π3, but this is essentially the same,
up to a change of coordinates. Put

∆(x3, x4) := −x4
4 + (t5 − t4)x3x

3
4 + (t4t5 − t2 −

1

4
t26)x

2
3x

2
4+

+ (t2t5 − t1 −
1

2
t3t6)x

3
3x4 + (t1t5 −

1

4
t23)x

4
3.
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Then ∆(x3, x4) · x2
3 is the discriminant of π. Set D1(x) = ∆(1, x).

Note that D1(x) can only have simple real roots since X has only three
planes and no real singular points. Every line in X intersects exactly
one plane among Π1,Π2,Π3, since Π1+Π2+Π3 is cut out on X by the
hyperplane x3 = 0.

Lemma 3.7. The cubic X contains a line disjoint from Π2 and Π3 if
and only if t3 = −t5t6 and t1+ t2t5+ t4t

2
5+ t35 < 0, or D1 has real roots

and t5 is smaller than its largest root.

Proof. Observe that X contains a line disjoint from Π2 and Π3 if and
only if this line is contained in a fiber of π over (x3, x4) ̸= (0, 1) ∈ P1.
Thus, we may set x3 = 1. We have to understand when the real locus
of the quadric π−1(x4) contains a real line. If x4 = t5, the real locus of
π−1(t5) is isomorphic to the quadric in P3

u1,u2,u3,u4
given by

u2
1 + u2

2 + (t1 + t2t5 + t4t
2
5 + t35)u

2
3 −

(t3 + t5t6)
2

4(t1 + t2t5 + t4t25 + t35)
u2
4 = 0.

If t3 = −t5t6 and t1 + t2t5 + t4t
2
5 + t35 < 0, the real locus of this quadric

is a cone, so the fiber π−1(t5) contains a line that is disjoint from Π2

and Π3. Similarly, if t3 = −t5t6 and t1 + t2t5 + t4t
2
5 + t35 > 0, the real

locus of this quadric is just a point. In all other cases, the real locus is
a sphere, so it does not contain lines either.

When x4 ̸= t5, the fiber π−1(t5) is isomorphic to the quadric surface

S = {u2
1 + u2

2 + (t5 − x4)u
2
3 +

D1(x4)

t5 − x4

u2
4 = 0} ⊂ P3

u1,u2,u3,u4
,(3.7)

and we may have the following possibilities:

• D1(x4) < 0, S(R) a sphere;
• D1(x4) > 0 and x4 > t5, S(R) is a hyperboloid, so the fiber
contains a line disjoint from Π2 and Π3;

• D1(x4) > 0 and x4 < t5, S(R) is empty;
• D1(x4) = 0 and x4 < t5, S(R) is a point;
• D1(x4) = 0 and x4 > t5, S(R) is a quadric cone, so the fiber
contains a line disjoint from Π2 and Π3.

This implies the required assertion. □

Similarly, we obtain:

Lemma 3.8. The locus X(R) has two connected components if and
only if D1 has 4 real roots and t5 is greater than these roots.
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Now, we consider the case q = x2
4 + x2

5. In this case X contains only
one real plane, X does not contain real lines disjoint this plane, and the
fiber of π over x3 = 0 is empty. As before, we have two possibilities:

(1) X(R) is disconnected, so X is not stably rational over R,
(2) X(R) is connected.

In the second case, we do not know whether or not X is rational. Both
possibilities are realized:

(1) X = {(x2
1 + x2

2)x3 + x3
3 + x4(x

2
4 + x2

5) = 0},
(2) X = {(x2

1+x2
2)x3+x3

3−x2
3x4+2x3(x

2
5−x2

4)+x4(x
2
4+x2

5) = 0}.
To explain these cases in terms of the defining equation (3.6), set

D2(x) := x4 + (t4 + t5)x
3 + (t2 + t4t5 −

1

4
t26)x

2+

+ (t1 + t2t5 −
1

2
t3t6)x+ t1t5 −

1

4
t23.

