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Abstract. We study unirationality of actions of finite groups on
Fano threefolds.

1. Introduction

In this paper, we consider generically free regular actions of finite
groups G on smooth projective varieties X over an algebraically closed
field k of characteristic zero. Simplest such actions arise from linear rep-
resentations, i.e., as projectivizations P(V ) of linear representations V of
G. We are interested in birational properties of G-actions, e.g.,

• (L) linearizability: equivariant birationality to a linear action,
• (SL) stable linearizability: linearizability of X × Pm, with trivial
action on the second factor.

These notions should be viewed as equivariant analogs of rationality and
stable rationality in geometry over nonclosed fields: there are many simi-
larities but also striking differences between these theories, see, e.g., [27],
[28] for an introduction to this circle of problems.

Here, we explore an equivariant version of unirationality:

• (U) G-unirationality: existence of a dominant equivariant ratio-
nal map

P(V ) 99K X,

where V is a G-representation.

Clearly,

(L) ⇒ (SL) ⇒ (U).

In the definition of (U), one can replace P(V ) by V , a G-representation,
i.e., (U) is equivalent to very versality of the G-action, in the terminology
of, e.g., [18].

A necessary condition for G-unirationality is existence of fixed points
upon restriction to abelian subgroups:
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• Condition (A): for every abelian subgroup H ⊆ G one has

XH ̸= ∅.

This should be viewed as analogous to the existence of rational points,
in the framework of birational geometry over nonclosed fields. Note that
there do exist linearizable G-actions without G-fixed points, moreover,
the existence of G-fixed points is not an equivariantly birational property,
for nonabelian G. Thus, some standard unirationality constructions in
geometry over nonclosed fields fail to apply in the equivariant setting.

Duncan proved that Condition (A) is also sufficient for del Pezzo sur-
faces of degree ≥ 3, with generically free actions [17, Theorem 1.4]. The
cases of del Pezzo surfaces of degree 2 and 1 remain open.

We turn to smooth Fano threefolds. These are classified by

• r ∈ {1, . . . , 10} – rank of the Picard group,
• i ∈ {1, 2, 3, 4} – Fano index,
• d = (−KX)

3/i3 – degree.

Their rationality over algebraically closed fields is almost settled. There
are still outstanding open problems concerning stable rationality and uni-
rationality, e.g., stable rationality of cubic threefolds and unirationality
of general quartic threefolds. Rationality properties of geometrically ra-
tional Fano threefolds have received a lot of attention, see [20], [21], [31],
[30]. There is also a wealth of results concerning (stable) linearizability
of group actions on (possibly singular) Fano threefolds, see, e.g., [33],
[11], [10], [8], [23], [5], [13].

In this paper, we focus on equivariant unirationality of Fano threefolds
of index ≥ 2; these should be viewed as 3-dimensional analogs of del
Pezzo surfaces. As in the work of Duncan on del Pezzo surfaces [17],
Fano threefolds of small degree are currently out of reach – we do not
even know the unirationality of any smooth Fano threefold of index 2
and degree 1 (all other Fano threefolds of index ≥ 2 are known to be
unirational, over algebraically closed fields). Our principal results are:

• A generically freeG-action on a smooth quadric threefold is stably
linearizable if and only if it satisfies Condition (A), Theorem 4.1.

• A generically free G-action on a smooth cubic threefold satis-
fying Condition (A) is G-unirational, with the possible excep-
tion of G = C9 ⋊ C3, acting on the Fermat cubic threefold, and
C5 ⋊ C11,PSL2(F11), acting on the Klein cubic threefold, and a
1-parameter family of cubics with an A5-action, Theorem 5.1.

• A generically free action on a cubic threefold with isolated singu-
larities, satisfying Condition (A), is G-unirational, Theorem 6.1.
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This class contains cubic threefolds with cohomological obstruc-
tions to stable linearizability, see [10], [8].

• A generically free G-action on a smooth complete intersection of
two quadrics X ⊂ P5 is G-unirational if and only if it satisfies
Condition (A), which turns out to be equivalent to XG ̸= ∅,
Theorem 7.1.

• A generically free G-action on the (unique) smooth del Pezzo
threefold V5 of degree 5 is linearizable except for G = A5, which
is not linearizable, by [9], but stably linearizable, by [6, Example
7], see Remark 7.2.

Here is the roadmap of the paper: in Section 2 we recall notions of
G-birational geometry, with a focus on G-unirationality. In Section 3
we present several general unirationality constructions, applicable in the
equivariant context. In Section 4 we specialize to quadric threefolds.
Then we proceed to treat smooth cubics in Section 5, singular cubics in
Section 6, and intersections of two quadrics in Section 7.
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2. Generalities

Throughout, we work over an algebraically closed field k of characteris-
tic zero; all varieties are assumed to be irreducible over k. A G-variety is
a projective variety with a generically free regular G-action; we will also
consider situations when the G-action is not generically free. The G-fixed
point locus of a G-variety X will be denoted by XG. For smooth projec-
tive G-varieties X and abelian subgroups H ⊆ G, existence of H-fixed
points is a birational property; this is not the case for nonabelian groups!
Note that cyclic actions on rationally connected G-varieties always have
fixed points, but this need not be the case for actions of abelian groups,
e.g., the C2

2 -action on P1.
If X̃ 99K X is a dominant morphism of G-varieties and X̃ has G-fixed

points, then so does X. Since linear actions of abelian groups always
have fixed points, a necessary condition for G-unirationality of an action
of a finite group G on a smooth projective variety X is Condition (A):
existence of fixed points upon restriction to every abelian subgroup.
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Linearizability and stable linearizability of generically free actions of
finite groups on rational surfaces and rational Fano threefolds have been
considered in, e.g., [23], [6], [11], [8], [24]. The related notion of G-
unirationality, or, equivalently very versality, plays an important role in
the study of essential dimension, see, e.g., [18], [34]. However, only few
concrete examples ofG-unirational varieties failing (stable) linearizability
are known, see [17] for a systematic treatment of del Pezzo surfaces of
degree ≥ 3.
The bridge between equivariant geometry and geometry over nonclosed

fields is provided via torsors: For a field extension K/k and a G-torsor
T over K, let TX be the T -twist of X over K. A key result is:

Theorem 2.1. [18, Theorem 1.1] Let X be a G-variety over k. Then

• the G-action on X is stably linearizable if and only if for every
field extension K/k and every G-torsor T over K, the twist TX
is stably rational over K,

• the G-action on X is unirational if and only if every twist TX as
above is unirational over K.

We will apply this in subsequent sections to quadric and cubic hyper-
surfaces.

A related notion that plays a role in equivariant geometry is the Amit-
sur group Am(X,G), defined in [3, Section 6] as the image of G-invariant
divisor classes

Pic(X)G
δ2−→ H2(G, k×),

where δ2 is the functorial homomorphism arising from the Leray spectral
sequence, see, e.g., [26, Section 3]. By [3, Theorem 6.1], this is a G-
birational invariant, which vanishes for linear actions and as soon as
XG ̸= ∅. The vanishing of Am(X,G) implies that every G-invariant
divisor class in Pic(X) is represented by a G-linearized line bundle on X.
All possibilities for Am(X,G) for G-surfaces X have been determined

in [3, Proposition 6.7]. In particular, this group is trivial for del Pezzo
surfaces of degree ≤ 6.

Lemma 2.2. Let X be a G-variety with nontrivial Amitsur invariant.
Then X is not G-unirational.