We have:

Lemma 3.9. The locus X(R) is connected if and only if one of the
following holds:

• D2 has no real root,
• D2 has 2 real roots α1 < α2 and α1 ≤ −t5,
• D2 has 4 real roots α1 < α2 < α3 < α4 and α3 ≤ −t5.

Proof. Recall that X(R) is connected if and only if π(X(R)) is. Set
x3 = 1. When x4 = −t5, the real locus of π−1(x4) is isomorphic to the
quadric in P3

u1,u2,u3,u4
given by

u2
1 + u2

2 + (t1 − t2t5 + t4t
2
5 − t35)u

2
3 −

(t3 − t5t6)
2

4(t1 − t2t5 + t4t25 − t35)
u2
4 = 0.

One can check that the real locus of this quadric is always nonempty.
When x4 ̸= −t5, a general fiber of π is isomorphic to the quadric surface
in P3

u1,u2,u3,u4

S = {u2
1 + u2

2 + (x4 + t5)u
2
3 +

D2(x4)

x4 + t5
u2
4 = 0}

and we may have the following possibilities:

• when D2(x4) < 0, S(R) is a sphere,
• when D2(x4) > 0 and x4 < −t5, S(R) is a hyperboloid,
• when D2(x4) > 0 and x4 > −t5, S(R) is empty,
• when D2(x4) = 0 and x4 < −t5, S(R) is a quadric cone,
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• when D2(x4) = 0 and x4 > −t5, S(R) is a point.

From this, one obtains the cases when X(R) is connected, based on
roots of D2, as is stated. □

4. Four singular points

When four singular points are not in general position, by [CTZ24],
all of them are 4A1-singularities, contained in a plane Π ⊂ X.

Proposition 4.1. Assume that X has no real singular points and that
XC has 4A1-singularities in a plane Π ⊂ X . Then X is rational if and
only if X contains a real line disjoint from Π.

Proof. Unprojecting from Π, X is birational to a smooth intersection
of two quadrics X2,2 in P5, which is rational if and only if it contains a
real line, by [HT21]. The existence of a real line in X2,2 is equivalent
to the existence of a real line in X disjoint from Π. □

Example 4.2. The cubic X given by

(x2
1 + x2

2 + x2
3)x4 + x2(x3x5 + x2

4)− x5(x
2
4 + 3x4x5 + x2

5) = 0

is rational. Indeed, the line

{x1 − x2 = x1 − x3 = x1 − x5 = 0}

in X is disjoint from the unique plane {x4 = x5 = 0} ⊂ X.

For the rest of the section, we assume that the singular points of XC
are in general position and have coordinates

p1 = [1 : i : 0 : 0 : 0], p2 = [1 : −i : 0 : 0 : 0],

p3 = [0 : 0 : 1 : i : 0], p4 = [0 : 0 : 1 : −i : 0].

Then the defining equation of X is

(4.1) (r1x1 + r2x2)(x
2
3 + x2

4) + (r3x3 + r4x4)(x
2
1 + x2

2)+

+ ax3
5 + x2

5(b1x1 + b2x2 + b3x3 + b4x4)+

+ x5(t1x1x3 + t2x1x4 + t3x2x3 + t4x2x4 + t5(x
2
1 + x2

2) + t6(x
2
3 + x2

4)),

with parameters r1, . . . , r4, b1, . . . , b4, t1, . . . , t6, a ∈ R.
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4A1, 2A2 + 2A1, 4A2-singularities. In these cases, at least one of the
r1 and r2, and one of the r3 and r4 is nonzero. After changing variables,

r1 = r2 = r3 = r4 = 1, t1 = t4, t2 = t3, t5 = t6 = 0.

It follows that X is given by

(4.2) (x1 + x2)(x
2
3 + x2

4) + (x3 + x4)(x
2
1 + x2

2) + ax3
5+

+ x2
5(b1x1 + b2x2 + b3x3 + b4x4)+

+ x5(t1(x1x3 + x2x4) + t2(x1x4 + x2x3)) = 0,

with parameters a, b1, b2, b3, b4, t1, t2 ∈ R. The singularity types of X
are determined by the parameters as follows

(1) 4A1: general a, b1, b2, b3, b4, t1, t2 ∈ R,
(2) 2A2 + 2A1: b1 = b2 = − (t1−t2)2

8
,

(3) 4A2: b1 = b2 = b3 = b4 − (t1−t2)2

8
.

Cubics in the second and third cases are in fact birational to cubics
with 4A1-singularities. Common birational models for all three types
are forms of smooth divisors in (P1)4 of degree (1, 1, 1, 1), see [CTZ24,
Section 5]. We describe these models over R.

Let π : X̃ → X be the blowup of the singularities of X. Then there
exists a commutative diagram:

X̃
ρ //

π

��

X̂

ϕ
��

X
χ // Y

where

• ρ is a composition of flops in the strict transform of the lines
passing through pairs of singular points,

• ϕ is a contraction of the strict transform of the hyperplane
section containing p1 . . . , p4 to a smooth point q of the threefold
Y , and

• Y is a form of a smooth divisor in (P1)4 of degree (1, 1, 1, 1)
with Picard rank 2. Such divisors with Picard rank 1 are con-
jecturally irrational, see [KP24b, Conjecture 1.3].
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Over R, Y can be embedded in P3
y1,...y4

× P3
z1,...z4

with equations
y21 = y22 + y23 + y24,

z21 = z22 + z23 + z24 ,

y ·M · zt = 0,

where y = (y1, . . . , y4), z = (z1, . . . , z4), and M is a 4 × 4 matrix with
real entries. Finding simple normal forms of Y is related to the singular
value decomposition in Minkowski space [Ren96].

The map χ−1 is given by the linear system |ϕ∗(−KY )−3E)|, where E
is the exceptional divisor of ϕ above q. Different choices of q on Y lead
to birational maps to different cubic threefolds with 4 singular points.
This allows to find birational maps between cubics with 4A1, 4A2 and
4A2+2A1-singularities. Explicitly, let X be a cubic given by (4.2) with
2A2 + 2A1 or 4A2-singularities. Let p5 be a general point on X. Then
the restriction to X of the linear subsystem in |OP4(4)| consisting of
quartics having singularities of multiplicity 3 at the points p1, . . . , p5
gives a birational map X 99K X ′, where X ′ is a cubic threefold with
4A1-singularities in general position.
We study the topology of X(R). As in (3.2), X is birational to the

conic bundle

Y = {y21 + y22 + (x3 + x4)f3 −
q21 + q22

4
} ⊂ Py1,y2,x1,x2,x3(2, 2, 1, 1, 1),

with

π : Y → P2
x3,x4,x5

, (y1, y2, x3, x4, x5) 7→ (x3, x4, x5),(4.3)

where

q1 = x2
3 + x2

4 + b1x
2
5 + t1x3x5 + t2x4x5,

q2 = x2
3 + x2

4 + b2x
2
5 + t1x4x5 + t2x3x5,

f3 = ax3
5 + b3x3x

2
5 + b4x4x

2
5.

The real locus of the discriminant curve in P2 is smooth for all three
singularity types of X. It follows that Y (R) and X(R) are connected
if and only if π(Y (R)) is.

Example 4.3. We provide examples with X(R)
• disconnected: a = −3, b1 = b2 = b3 = b4 = 0, t1 = 3, t2 = 4,
• connected: a = 0, b1 = b2 = b3 = b4 = t1 = t2 = 1.
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2A3 + 2A1-singularities. Assume that p1, p2 are A3-singularities and
p3, p4 are A1-singularities. From [CMTZ24, Section 7], we know that
the defect of XC is 1 or 2. When the defect is 1, by [CMTZ24, Lemma
7.3], X is rational over R. When the defect is 2, XC contains three
planes. Two of them are spanned by