Proof. Replacing P(V ) by a G-variety in the same equivariant birational
class, we are reduced to the assertion, that an equivariant morphism
Y → X of smooth projective G-varieties gives rise to an inclusion

Am(X,G) ⊆ Am(Y,G).
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This is clear from the functoriality of the map δ2 in the basic exact
sequence

0 → Hom(G, k×) → Pic(X,G) → Pic(X)G
δ2−→ H2(G, k×),

where Pic(X,G) is the group of isomorphism classes of G-linearized line
bundles on X, see, e.g., [29, Section 3]. □

Example 2.3. Let X = P1 with the action of the Klein four group
Ḡ = C2

2 ; it is fixed point free. The Amitsur invariant Am(X, Ḡ) = Z/2
is nontrivial, and the Ḡ-action is not stably linearizable. However, X
admits a regular action of the dihedral group G = D4 (of order 8),
with generic stabilizer C2. As a variety with G-action, X is clearly G-
unirational: we have a dominant G-equivariant map V 99K X, where
V is an irreducible 2-dimensional representation of G. Of course, every
abelian subgroup of G has fixed points on X.

Recall the definition of Bogomolov multiplier:

B0(G) := Ker
(
H2(G, k×) → ⊕AH2(A, k×)

)
,

where A runs over all abelian subgroups of G. In fact, it suffices to
consider bicyclic subgroups [4], and to treat Sylow subgroups, one prime
at a time. There is an extensive literature on this invariant, see, e.g.,
[29, Section 3]. In Example 2.3, we have B0(G) = 0. More generally,
Bogomolov multiplier vanishes when

• G is a p-group of order |G| ≤ p4,
• G is an extension of a cyclic group by an abelian group [4, Lemma
4.9], [29, Lemma 3.1],

• G is an split extension of a bicyclic group by an abelian group
[29, Lemma 3.2].

For a smooth projective G-variety X, Condition (A) implies that

Am(X,G) ⊆ B0(G).

Lemma 2.4. Let G be a finite group with B0(G) = 0. Assume that G
acts regularly on Pn. This G-action is unirational if and only if it satisfies
Condition (A).

Proof. Under our assumption, one has Am(Pn, G) ⊆ B0(G) = 0. □

Here we do not assume that theG-action on Pn is generically free. Note
that for G with B0(G) ̸= 0, there exist regular generically free actions on
projective spaces, which satisfy Condition (A) but are not linear, and
not G-unirational.



6 I. CHELTSOV, YU. TSCHINKEL, AND ZH. ZHANG

Lemma 2.5. Let

X := PB(E)
be the projectivization of a vector bundle E → B, where B is a smooth
projective variety. Assume that X carries a generically free regular G-
action such that the canonical projection

π : X → B

is G-equivariant. Assume that

(1) H1(G,Pic(B)) = 0,
(2) X satisfies Condition (A), and
(3) B0(G) = 0.

Then the G-action lifts to E.

Proof. Consider the sequence of G-modules

0 → Pic(B)
π∗
−→ Pic(X) → Z → 1.

Note that we do not assume that the G-action on B is generically free.
From the long exact sequence

0 → Pic(B)G
π∗
−→ Pic(X)G → Z → H1(G,Pic(B))

and assumption (1), we obtain that there is a G-invariant class in Pic(X)
surjecting onto the class of the relative O(1). By assumption (2), ev-
ery line bundle on X admits a linearization upon restriction to abelian
subgroups, i.e., Am(X,G) ⊆ B0(G). By assumption (3), that latter
group is trivial, which implies that every invariant line bundle on X is
G-linearizable, in particular, the G-action lifts to E . □

3. Unirationality constructions

General results linkingG-unirationality of actions on quadric and cubic
hypersurfaces to geometry over nonclosed fields are in [18, Section 10].
We complement these considerations by providing explicit equivariant
unirationality constructions in many cases; this allows us to essentially
settle unirationality of G-actions on quadric and cubic threefolds, in sub-
sequent sections.

We start with obvious observations:

• G-unirationality is compatible with taking products;
• existence of a dominant G-equivariant rational map X 99K Y
from a G-unirational X implies G-unirationality of Y .

The following is an analog of a standard result in the theory of quadrics
over nonclosed fields, see, e.g., [19, Chapter 4].
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Proposition 3.1. Let G be a finite group and V a representation of G
giving rise to a generically free G-action on a smooth quadric hypersur-
face X ⊂ P(V ), of dimension ≥ 2. Assume that there is a G-invariant
irreducible subvariety S ⊂ X, which is G-unirational. Then X is G-
unirational.

Here, we allow S to have a nontrivial generic stabilizer, i.e., we re-
quire that there is a dominant rational map P(W ) 99K S, for some G-
representation W .

Proof. By assumption, there is a dominant G-equivariant rational map
P(W ) 99K S. Consider the rational map

S × P(V ) 99K X,

sending a pair of points (s, p) ∈ S×P(V ) to the second intersection point
of X with the line l(s, p) through s and p. This is clearly dominant and
G-equivariant, ensuring the G-unirationality of X. □

We continue with general G-unirationality constructions for cubic hy-
persurfaces of dimensions ≥ 2. Over nonclosed fields K of characteristic
zero unirationality of smooth cubic hypersurfaces with X(K) ̸= ∅ is clas-
sical; generalizations to singular cubic hypersurfaces that are not cones
can be found in [25].

Proposition 3.2. Let V be a representation of a finite group G. Let
X ⊂ P(V ) be a G-invariant irreducible cubic hypersurface which is not
a cone. Assume that the G-action on X is generically free and that
XG ̸= ∅. Then X is G-unirational.

Proof. This is essentially [18, Corollary 10.6], extended to singular cubic
hypersurfaces. In particular, if G fixes a singular point, then the G-action
is linearizable. If G fixes a smooth point, then the same argument in [18,
Corollary 10.6] applies. □

Proposition 3.3. Let V be a representation of a finite group G. Let X ⊂
P(V ) be a G-invariant cubic hypersurface which is not a cone. Assume
that the G-action on X is generically free and that G has an index-2
subgroup H such that X is H-unirational. Then X is G-unirational.

Proof. This is essentially [17, Theorem 3.2], see also [17, Remark 3.3]: G-
unirationality is equivalent to K-unirationality of all twists of X over K
(viaG-torsors), and for cubic hypersurfaces, unirationality over quadratic
extensions of K is equivalent to unirationality over K. □

Corollary 3.4. Let V be a representation of a finite group G. Let X ⊂
P(V ) be a G-invariant cubic hypersurface which is not a cone. Assume
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that the G-action on X is generically free and that the set of singular
points of X contains a G-orbit of length one or two. Then the G-action
on X is G-unirational.

Proof. In the first case, projection from the G-fixed singular point (of
multiplicity two) shows that the action is linearizable. In the second
case, let p1, p2 be the singular points, switched by G. Then there exists
an index-2 (normal) subgroup H ⊂ G fixing p1 and p2, in particular, X
is H-linearizable. Applying Proposition 3.3, X is G-unirational. □

Proposition 3.5. Let V be a faithful n-dimensional representation of
a finite group G with n ≥ 5. Let X ⊂ P(V ) be a G-invariant cubic
hypersurface which is not a cone. Assume that the G-action on X is
generically free and that there is a G-invariant irreducible hyperplane
section S ⊂ X, which is G-unirational. Then X is G-unirational.

Here we do not require that the G-action on S is generically free.

Proof. Let T → X◦ be the tangent bundle over the smooth locus X◦ of
X, and T |S◦ the restriction of T to the smooth locus of S. Then T |S◦

is a rank-(n − 2) vector bundle and the G-action lifts to T |S◦ . By [14,
Theorem 4.2] and [15, Theorem 2.5], we know that the intersection of the
tangent space at the generic point of S◦ with X is not a cone. Thus, each
point in the fiber above a general point p ∈ S◦ canonically corresponds
to a line in P(V ) that is tangent to X at p with multiplicity 2, and thus
intersects X at a unique point q ̸= p. Sending each point in T |S◦ to the
corresponding point q ∈ X, we obtain a G-equivariant rational map

φ : T |S◦ 99K X. (3.1)

We show that φ is dominant. Assume that

X = {f3(x1, . . . , xn) = 0} and S = X ∩ {x1 = 0}.