Π1 = ⟨p2, p3, p4⟩, Π2 = ⟨p1, p3, p4⟩,
and thus are complex conjugate. This implies that r1 = r2 = 0 in (4.1).
The normal form of such X is

x4(x
2
1 + x2

2) + ax3
5 + x2

5(b1x1 + b2x2 + b3x3 + b4x4)+

+ x5(t2(x1 + x2)x4 + t6(x
2
3 + x2

4)),

with parameters b1, b2, b3, b4, t2, t6, a ∈ R. The third plane is defined
over R and is given by

Π3 = {x4 = x5 = 0}.
As before, projecting from Π3, the projection map

π : X → P1, (x) 7→ (x4, x5),

endows X with the structure of a quadric surface bundle.

Proposition 4.4. Let ∆ ∈ R[x5] be given by

∆(x5) := −b21 + b22
4

x3
5+

−2t2t6(b1 + b2)− b23 + 4at6
4t6

x2
5+(b4−

1

2
t22)x5+t6.

The locus X(R) is disconnected if and only if ∆(x5) has three real roots
α1 < α2 < α3 and one of the following holds

• t6 > 0 and 0 < α1, or
• t6 < 0 and α3 < 0.

Proof. Set x4 = 1. The fiber π−1(x5) is isomorphic to the quadric
surface

{u2
1 + u2

2 + t6x5u
2
3 + x5∆(x5)u

2
4 = 0} ⊂ P3

u1,...,u4

Its real locus is empty if and only if t6, x5 and ∆(x5) have the same
sign. Note that t6 ̸= 0 due to the singularities of XC. □

2D4 + 2A1-singularities. Assume p1 and p2 are D4-singularities and
p3 and p4 are A1-singularities of XC. We recall some basic geometry
from [CMTZ24, Section 7]. The class group Cl(XC) is generated by
the classes of five planes Π1, . . . ,Π5 in XC and the class of a general
hyperplane section F , subject to relations

Π1 +Π2 +Π4 = Π3 +Π4 +Π5 = F ∈ Cl(XC).
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One observes that Π4 is defined over R. We have

Π1 ⊃ {p2, p3, p4}, Π2 ⊃ {p1, p3, p4}, Π3,Π4,Π5 ⊃ {p1, p2}.(4.4)

The line passing through p3 and p4 is disjoint from Π3 and Π5.
Now consider the equation (4.1). The inclusions in (4.2) imply that

r1 = r2 = 0. Up to isomorphism, we may assume

r4 = t1 = t4 = t5 = 0, r3 = 1.

The D4-singularities impose the conditions

t2 + it3 = −it3t5 − b1 + ib2 = 0.

Since all parameters are real numbers, we have

t2 = t3 = b1 = b2 = 0.

After a change of variables, the normal form of X is given by

(x2
1 + x2

2)x3 + x5(x
2
3 + x2

4) + (b3x3 + b4x4)x
2
5 + ax3

5 = 0,(4.5)

for a ∈ R× and b3, b4 ∈ R. Note that a further change of variables can
set a = ±1. Over C, the 5 planes are given by

Π1 = {x1 + ix2 = x5 = 0}, Π2 = {x1 − ix2 = x5 = 0},

Π3 = {x3 = x5 = 0}, Π4 = {x3 = 2x4 +

(
b4 +

√
b24 − 4a

)
x5 = 0},

Π5 = {x3 = 2x4 +

(
b4 −

√
b24 − 4a

)
x5 = 0}.

Rationality of X is determined by the (H1)-obstruction. The fol-
lowing is analogous to [CMTZ24, Corollary 7.8].

Proposition 4.5. Assume that X has no real singular points and that
XC has 2D4 + 2A1 singularities. Then X is not (stably) rational over
R if and only if X contains only one real plane.

Proof. From the equations we see that either X contains only one plane
Π4 or three planes Π3,Π4,Π5. Assume X contains only Π4. Then the
Galois group Γ switches Π1 ↔ Π2 and Π3 ↔ Π5. One computes, cf.
[CMTZ24, Proposition 7.7], that

H1(Γ,Pic(X̃C)) = Z/2,(4.6)

and thus X is not stably rational over R.
When X contains three planes, the real line passing through p3 and

p4 is disjoint from Π3, thus X is rational over R. □
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Corollary 4.6. Let X be given by (4.5). Then X is (stably) rational
if and only if b24 > 4a.

Remark 4.7. The quadric surface bundle structure π : X → P1 ob-
tained via projection from Π4 has been used, in [CTP24, Section 11.2],
to establish the nontriviality of cohomology in (4.6), via a computation
of the Brauer group and the identity

H1(Γ,Pic(X̃C)) = Br(X̃R)/Br(R).

5. Six singular points

6A1-singularities with no plane.

Proposition 5.1. Let X be a cubic without real singular points and
such that XC has 6A1-singularities in linearly general position. Then X
is (stably) rational over R if and only if X contains a normal rational
cubic scroll defined over R.

Proof. Recall from [CTZ24, Section 7] that the class group ofXC is gen-
erated by the hyperplane section H and two classes of normal rational
cubic scrolls S1 and S2, subject to the relation 2H = S1 + S2.
First we show that X contains a real normal rational cubic scroll if

and only if the classes S1 and S2 are Γ-invariant. Assume that S1 and
S2 are Γ-invariant, then a general section of the linear system |S1| is
such a cubic scroll. The other direction is easy to see.

When X does not contain a real cubic scroll, Γ switches S1 and S2,
and one can compute, cf. [CTZ24, Proposition 7.5], that

H1(Γ,Pic(X̃C)) = Z/2Z.

It follows that X is not stably rational over R.
When X contains a real normal rational cubic scroll. The linear

system |OX(2) − S| gives a rational map X 99K P2, whose resolution
gives X the structure of a P1-bundle over P2, see [CTZ24, Section 7].
Such a P1-bundle over R admits a section and is therefore rational. □

Remark 5.2. In [CTZ24, Proposition 7.1], it is shown that any invo-
lution ι ∈ Aut(XC) not fixing any singular points acts nontrivially on
Cl(XC), see also Example 2.3.

However, this does not hold for the Galois action. For example, let
X be the cubic given by

x1(x
2
3 − x2

4 − x2
5) + 5x2x3x4 − x5(x

2
1 + 4x2

2 − x2
3) = 0.
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Then XC has three pairs of conjugate A1-singular points in linearly
general position. But Γ acts trivially on Cl(XC). In particular, X
contains a real cubic scroll given by

{−4x2x3 − x2
3 + x1x4 + x1x5 = x1x3 + x2x4 − x3x4+

+ x2x5 + x3x5 = x2
1 + 4x2

2 − 3x2x3 − x2
3 + 2x1x5 = 0} ⊂ X.

Therefore X is rational. In this case, the Galois action does not fix any
singular points but acts trivially on Cl(XC) and satisfies (H1). This
does not happen in the equivariant setting.

Recall that there are also examples where the Galois action fails (H1)
and the corresponding cubic is not stably rational, see Example 2.3.

6A1-singularities with one plane. All such cubics are rational:

Proposition 5.3. Let X be a cubic such that XC has 6A1-singularities
and one plane. Then X is rational over R.

Proof. The unique plane is defined over R and contains four of the
A1-points, see [CTZ24, Section 7]. The line through the two other A1-
points is also defined over R and is disjoint from the plane. This implies
rationality of X over R. □

6A1-singularities with three planes.

Proposition 5.4. Let X be a cubic without real singular points and
such that XC has 6A1-singularities and three planes. Then up to iso-
morphism, one of the following holds:

• X contains three real planes, and is given by

x2x3x4 + ax3
1 + x2

1(a1x2 + a2x3 + a3x4) + x1(x
2
2 + x2

3 + x2
4 + x2

5) = 0

(5.1)

with a, a1, a2, a3 ∈ R.
• X contains only one real plane, and is given by

x2(x
2
3 + x2

4) + ax3
1 + x2

1(a1x2 + a2x3 + a3x4) + x1(x
2
2 − x4x5 + x2

5) = 0,

(5.2)

with a, a1, a2, a3 ∈ R.