Given a general point q = [q1 : · · · : qn] ∈ X, we can find general
p1, . . . , pn−1 ∈ k such that

n∑
i=1

∂f3
∂xi

(0, p1, . . . , pn−1)qi = f3(0, p1, . . . , pn−1) = 0.

Then the line passing through q and p = [0 : p1 : . . . : pn−1] is tangent to
X at p. It follows that (3.1) is dominant.

It remains to show that T |S◦ is G-unirational. When S has no generic
stabilizer, the no-name lemma implies that T |S◦ is G-equivariantly bi-
rational to S × An−2 with trivial action on An−2. It follows that T |S◦
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is G-unirational as S is. When S has a generic stabilizer, we apply the
no-name lemma to the vector bundle

T |S◦ × V → S◦ × V,

which yields a G-equivariant birationality

T |S◦ × V ∼G S × V × An−2,

with trivial action on An−2. By our assumptions, T |S◦×V isG-unirational,
implying the G-unirationality of T |S◦ . □

Remark 3.6. This argument generalizes to other positive-dimensional
G-invariant subvarieties S, under appropriate geometric assumptions, see
Section 6.

4. Quadrics

Stable linearizability of certain G-quadric threefolds X ⊂ P4 has been
considered in [24, Sections 5 and 6]: all but one subgroup G of the Weyl
group W (D5), acting via signed permutations on the diagonal quadric

5∑
i=1

x2
i = 0,

are stably linearizable, provided Condition (A) is satisfied. The only
open case was G = D4, acting on

P(χ1 ⊕ χ2 ⊕ χ3 ⊕ V2),

where V2 is the unique faithful 2-dimensional representation, and χ1, χ2, χ3

are distinct characters of G. There are also many actions that do not
arise from subgroups of W (D5), e.g., an action of D8 on the quadric

x2
1 + x2x3 + x4x5 = 0,

arising from an action on

P(1⊕ V2 ⊕ V ′
2),

where V2 is a faithful representation and V ′
2 a nonfaithful 2-dimensional

representation, see [24, Remark 6.6]. The following theorem covers these
and other actions, settling the stable linearizability problem for actions
of finite groups on smooth quadric threefolds. The key observation is
that, when Condition (A) is satisfied, there always exists a G-invariant
unirational quadric surface or conic in X and Proposition 3.1 applies.

Theorem 4.1. Let X ⊂ P4 be a smooth quadric threefold, with a generi-
cally free action of a finite group G. Then the G-action is stably lineariz-
able if and only if it satisfies Condition (A).
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The rest of this section is devoted to the proof of this theorem.
By Theorem 2.1, stable linearizability of the G-action is equivalent

to stable rationality of every twist TX over every field extension K/k.
For quadrics, (stable) rationality and unirationality are equivalent over
any field. Again by Theorem 2.1, this is equivalent to G-unirationality
of the action. By [18, Theorem 10.2], G-unirationality is equivalent to
G2-unirationality, where G2 is the 2-Sylow subgroup of G. We may also
assume that G is nonabelian: abelian group actions on X satisfying
Condition (A) are linearizable via the projection from a fixed point.
Thus, to show Theorem 4.1, we now assume that G is a nonabelian

2-group and X ⊂ P(V ), where V is a faithful representation of G. Since
G is a 2-group, we have the following cases:

(1) V = χ1⊕χ2⊕χ3⊕V2, where V2 is an irreducible G-representation,
and χj are characters of G for j = 1, 2, 3,

(2) V = χ1⊕V2⊕V ′
2 , where V2 and V ′

2 are irreducibleG-representations,
(3) V = χ1 ⊕ V4, where V4 is an irreducible representation of G.

We proceed with a case-by-case analysis.

Case (1): Up to isomorphism, we may assume that X is given by

X = {x2
1 + x2

2 + x2
3 + x4x5 = 0} ⊂ P4,

with G acting via characters on x1, x2, x3, and via the irreducible rep-
resentation V2 on x4, x5. We claim that Condition (A) for X implies
Condition (A) for the G-action on the conic C ⊂ P2 = P(χ1 ⊕ χ2 ⊕ χ3),
given by x4 = x5 = 0. Note that the G-action on this P2 has a nontrivial
generic stabilizer, since G is nonabelian, and the effective action on the
conic C may not satisfy Condition (A).

Since V2 is irreducible, there exist elements of the form

diag(±1,±1,±1, a, a−1) ∈ G,

where a is a 2-power root of unity of order ord(a) ≥ 4. Then

ε1 = diag(1, 1, 1,−1,−1) ∈ G.

Note that
X⟨ε1⟩ = C ∪ p1 ∪ p2,

where
p1 = [0 : 0 : 0 : 1 : 0], p2 = [0 : 0 : 0 : 0 : 1].

Let A ⊂ G be an abelian subgroup containing ε1, fixing points on X
but not on C. Then A fixes p1, p2, and acts via C2

2 on C. It follows that
A contains

ε2 = diag(−1, 1, 1, a1, a
−1
1 ), ε3 = diag(1,−1, 1, b1, b

−1
1 ),
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for some 2-power roots of unity a1, b1. Depending on a1 and b1, the
elements ε2 and ε3 generate at least one of the following elements

diag(−1, 1, 1,−1,−1), diag(1,−1, 1,−1,−1), diag(1, 1,−1,−1,−1).

Without loss of generality, assume that A contains

ε4 = diag(−1, 1, 1,−1,−1).

By the irreducibility of V2, G also contains an element switching p1 and
p2. Up to multiplying by ε2 and ε3, we may assume that G contains

σ : (x1, . . . , x5) 7→ (x1,−x2, x3, a2x5, a
−1
2 x4),

for some a2. The subgroup

⟨ε1, ε4, σ⟩ ≃ C3
2

does not fix points on X.
Let A ⊂ G be an abelian subgroup not containing ε1, fixing points on

X but not on C. Then ⟨A, ε1⟩ is an abelian group whose fixed locus is
{p1, p2} or empty. In the first case, we repeat the argument above. We
conclude that Condition (A) for the G-action on X implies Condition
(A) for the (not generically free) G-action on C.
Next, we observe that G preserves the set {p1, p2}, which yields an

exact sequence

0 → N → G → C2 → 0,

where N is the maximal subgroup fixing p1 and p2, acting diagonally on
x1, . . . , x5. Thus N is abelian. By [29, Lemma 3.1], B0(G) = 0, since G is
an extension of a cyclic group by an abelian group. By Lemma 2.4, C is
G-unirational since Condition (A) is satisfied on C. By Proposition 3.1,
X is G-unirational.

Case (2): We may assume that G acts on

X = {x2
1 + x2x3 + x4x5 = 0},

via χ1 on x1, via V2 on x2, x3, and via V ′
2 on x4, x5. By the irreducibility

of V2 and V ′
2 , G acts on P(V2) and P(V ′

2) via dihedral groups. Let

p1 = [0 : 1 : 0 : 0 : 0], p2 = [0 : 0 : 1 : 0 : 0],

p3 = [0 : 0 : 0 : 1 : 0], p4 = [0 : 0 : 0 : 0 : 1].