Proof. One may assume that the three planes of XC are contained in
the hyperplane {x5 = 0}. If the planes are defined over R then we may
assume that they are given by

Π1 = {x1 = x2 = 0}, Π2 = {x1 = x3 = 0}, Π3 = {x1 = x4 = 0}
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and that the singular points of X are

p1 = [0 : 0 : 0 : 1 : i], p2 = [0 : 0 : 0 : 1 : −i], p3 = [0 : 1 : 0 : 0 : i],

p4 = [0 : 1 : 0 : 0 : −i], p5 = [0 : 0 : 1 : 0 : i], p6 = [0 : 0 : 1 : 0 : −i].

All cubic threefolds singular at p1, . . . , p6 are given by

x2x3x4 + ax3
1 + x2

1(a1x2 + a2x3 + a3x4 + a4x5)+

+ bx1(x
2
2 + x2

3 + x2
4 + x5

5) + x1(c1x2x3 + c2x2x4 + c3x3x4) = 0

with a, b, a1, a2, a3, a4, c1, c2, c3 ∈ R. Up to a change of variables,

a4 = c1 = c2 = c3 = 0 and b = 1.

We obtain (5.1).
If only one plane is defined over R, the three planes on XC can be

given by

Π1 = {x1 = x2 = 0},
Π′

2 = {x1 = x3 + ix4 = 0}, Π′
3 = {x1 = x3 − ix4 = 0},

and the singular points of XC are

p1 = [0 : 0 : 1 : i : 0], p3 = [0 : 1 : 0 : 0 : i], p5 = [0 : 0 : 1 : −i : 0],

p2 = [0 : 0 : 1 : i : i], p4 = [0 : 1 : 0 : 0 : −i], p6 = [0 : 0 : 1 : −i : −i].

Similarly as above, one can check that X is given by (5.2). □

Projecting from Π1, the projection map

π : X → P1, (x) 7→ (x1, x2),(5.3)

endows X with the structure of a quadric surface bundle.

Proposition 5.5. Let X be a cubic given by (5.1). Put

∆1(t1, t2, t3, x) := x4+ t1x
3+(a− 4)x2− (4t1+ t2t3)x+(−4a+ t22+ t23).

Then one of the following holds:

(1) When at least one of the following polynomials (in x2)

∆1(a1, a2, a3, x2), ∆1(a2, a1, a3, x2), ∆1(a3, a2, a1, x2)

has real roots, then X is rational.
(2) When none of the polynomials (in x2)

∆1(a1, a2, a3, x2), ∆1(a2, a1, a3, x2), ∆1(a3, a2, a1, x2)

has a real root, then X(R) is connected and contains no line
disjoint from any of the planes Πi, i = 1, 2, 3 in X.
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Proof. In the affine chart {x1 = 1}, the general fiber π−1(x2) is isomor-
phic to the quadric surface

{u2
1 + (1− x2

2

4
)u2

2 + u2
3 +

∆1(a1, a2, a3, x2)

x2
2 − 4

u2
4 = 0} ⊂ P3

u1,...,u4
.(5.4)

When ∆1(a1, a2, a3, x2), as a polynomial in x2, has a real root t, the
fiber (5.4) above x2 = t is a quadric cone (including the cases t = ±2),
which contains a line intersecting Π1 at one point. Thus, the line is
disjoint from Π2. It follows that X is rational. By symmetry, when
∆1(a2, a1, a3, x2) (respectively, ∆1(a3, a2, a1, x2)) has a real root, there
exists a line in X disjoint from Π2 (respectively, Π3), and X is rational.