Since G leaves invariant the sets {p1, p2}, and {p3, p4} respectively, there
is an exact sequence

0 → N → G → Q → 0, (4.1)
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where Q = C2 or C
2
2 , depending on the induced action on {p1, p2, p3, p4},

and N ⊂ G is the maximal subgroup fixing these points; N consists of
elements

ε1 = diag(1, t1, t
−1
1 , t2, t

−1
2 ), t1, t2 are 2-power roots of unity. (4.2)

The (nontrivial) center of G acts via scalars on V2, V
′
2 , i.e., it must contain

one of the following

ε2 = diag(1,−1,−1, 1, 1), ε3 = diag(1, 1, 1,−1,−1), ε2ε3.

If Q = C2
2 = ⟨(1, 2), (3, 4)⟩, we may assume that G also contains

m1 : (x1, . . . , x5) 7→ (x1, a1x3, a
−1
1 x2, a2x4, a

−1
2 x5),

m2 : (x1, . . . , x5) 7→ (x1, b1x2, b
−1
1 x3, b2x5, b

−1
2 x4),

where m1 is a lift of (1, 2) and m2 is a lift of (3, 4). After a change of
variables, we have a1 = b2 = 1, and a2 and b1 are 2-power roots of unity:

m2
1 = diag(1, 1, 1, a22, 1/a

2
2), m2

2 = diag(1, b21, 1/b
2
1, 1, 1).

If a22 ̸= 1 and b21 ̸= 1, then G contains ε2 and ε3. The abelian group

⟨ε2, ε3,m1m2⟩ ≃ C3
2 (4.3)

does not fix points on X. If a22 = 1 and b21 ̸= 1, then ε2 ∈ G, and
N contains an element ε1 as in (4.2) with t2 ̸= ±1 since otherwise the
representation on x4, x5 is reducible. If ord(b1) ≥ ord(t1), or ord(t2) ≥
ord(t1), then ε3 is generated by m2

2 and ε1, and G contains the C3
2 from

(4.3) with no fixed points. If ord(t1) > ord(b1), ord(t2), one can find
r1, r2, r3 ∈ Z such that

mr1
1 εr21 : (x1, . . . , x5) 7→ (x1, c1x3, c

−1
1 x2,−x4,−x5),

m2ε
r3
1 : (x1, . . . , x5) 7→ (x1, x2, x3, c2x5, c

−1
2 x4)

for some c1, c2. Then

⟨mr1
1 εr21 ,m2ε

r3
1 , ε2⟩ ≃ C3

2

does not fix points on X. By symmetry, the same applies when b21 =
1, a22 ̸= 1.

We are reduced to the case a22 = b21 = 1, with ⟨m1,m2⟩ ≃ C2
2 . By the

irreducibility of V2, N contains an ε1 as in (4.2) of order at least 4. We
repeat the argument above to find an abelian group failing Condition
(A), after multiplying m1 and m2 by ε1.

Thus, if the G-action on X satisfies Condition (A), we have

Q = C2 = ⟨(1, 2)(3, 4)⟩
and G contains a lift of (1, 2)(3, 4) of the form

m3 : (x1, . . . , x5) 7→ (x1, d1x3, d
−1
1 x2, d2x5, d

−1
2 x4)



EQUIVARIANT UNIRATIONALITY 13

for some d1, d2. We discuss cases based on the center of G:

• If ε2, ε3 ∈ G, then

⟨ε2, ε3,m3⟩ ≃ C3
2

has no fixed points on X.
• If ε2ε3 ∈ G, then every abelian subgroup of G fixes a point on the
quadric S = X ∩ {x1 = 0}. Otherwise, we can find an abelian
group without fixed points by adjoining ε2ε3.

• If ε2 ∈ G and ε3 ̸∈ G, then every abelian subgroup A ⊂ G fixes a
point on C = X ∩ {x2 = x3 = 0}. Otherwise, A′ = ⟨A, ε2⟩ fixes
{p1, p2}, and does not surject onto Q, which implies that it also
fixes p3, p4 ∈ C, contradiction.

• If ε3 ∈ G and ε2 ̸∈ G, the same argument shows that every abelian
subgroup of G fixes a point on C = X ∩ {x4 = x5 = 0}.

Note that we have B0(G) = 0, since G is an extension of C2 by an
abelian group. In the last two cases, the corresponding conic is G-
unirational by Lemma 2.4, and X is G-unirational by Proposition 3.1.
In the second case, the G-action on the quadric S = P1 × P1 does not
switch the two rulings. By Lemma 2.4, we can lift the G-action on each
P1 factor to A2, i.e., the G-action on S to A2 × A2 = A4. It follows that
S is G-unirational. By Proposition 3.1, X is also G-unirational.

Case (3): We show that Condition (A) is never satisfied. Since V4

is irreducible, there are no fixed points in P(V4), and S := P(V4) ∩X is
smooth. We may assume that

X = {x2
1 + x2x5 − x3x4 = 0} ⊂ P4 = P(1⊕ V4),

with G acting trivially on x1, and via V4 on x2, x3, x4, x5. Since V4 is
faithful and G preserves X, the center of G is C2, generated by

ε1 = diag(1,−1,−1,−1,−1).

Finite 2-subgroups of Aut(S) = Aut(P1 × P1) are subgroups of Dn ≀ C2,
for n some power of 2. This yields 4 distinguished points

p1 = [0 : 1 : 0 : 0 : 0], p2 = [0 : 0 : 1 : 0 : 0],

p3 = [0 : 0 : 0 : 1 : 0], p4 = [0 : 0 : 0 : 0 : 1],

and an exact sequence

0 → N → G → Q → 0,

where N fixes each pi. Since V4 is irreducible, the image Q ⊂ S4, acting
via permutations on {p1, p2, p3, p4}, can be C2

2 , C4, or D4. The subgroup
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N is generated by elements of the form

diag(1, t2, t1, t
−1
1 , t−1

2 ), t1, t2 are 2-power roots of unity.

We proceed to analyze each case.

• Q = C2
2 , with lifts of (1, 2)(3, 4) and (1, 3)(2, 4):

m1 : (x1, . . . , x5) 7→ (x1, a2x3, a1x2,−a−1
1 x5,−a−1

2 x4), (4.4)

m2 : (x1, . . . , x5) 7→ (x1, b2x4, b1x5,−b−1
1 x2,−b−1

2 x3),

for some a1, a2, b1, b2. Put s1 = a1a2, s2 = b2/b1 so that

m2
1 = diag(1, s1, s1, 1/s1, 1/s1),

m2
2 = diag(1,−s2,−1/s2,−s2,−1/s2).

Since G is a 2-group, s1 and s2 are 2-power roots of unity. When the
orders ord(s1), ord(s2) ≥ 4, we can find integers r1, r2 such that

sr22 = ζ4, sr11 = ζ34 .

Setting

ε3 := εr21 m2r1
1 m2r2

2 = diag(1, 1,−1,−1, 1),

we have S⟨ε1,ε3⟩ = {p1, . . . , p4}. The abelian group

⟨ε3,m1m2, ε1⟩ ≃ C3
2 (4.5)

has no fixed points on X. Thus, s1 or s2 equals ±1. By symmetry, we
may assume that s2 = ±1. Then the line

l := {x1 = x2 + x3

√
a2/a1 = x4 ± x5

√
a2/a1 = 0} ⊂ P(V )

is ⟨m1,m2⟩-invariant. By the irreducibility of V4, the kernel N contains
an element ε2 not leaving l invariant. In particular, ε2 takes the form

ε2 = diag(1, t2, t1, t
−1
1 , t−1

2 ) ̸= ε1, (4.6)

for some 2-power roots of unity t1, t2 such that t1 ̸= t2. If ord(t2/t1) ≥ 4,
we repeat the argument above, replacing m1 by ε2m1 to find a C3

2 with
no fixed points on X. Thus we are reduced to t1 = −t2.
Similarly, if s1 = ±1, we are reduced to t1 = −1/t2. In particular, for

s1, s2 ∈ {±1}, we are reduced to t1, t2 ∈ {±1}. In this case, G contains
ε3 and a C3

2 with no fixed points as in (4.5).
We consider the case when s1 ̸= ±1. As is discussed, we may assume

t1 = −t2. If ord(t1) ≤ ord(s1), then ε3 ∈ ⟨ε2,m2
1⟩ ⊂ G, and G contains a

C3
2 with no fixed points. In the opposite case, there is a d1 ∈ Z such that

t2d11 = (−1)d1/s1.
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Setting d2 = (3− s2)/2, we find that

⟨m1ε
d1
2 ,m2ε

d2
2 , ε1⟩ ≃ C3

2

has no fixed points on X.