When none of these three polynomials has a real root, the image of
π is connected but none of the fibers of π is a hyperboloid. Therefore,
X(R) is connected but contains no line disjoint from Π1, Π2 or Π3. □

Proposition 5.6. Let X be a cubic given by (5.2), and

∆2(x) :=
a22
4
x4 − (a+ a22 + a23)x

3 + (4a− a1)x
2 + (4a1 − 1)x+4 ∈ R[x].

Then X(R) is disconnected if and only if one of the following holds:

(1) ∆2 has 2 distinct real roots α1 and α2, and 0 < α1 < α2 < 4,
(2) ∆2 has 4 distinct real roots α1 < α2 < α3 < α4 and 0 < α1 <

α2 < 4,
(3) ∆2 has 4 distinct real roots α1 < α2 < α3 < α4 and α1 < 0 <

α3 < α4 < 4.

Proof. In the affine chart {x2 = 1}, when x1 ̸= 0, 4, the fiber π−1(x1)
is isomorphic to the quadric surface given by

S = {u2
1 + u2

2 + ru2
3 +

x2
1

4r
·∆2(x1)u

2
4 = 0} ⊂ P3

u1,...,u4
,

where

r = −x1(x1 − 4)

4
.

One can check that the fiber π−1(x1) is empty if and only if r > 0 and
∆2(x1) > 0. Since X has no real singular points and XC only contains
three planes, ∆2(x1) can only have simple roots. It follows that X(R)
is disconnected in the cases described in the statement.

□
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2A2 + 4A1 and 2A3 + 4A1-singularities.

Proposition 5.7. Let X ⊂ P4 be a cubic such that XC has singularities
of type

2A2 + 4A1, or 2A3 + 4A1.

Then X is rational over R.

Proof. Geometrically, the four A1-points lie on one plane and the line
passing through the other two singular points is disjoint from this plane,
see [CMTZ24, Section 9]. The plane and the line are defined over R;
thus, X is rational over R. □

6. Eight singular points

Proposition 6.1. Let X be a cubic without real singular points and
such that XC has 8A1-singularities. Then X is (stably) rational over R
if and only if it satisfies (H1) if and only if X contains three planes
over R.

Proof. We recall the geometry ofX, over C: it has five planes Π1, . . . ,Π5

and 8 singular points p1. . . . , p5 with the following inclusion relations:

Π1 ⊃ {p1, p2, p6, p8},
Π2 ⊃ {p1, p2, p5, p7},
Π3 ⊃ {p5, p6, p7, p8},
Π4 ⊃ {p3, p4, p5, p6},
Π5 ⊃ {p3, p4, p7, p8}.

Enumerating involutions ι ∈ S8 preserving the configuration of singu-
lar points and planes as above, we find that Γ acts on the eight singular
points via one of the following possibilities for ι:

(1) ι = (1, 2)(3, 4)(5, 6)(7, 8): the planes Π3,Π4,Π5 are defined over
R and the line through p1 and p2 is disjoint from Π4 (cf. [CTZ24,
Section 8]). It follows that X is rational over R.

(2) ι = (1, 2)(3, 4)(5, 7)(6, 8): the planes Π1,Π2,Π3 are defined over
R and the line through p3 and p4 is disjoint from Π1, thus X is
rational over R.

(3) ι = (1, 2)(3, 4)(5, 8)(6, 7): only Π3 is defined over R. One can
compute (cf. [CTZ24, Section 8]) that

H1(⟨ι⟩,Pic(X̃C)) = Z/2.
It follows that X is not stably rational over R.
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□

Remark 6.2. All three cases in the proof of Proposition 6.1 can be
indeed realized, e.g.,

(1) a1(x
2
1 + x2

3)x4 + x4x
2
5 + a2(x

2
2x5 − x2

3x5 + x2
4x5) + a3x3x4x5 = 0,

(2) a1(x
2
1 − x2

3)x4 + x4x
2
5 + a2(x

2
2x5 + x2

3x5 + x2
4x5) + a3x3x4x5 = 0,

(3) a1(x
2
1 + x2

3)x4 + x4x
2
5 + a2(x

2
2x5 + x2

3x5 + x2
4x5) + a3x3x4x5 = 0,

with general parameters a1, a2, a3 ∈ R.