• Q = D4, with G containing m1,m2 as in (4.4). If G contains

ε3 = diag(1, 1,−1,−1, 1),

there is a C3
2 with no fixed points on X. To show this, we are reduced

to the case when s1 = ±1 or s2 = ±1, as above. Consider the lift of
(1, 3, 4, 2) ∈ S4:

m3 : (x1, . . . , x5) 7→ (x1, c2x4, c1x2,−c−1
1 x5,−c−1

2 x3),

for some c1, c2. Observe that

(m2m3)
2 = diag(1, c22/b

2
1, 1, 1, b

2
1/c

2
2), (4.7)

(m1m3)
2 = diag(1, 1, a22c

2
1, 1/(a

2
2c

2
1), 1).

We may assume that c1 = ±1/a2 and c2 = ±b1, otherwise ε3 can be
generated by elements in (4.7). Assume c1 = 1/a2 and c2 = b1 (the other
cases are similar). If s1 ̸= −s2, ε3 is some power of m1m2m

2
3. When

s1 = −s2 = ±1, we find an ⟨m1,m2,m3⟩-invariant line:

l = {x1 = x2 +
b1
a1

x5 = x3 ∓ b1a1x4 = 0} ⊂ V4.

Thus N contains an ε2 as in (4.6) which does not leave l invariant. This
implies that t21, t

2
2 ̸= 1. As above, when t1 ̸= ±t2 or t1t2 ̸= ±1, we have

ε3 ∈ G. When t1 = ±t2 and t1t2 = ±1, we know t21 = t22 = −1. Then
ε3 = (m1m3ε2)

2 ∈ G.

• Q = C4, with G containing a lift m3 of (1, 3, 4, 2) ∈ S4 as in (4.7).
Once we have ε3 ∈ G, the abelian group

⟨ε1, ε3,m2
3⟩ ≃ C3

2

has no fixed points on X. If follows from the irreducibility of V4 that
N contains an element ε2 as in (4.6). When ord(t1) ̸= ord(t2), we know
that ε3 is a power of ε2. When t21 = t22 = 1, ε2 = ε3. We are reduced to

t1 = ζ2d1+1
2n , t2 = ζ2d2+1

2n , for some n ≥ 2, d1, d2 ∈ Z.
We have

ε2m3ε
−1
2 m−1

3 = diag(1, t2/t1, t1t2, 1/(t1t2), t1/t2).

Observe that ord(t2/t1) ̸= ord(t1t2). Indeed,

t2/t1 = ζ
2(d2−d1)
2n , t1t2 = ζ

2(d1+d2+1)
2n ,



16 I. CHELTSOV, YU. TSCHINKEL, AND ZH. ZHANG

and d2−d1 has a different parity from d1+d2+1. Thus, either ε3 or ε1ε3
is a power of ε2m3ε

−1
2 m−1

3 , and thus is in G.

This completes the proof of Theorem 4.1.

5. G-unirationality of smooth cubic threefolds

In this section, we show:

Theorem 5.1. Let X ⊂ P4 be a smooth cubic threefold with a generically
free regular action of a finite group G. Assume that the action satisfies
Condition (A). Then X is G-unirational, with the possible exception of
the following actions:

• G = C9 ⋊ C3, and X is the Fermat cubic threefold.
• G = PSL2(F11), or G = C11⋊C5 ⊂ PSL2(F11), and X is the Klein
cubic threefold.

• G = A5, acting on X ⊂ P(V5), where V5 is the irreducible 5-
dimensional representation. There is a 1-parameter family of such
cubics, this is the pencil generated by the Klein and the Segre cubic
threefolds.

For applications of results of Section 3 to cubic threefolds, we need to
address G-unirationality of singular cubic surfaces, a case not considered
in [17]. All combinations of singularities of cubic surfaces are known
classically, see [7]; their automorphisms are partially classified in [37].

Proposition 5.2. Let S ⊂ P3 be a normal rational cubic surface, with a
generically free regular action of a finite group G. If the G-action satisfies
condition (A) then it is G-unirational.

Proof. The case of smooth cubic surfaces was settled in [17]. Exam-
ining possible combinations of singularities [37, Table 1] and applying
Corollary 3.4, we obtain G-unirationality in all cases, with the possible
exception of 3A1, 3A2, and 4A1 singularities. In the last case, the Cayley
cubic surface, the action is birational to a linear action, via the standard
Cremona involution, see [10, Section 5] and [8, Section 7]. The 3A2-cubic
surface is toric, and G-equivariantly birational to a del Pezzo surface of
degree 6, thus G-unirational when it satisfies Condition (A), by [17].
Any 3A1-cubic surface S with an action of a subgroup G ⊆ Aut(S) is

G-unirational. Indeed, we may assume the singular points of S are

[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0].

By linear algebra, S is given by

{x1x2x3 + (x1 + x2 + ax3)x
2
4 + x3

4 = 0}, (5.1)
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for some a ̸= 0, with Aut(S) = S3, generated by

σ1 : (x1, x2, x3, x4) 7→ (x2, x1, x3, x4),

σ2 : (x1, x2, x3, x4) 7→ (ax3, x1,
x2

a
, x4).

Indeed, it is clear that σ1, σ2 ∈ Aut(S). From the equation, one sees
that there are no nontrivial elements in Aut(S) fixing all three nodes.
Therefore, Aut(S) = ⟨σ1, σ2⟩. Furthermore, Aut(S) fixes three smooth
points on S, implying that S is Aut(S)-unirational, by Proposition 3.2.

□

The rest of this section is devoted to a proof of Theorem 5.1. Actions
of finite groups on smooth cubic threefolds X ⊂ P4 have been classified
by Wei and Yu in [38]. More precisely, they find all groups that can
act, and give examples of cubic threefolds that realize such actions, [38,
Theorem 1.1 and Section 3]. We recall the maximal nonabelian groups,
and the unique cubic threefolds admitting such actions, in the notation
of [38]:

Cubic Automorphism

X1

∑5
i=j x

3
j = 0 C4

3 ⋊S5

X2 3(
√
3− 1)x1x2x3 +

∑5
i=1 x

3
j = 0 ((C2

3 ⋊ C3)⋊ C4)×S3

X5 x2
1x2 + x2

2x3 + x2
3x4 + x2

4x5 + x2
5x1 = 0 PSL2(F11)

X6

∑6
i=1 x

3
i =

∑5
i=1 xi = 0 C3 ×S5

Table 1

A table of abelian actions is in [38, Appendix B]. Wei and Yu do not
provide normal forms for all cubic threefolds admitting an action of a
subgroup from the list in Table 1. We refine their analysis as follows.
This relies on magma, and supplementary computational material can be
found in [12].

We compile a list of all nonabelian subgroups of the maximal groups
appearing in (1). There are 82 such groups.

We compile a list of groups admitting actions on a unique smooth cu-
bic threefold, using [38, Table 2] which lists 12 isomorphisms classes of
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abelian groups with actions on a unique cubic; our list contains non-
abelian groups with a subgroup isomorphic to one of the distinguished
abelian groups. There are 41 such nonabelian groups, up to isomorphism;
we note that several of them admit nonconjugated actions on the same
cubic – there are 50 conjugacy classes of actions. All the actions are
realized on one of the cubic threefolds in Table 1.

For nonabelian groups on the list we check existence of fixed points on X.
There are 11 conjugacy classes of actions with fixed points. These actions
are unirational by Proposition 3.2. For those without fixed points, we
check existence of fixed points for all index-2 subgroups. There are 2
additional classes of actions with fixed points by some index-2 subgroup.
These are unirational by Proposition 3.3. Then we check Condition (A)
and eliminate the groups failing it – these are not G-unirational. There
are 31 conjugacy classes of such actions. We are left with 6 groups. They
are

C3 ×S5, C3 × A5, C3 × F5, C9 ⋊ C3,

C11 ⋊ C5, PSL2(F11),

where the first 4 groups act on the Fermat cubic, and the last 2 groups
act on the Klein cubic. Among these, the first 3 groups leave invariant
a hyperplane section, which is isomorphic to the Clebsch cubic surface,
with generic stabilizer C3, and a residual action ofS5, A5, and F5, respec-
tively. These actions on the Clebsch cubic surface are unirational. By
Proposition 3.5, the respective action on the Fermat cubic is unirational.
We are left with

C9 ⋊ C3, C11 ⋊ C5, PSL2(F11).

The unirationality of these actions remains open.

We turn to the remaining groups G, i.e., those admitting actions on fam-
ilies of cubics. We write down all possible G-representations V of dimen-
sion 5 and compute semi-invariants of degree 3. There are 491 families of
cubic threefolds. For each family, we check existence of G-fixed points.
There are 170 families with a fixed point, on each member. We do the
same for all index-2 subgroups of G; there are 12 additional families with
fixed points. These 182 actions are G-unirational, by Propositions 3.2
and 3.3.

Of the remaining actions, there are 296 violating Condition (A) for the
generic member. In all these cases, we checked that there is an abelian
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group A ⊂ G with no fixed points on every smooth member of the fam-
ily. These actions are not G-unirational. The following example demon-
strates how we checked this.

Example 5.3. Consider G = SmallGroup(324, 110), with an action on
P4 = P(V ), with V = 1⊕ χ⊕ V3, generated by

diag(1, ζ3, 1, 1, 1)

(x) 7→ (x1, x2, x3, ζ3x5, ζ
2
3x4),

(x) 7→ (x1, x2, ζ3x5, x3, ζ
2
3x4),

and

(x) 7→ (x1, x2,
ζ12
3
((ζ6 − 2)x3 + (1− 2ζ6)x4 + (ζ6 + 1)x5),

ζ4 + ζ12
3

(x3 + x4 + x5),
ζ12
3
((1− 2ζ6)x3 + (ζ6 − 2)x4 + (ζ6 + 1)x5)).

The family of smooth cubic threefolds invariant under G is given by

a1x
2
1 + a2x

3
2 + a3(x

3
3 + x3

4 + x3
5 + 3(ζ4 − 2ζ12 − 1)x3x4x5) = 0, (5.2)

for a1, a2, a3 ∈ k. The subgroup A ⊂ G generated by

diag(1, 1, ζ3, ζ3, ζ3)

(x) 7→ (x1, ζ
2
3x2, x4, ζ3x5, ζ

2
3x4)

is isomorphic to C2
3 . The fixed locus (P4)A consists of 5 points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0], [0 : 0 : ζ3 : ζ3 : 1],

[0 : 0 : 1 : ζ23 : 1], [0 : 0 : ζ23 : 1 : 1].

One observes that no smooth member of the family (5.2) passes through
any of these points. Thus, Condition (A) fails for each smooth member
of the family.

We are left with 6 isomorphism classes of groups

A4, A5, F5, S5, C3 × A4, C3 ×S4,

giving rise to 13 actions, up to conjugation:

• A5 admits 2 actions, arising from an irreducible V and a reducible
V = 1⊕ V4,

• C3 ×S4 admits 2 actions,
• C3 × A4 admits 6 actions,
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and all others have a unique action. All actions, except the one arising
from an irreducible 5-dimensional representation of A5, have the property
that X ⊂ P(V ) admits a G-invariant hyperplane section S ⊂ X, from
a decomposition of the representation V = 1 ⊕ V4, for some faithful
4-dimensional representation V4 of G.

We observe that the cubic surface S is normal and not a cone. Indeed,
S has isolated singularities since X is smooth. If S were a cone, then G
would fix a point on S. Using equations of invariant cubics, we see that
this is impossible when X is smooth. In particular, we find:

• When G is isomorphic to A5,F5, or S5, there is a unique G-
invariant hyperplane section S, which is the Clebsch cubic sur-
face, with trivial generic stabilizer. The G-action on S satisfies
Condition (A) and is unirational, see [16, Theorem 1.1].

• When G is isomorphic to A4, there are two invariant hyperplanes.
Both of them have trivial generic stabilizer, and the G-actions on
them satisfy Condition (A).

• When G is isomorphic to C3 × A4 or C3 × S4, there are two
invariant hyperplanes. One of them has generic stabilizer C3 and
the G/C3-action on the corresponding cubic surface S satisfies
Condition (A).

To conclude, in each case when G acts via a reducible representation,
there exists an G-invariant normal cubic surface S ⊂ X which is not a
cone such that the effective action of G/G′ on S satisfies Condition (A),
where G′ is the generic stabilizer of S. By Proposition 5.2, the G-action
on S is unirational. Applying Proposition 3.5, we see that the G-action
on X is unirational.

We are left with the A5-action with the irreducible representation.
Unirationality of this action remains open.

Remark 5.4. Assuming [18, Conjecture 10.4 and Theorem 10.5], G-
unirationality of X would follow from G3-unirationality of X, where G3

is a 3-Sylow subgroup of G. There are six nonabelian 3-groups contained
in (1):

He3, C9 ⋊ C3, C3 ≀ C3, C3 × He3, (C3 × C9)⋊ C3, C3 × (C3 ≀ C3).

The following, obtained via magma computations, would imply that all G-
actions on X, with the possible exception of C9 ⋊C3, are G-unirational:
Let X be a smooth cubic threefold and G ⊂ Aut(X) a 3-group. Then:

• the G-action fixes a point on X, or
• the G-action fails condition (A), or
• X is the Fermat cubic threefold and G = C9⋊C3 is generated by

diag(1, 1, ζ3, ζ
2
3 , 1), diag(1, 1, 1, ζ3, ζ

2
3 ), (x1, ζ3x2, x4, ζ3x5, x3).
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6. G-unirationality of singular cubic threefolds

This section is devoted to the proof of the following theorem:

Theorem 6.1. Let X be a cubic threefold with isolated singularities
which is not a cone, carrying a generically free regular G-action. Assume
that the G-action on X satisfies Condition (A). Then X is G-unirational.

The proof is based on the classification of configurations of singularities
and possible group actions in [11], [10], [8]. In most of the cases, we can
apply Propositions 3.2, 3.5, and Corollary 3.4. The remaining cases,

• 3A1, G = GL2(F3),
• 3D4, G = (G2

m ×S3)⋊S3,
• 6A1, G = S4,S5,

require a separate analysis.
The linearizability properties of singular cubic threefolds have been

studied in [10] and [8]; there are linearizable actions, as well as actions
failing stable linearizability. The classification results of that paper allow
us to address G-unirationality.

By Proposition 3.3, cubic threefolds X with a distinguished singularity
or with the following singularity types are G-unirational, for all G ⊆
Aut(X):

2An, n = 1, . . . , 5, 2D4, 2A2 + 2A1, 2A3 + 2A1,

2D4 + 2A1, 2A2 + 3A1, 2A3 + 3A1, 3A2 + 2A1, 2D4 + 3A1.