7. Non-isolated Singularities

Let X be a real cubic threefold such that XC has non-isolated sin-
gularities. As before, we assume that Xsing(R) = ∅ and X(C) is not
a cone. It easily follows from [Yok02, Proposition 4.2] that Xsing is ei-
ther a pointless conic or a pointless form of the rational normal quartic
curve. We proceed to analyze these cases.

Xsing is a smooth conic. Over R, the normal form of such X is

c+ x1q1 + x2q2 + x3q3 + x4(x
2
1 + x2

2 + x2
3) = 0,(7.1)

where

c = a1x
3
4 + a2x4x

2
5 + a3x

2
4x5 + a4x

3
5,

q1 = a5x
2
4 + a6x4x5 + a7x

2
5,

q2 = a8x
2
4 + a9x4x5 + a10x

2
5,

q3 = a11x
2
4 + a12x4x5 + a13x

2
5,

with general parameters a1, . . . , a13 ∈ R. We have

Xsing = {x2
1 + x2

2 + x2
3 = x4 = x5 = 0} ⊂ P4.

Note that X contains the plane Π = {x4 = x5 = 0}. As before,
projection from Π yields a quadric surface bundle

π : X → P1
x4,x5

.

Proposition 7.1. Let X be a cubic given by (7.1). Then X(R) is
disconnected if and only if ∆(x) has four distinct real roots, where
∆(x) is the quartic polynomial given by

− ((a7 + a10)
2 + a213)x

4 + (4a4 − 2(a6 + a9)(a7 + a10)− 2a12a13)x
3+

+ (4a2 − 2(a5 + a8)(a7 + a10)− (a6 + a9)
2 − 2a11a13 − a212)x

2+

+ (4a3 − 2(a5 + a8)(a6 + a9)− 2a11a12)x+

+ 4a1 − (a5 + a8)
2 − a211



REAL CUBIC THREEFOLDS 25

Proof. Set x4 = 1. The fiber π−1(x5) is isomorphic to the quadric
surface given by

{u2
1 + u2

2 + u2
3 +∆(x5)u

2
4 = 0} ⊂ P3

u1,u2,u3,u4
.

It is clear that its real locus is empty if and only if ∆(x5) > 0. It
follows that X(R) is disconnected if and only if ∆ ∈ R[x] as a quartic
polynomial has four distinct real roots. □

Remark 7.2. When X(R) is connected, the rationality of X is open,
see [CTP24]. We provide examples with X(R)

• disconnected: a1 = a2 = a3 = 100, a4 = 5, a5 = 20, a6 = a7 =
a8 = . . . = a13 = 1.

• connected: a4 = −1, a2 = 1, a1 = a3 = a5 = a6 = a7 = a8 =
. . . = a13 = 0.

The connected example also appeared in [CTP24, Section 11.3].

Chordal cubic. A cubic XC singular along a rational normal quartic
curve C is unique: it is the secant variety of C, also known as the
chordal cubic, see, e.g., [All03] or [Yok02]. Over R, and under the
assumption C(R) = ∅, there is a unique such cubic X, given by

{x2
1x2 + x1x

2
2 + x2x

2
3 + x1x

2
4 − 2x3x4x5 − (x1 + x2)x

2
5 = 0}.(7.2)

Proposition 7.3. The chordal cubic X given by (7.2) is rational.

Proof. Let C = Xsing. The linear system |OX(2)−C| has dimension 5
and gives a contraction

φ : X 99K S,

where S = P2 ↪→ P5 is the Veronese surface. Projection from a general
plane Π in P4 gives a rational map

π : X 99K P1.

The product

π × φ : X 99K P1 × P2

is a birational map. It follows that X is rational over R. □
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