We summarize the analysis of the remaining cases:

3An, 3D4, n = 1, 2, 3. With magma, we verify that in all cases, except

(1) 3A1, G = GL2(F3),
(2) 3D4, G = (G2

m ×S3)⋊S3,

the cubic threefold X contains a G-invariant G-unirational hyperplane
section S ⊂ X, a (possibly singular) cubic surface. Indeed, we check that
S has fixed points upon restriction of the action to abelian subgroups of
the quotient of G by the generic stabilizer of S. Proposition 5.2 implies
that S is equivariantly unirational for the action of the quotient, and
thus for the action of G. It then follows from Proposition 3.5 that X is
G-unirational.

Case 1: X ⊂ P(V ) is the cubic threefold with 3A1-singularities given
by

x1x2x3 + x1q1 + x2q2 + x3q3 = 0,
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where

q1 = x2
4 + x4x5 + x2

5,

q2 = x2
4 + ζ3bx4x5 + ζ23x

2
5,

q3 = x2
4 + ζ23bx4x5 + ζ3x

2
5,

for b2 =
√
−2, and V = V2 ⊕ V3, for irreducible representations V2 and

V3 of G = GL2(F3) generated by

diag(1, 1, 1,−1,−1),

(x1, . . . , x5) 7→(x2, x3, x1, x4, ζ3x5),

(x1, . . . , x5) 7→(ζ3x2, ζ
2
3x1, x3, x4, ζ6x5),

(x1, . . . , x5) 7→(x2, ζ
5
6x1, ζ6x3,

ζ6bx4 + x5

1− ζ3
,
ζ6x4 + bx5

1− ζ3
).

The G-invariant line l = P(V2) = {x1 = x2 = x3 = 0} is contained in
the smooth locus of X. Note that l is G-unirational, but the G-action
is not generically free on l. One can check that a general point of l is
not a star point in X, i.e., the intersection of the embedded tangent
space at this point with X is not a cone. Applying the argument of
Proposition 3.5 to the restriction of the tangent bundle T of X to l, we
obtain the G-unirationality of X.

Case 2: X is given by

x1x2x3 + x3
4 + x3

5 = 0 (6.1)

and

Aut(X) = N ×S3, N := G2
m ⋊S3,

where N is acting via S3-permutation and torus actions on x1, x2, x3,
and S3 via the irreducible 2-dimensional representation on x4, x5. We
use notation from [8, Proposition 6.6]

N = ⟨τa,b, σ(123), σ(12)⟩, S3 = ⟨η, σ(45)⟩, (6.2)

where

τa,b : diag(a, b, (ab)
−1, 1, 1),

η : diag(1, 1, 1, ζ3, ζ
2
3 ),

and σ are permutations of the variables as is labeled. Consider the sub-
group

H := ⟨τa,b, σ(123) · η⟩ ⊂ Aut(X). (6.3)
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By [8, Proposition 6.6], X is H-equivariantly birational to S×P1, where
S is the del Pezzo surface of degree 6. In particular, for every G ⊂ H
satisfying Condition (A), we obtain G-unirationality of X.

Lemma 6.2. Let X be the cubic (6.1), G ⊂ Aut(X) a finite subgroup.
Then X is G-unirational if and only if Condition (A) is satisfied.

Proof. As discussed, Condition (A) is necessary for G-unirationality. We
now assume that the G-action on X satisfies Condition (A) and proceed
to show that X is G-unirational.

Observe that there are two distinguished G-orbits of three points

P1 = {[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0], [0 : 0 : 1 : 0 : 0]},

P2 = {[0 : 0 : 0 : 1 : −1], [0 : 0 : 0 : 1 : −ζ3], [0 : 0 : 0 : 1 : −ζ23 ]}.
Using Propositions 3.2 and 3.3, we are reduced to the case when G acts
on both P1 and P2 via C3. Up to conjugation in Aut(X), G contains

m1 := σ(123) · η.

The G-action on P1 induces a homomorphism G → C3. Let N denote
its kernel so that we have

G = ⟨N,m1⟩.

If N ⊂ G2
m(k), then G ⊂ H, from (6.3), and X is G-unirational.

If N ̸⊂ G2
m(k), then N contains

m2 := τa,b · η,

for some τa,b ∈ G2
m(k), and G is generated by m1, m2, and a subgroup

M = G2
m(k) ∩G.

Up to replacing m2 by its power, we may assume that ord(τa,b) is a
power of 3, so that both a and b are 3-power roots of unity. Condition
(A) implies that G does not contain either of

η or τζ3,ζ3 = diag(ζ3, ζ3, ζ3, 1, 1),

since both abelian groups

⟨m1, η⟩ ≃ ⟨m1, τζ3,ζ3⟩ ≃ C2
3

do not fix points on X. In particular, (a, b) ̸= (1, 1).
If |M | is not coprime to 3, then M contains either τ1,ζ3 or τζ3,1, which

is impossible since

τ1,ζ3
(
m1 · τ1,ζ3 ·m−1

1

)2
= τζ3,1

(
m2

1 · τζ3,1 ·m−2
1

)2
= τζ3,ζ3 ̸∈ G.
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Hence, |M | is coprime to 3, the order of τa,b must be 3, and

τa,b ∈
{
τ1,ζ3 , τ1,ζ23 , τζ3,1, τζ23 ,1, τζ3,ζ3 , τζ23 ,ζ23

}
.

Conjugating τa,b by m1, we may assume that

• either τa,b = τζ3,ζ3 and m2 = τζ3,ζ3 · η, or
• τa,b = τζ23 ,ζ23 and m2 = τζ23 ,ζ23 · η.

Without loss of generality, we may assume that m2 = τζ3,ζ3 · η. Then G
is generated by m1 = σ(123) · η, m2, and a subgroup M of order coprime
to 3.

Let S := X ∩ {x5 = 0}, and Q := ⟨m1,M⟩. Then S is a cubic
surface with 3A2-singularities, with a generically free action of Q and
generic stabilizer m2, i.e., S = X⟨m2⟩. Also note that Q ≃ G/⟨m2⟩. The
Q-action on S satisfies Condition (A). Indeed, if A ⊂ Q is an abelian
subgroup that does not fix any points on S, then ⟨m2, A⟩ ⊂ G is an
abelian subgroup that does not fix points in X. By Theorem 6.1, the Q-
action, and thus the G-action on S is unirational, which implies that the
G-action on X is unirational, by Proposition 3.2. The Q-unirationality of
the surface S also follows from the fact that S is Q-birational to P2 with
a linear action of Q and classification of all possibilities for the group Q
given in [16, Theorem 4.7]. □

4An, n = 1, 2, in general position. The singular points are in linear
general position. From the equations in [10, Section 5] and [8, Section 7],
we see that X contains a G-invariant Cayley cubic surface (give by x5 =
0), which is G-linearizable. Proposition 3.5 shows the G-unirationality
of X.

4A1, contained in a plane. Let Π ⊂ X be the plane containing the
four nodes. Such X are equivariantly birational to a smooth intersection
of two quadrics, discussed in Section 7, with their automorphisms and
normal forms. The analysis there allows us to check that a general point
on Π is not a star point explicitly via magma, in each case. The same
argument as in Proposition 3.5 shows G-unirationality of X.

5An, n = 1, 2. Cubics in this case are equivariantly birational to a smooth
quadric threefold. The action is either a subgroup of the S5-permutation
action on coordinates, or a subgroup of the irreducible representation
from A5, which is stably linearizable by Theorem 4.1, see also [24, Propo-
sition 6.2].

6A1. The classification of possible actions in [10, Section 7] yields sub-
cases:
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(1) No plane: Aut(X) is one of the following

C2,S3,S4,D4, C
2
2 ,D6,S

2
3 ⋊ C2,S5.

All groups failing Condition (A) contain the unique subgroup
C2

3 ⊂ S2
3 ⋊ C2; they are:

C2
3 , C3 ⋊S3, C3 ×S3, S2

3, C3 ⋊S3.C2, S2
3 ⋊ C2.

(2) One plane: all actions are linearizable, see [10, Section 7].
(3) Three planes: Aut(X) is one of the following

C2
2 , C

3
2 , C2 ×S3, C2 ×S4,

where X is given by

x2x3x4 + ax3
1 + x2

1(b1x2 + b2(x3 + x4)) + x1(x
2
2 + x2

3 + x2
4 − x2

5) = 0

for some a, b1, b2 ∈ k.

In Case (3), the point [0 : 0 : 0 : 0 : 1] ∈ X is fixed by any G ⊆ Aut(X);
thus, X is G-unirational, by Proposition 3.2.
We turn to Case (1). Note that the action on X is not stably lineariz-

able if the invariant class group has rank one, by [10, Proposition 7.5]. To
prove unirationality, it suffices to consider the case when ClG(X) = Z2,
by passing to a suitable subgroup of index two, using Proposition 3.3.

This G leaves invariant each class of cubic scrolls on X. Recall from
[10, Diagram 7.1] that an invariant divisor class of cubic scrolls shows that
there exists a G-equivariant small resolution X+ → X such that X+ is
a weak Fano 3-fold that admits a G-equivariant P1-bundle structure

p+ : X+ → P2,

whose fibers are mapped to lines in the cubic X. Note that

X+ ≃ P(E),
where E is a vector bundle of rank 2 on P2, described in [32, Theo-
rem 3.2(7)]. The weak Fano 3-foldX+ also appeared in [36, Theorem 3.6].

Note that H1(G,Pic(P2)) = 0 and B0(G) = 0, for all G appearing
in this case; the smallest G with nontrivial Bogomolov multiplier has
order |G| = p5, see, e.g., [35]. By Lemma 2.4, and Condition (A) for
X, the base P2 is G-unirational. Lemma 2.5 then implies that the G-
action lifts to E . Note that the G-action on the base P2 may have generic
stabilizers. Nevertheless, applying the no-name lemma as in the proof of
Proposition 3.5 yields G-equivariant birationality

E × V ∼G P2 × V × A2,

where V is a faithful G-representation, with trivial action on A2. This
implies G-unirationality of X.
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8A1. In all cases, there is a G-invariant Cayley cubic surface S ⊂ X
(given by x3 = 0 in the equations in [10, Proposition 8.2]), with a G-
fixed point on S. It follows that S is G-unirational, and we can apply
Proposition 3.5.

9A1. We recall the normal form, see [10, Section 9]:

x1x2x3 − x4x5x6 = a(x1 + x2 + x3) + x4 + x5 + x6 = 0

for a3 ̸= 0,−1, with G a subgroup of S2
3, when a3 ̸= 1, and of S2

3 ⋊ C2,
when a = 1. There is an invariant smooth cubic surface S ⊂ X, given by

x1 + x2 + x3 = 0.

When the G-action on X satisfies Condition (A), then so does the G-
action on S. Thus S is G-unirational, and we apply Proposition 3.5.

10A1. We have a dominant rational map Gr(2, 6) → X, the Segre cubic
threefold, equivariantly for the action of G = S6 = Aut(X). By [23,
Proposition 19], the S6-action on Gr(2, 6) is stably linearizable, thus X
is G-unirational.

7. Intersections of two quadrics

In this section, we prove:

Theorem 7.1. Let X be a smooth complete intersection of two quadrics
in P5 and G ⊆ Aut(X). The following are equivalent:

• the G-action on X is unirational,
• the G-action on X satisfies condition (A), i.e., every abelian sub-
group of G fixes a point on X,

• the G-action fixes a point on X.

Consider X = X2,2 = Q1∩Q2 ⊂ P5, a smooth complete intersection of
two quadrics. The problem of classification of actions of finite groups G
on X has been addressed in [2]. There is an induced action of a quotient
of G on the pencil λ1Q1 + λ2Q2, and we write down equations in each
case:

• Type I, S4:
∑4

j=0 x
2
j = x2

0 + ζ4x
2
1 − x2

2 − ζ4x
2
3 + x2

5 = 0,

• Type II, D6:
∑5

j=0 x
2
j =

∑5
j=0 ζ

j
6x

2
j = 0,

• Type III,S3:
∑5

j=0 x
2
j = a(x2

0+ζ3x
2
1+ζ23x

2
2)+x2

3+ζ3x
2
4+ζ23x

2
5 = 0,

• Type IV, C5:
∑5

j=0 x
2
j =

∑4
j=0 ζ

j
5x

2
j = 0,

• Type V, C2
2 :

∑4
j=0 x

2
j = a(x2

0 − x2
1) + x2

2 − x2
3 + x2

5 = 0,

• Type VI, C2:
∑5

j=0 x
2
j = a(x2

0 − x2
1) + b(x2

2 − x2
3) + x2

4 − x2
5 = 0.
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We proceed with a list maximal subgroups G ⊆ Aut(X) satisfying
Condition (A).

• Type I: S3, D4, C2 × C8, C
2
2 ⋊ C4, C2 × A4,

• Type II: C6,S3, C2 × C4,D4, C
3
2 , C

2
2 ⋊ C4,A4 ⋊ C4,

• Type III: S3, D4, C
3
2 , C2 × A4,

• Type IV: C10, C
3
2 ,

• Type V: C2 × C4,D4, C
3
2 , C

2
2 ⋊ C4,

• Type VI: D4, C
3
2 .

With magma, we find that every subgroup of Aut(X) satisfying Con-
dition (A) has a fixed point on X. We may assume that X does not
contain a G-invariant line, since otherwise, the G-action is linearizable,
by [22, Theorem 24]. Projecting from the G-fixed point, we find that X
is G-birational to a cubic threefold, with singularities of type

4A1, or 2A3,

containing a unique plane, which must be G-invariant. Using magma

again, we check a general point on the invariant plane is not a star point,
in each case. By results of Section 6, all such cubic threefolds are G-
unirational. This proves Theorem 7.1.

It would be interesting to classify actions of finite groups on singular
intersections of two quadrics X2,2 ⊂ P5 and solve the linearization prob-
lems for this class of actions. Indeed, these naturally appear in related
linearization problems:

Example 7.2. Let V5 be the unique smooth Fano threefold of index 2
and degree 5 (the quintic del Pezzo threefold), and

G ⊂ Aut(V5) ≃ PGL2(k)

a finite subgroup, not isomorphic to A5. Then the G-action is lineariz-
able. Indeed, for cyclic or dihedral groups, linearization follows from the
construction in [1, Section 5.8]. If G = A4, this follows from the proof
of [9, Lemma 7.8.2]. If G = S4, we have the following G-equivariant
commutative diagram:

Ṽ5

α

��

β

  

// X̃2,2

γ

}}

δ

  
V5 X2,2 P2

where

• α is the blowup of the unique G-fixed point,
• β is the contraction of the strict transform of 3 lines in V5 that
pass through the G-fixed point,
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• X2,2 ⊂ P5 is a complete intersection of two quadrics that has three
ordinary double points,

• γ is a small resolution of X2,2,
• the dashed arrow is a composition of three Atiyah flops, and
• δ is a P1-bundle, with generically free G-action on the base P2.

This commutative diagram appears in [32, Theorem 3.2] and [36, Theo-
rem 3.6]. Linearization of the G-action follows by applying the no-name
lemma.
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