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Abstract

Let X ⊂ P4 be an irreducible hypersurface and ε > 0 be given. We
show that there are O(B3+ε) resp. O(B55/18+ε) rational points on P4

lying on X when X is of degree d ≥ 4 resp. d = 3. The implied constants
depend only on d and ε.

1 Introduction

Let Q be an algebraic closure of Q and Pn be projective n-space over Q. That

is, Pn is the set of one-dimensional linear subspaces of Q
n+1

. A point on Pn is

said to be rational if it represents a subspace of Q
n+1

generated by an element
in Qn+1. The height of a rational point p ∈ Pn(Q) is given by

H(p) = max(|Z0| , . . . , |Zn|),

where Z0, . . . , Zn are relatively prime integers such that p = [Z0, . . . , Zn].
For a Zariski closed subset X of Pn, let N(X,B) be the counting function

N(X,B) = # {p ∈ Pn(Q) ∩X : H(p) ≤ B} ,

where Pn(Q) is the set of rational points on Pn. In the case whereX is defined by
an irreducible form F (Z0, . . . , Zn) of degree d ≥ 2, Heath-Brown [4] conjectured
that

N(X,B) = On,d,ε(B
n−1+ε)

for any ε > 0. The implied constant should thus not depend on F , only on
n, d, and ε. In the same paper he verified the conjecture for curves, surfaces,
and for quadrics of any dimension. In [1], Browning proved the conjecture for
non-singular hypersurfaces in P4 of degree at least four. In this paper we shall
prove the following result.

Theorem 1. Let X ⊂ P4 be a hypersurface defined by an irreducible form

F (Z0, . . . , Zn) with coefficients in Q. Then the following holds for any ε > 0:

N(X,B) =

{
Od,ε(B

3+ε) if d ≥ 4

Oε(B
55/18+ε) if d = 3.

∗While working on this paper, the author was supported by the EC network Arithmetic

Algebraic Geometry.
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2 Preliminaries

In this section we recollect some known estimates of counting functions. We
also state and prove some results that we use in the proof of Theorem 1. First
note that:

• We follow the convention that a subvariety X of Pn is a closed subset
that is not necessarily irreducible. A hypersurface of Pn is a subvariety of
codimension one. All varieties are defined over Q.

• We shall often count rational points of bounded height on Pn which lie
on X even if X is not defined over Q. The same situation occur for
subvarieties of the dual space Pn∗ of Pn when we count hyperplanes Γ
of Pn defined over Q for which Γ ∩ X is reducible. We shall also use
coordinates over Q for Grassmannians.

• If X ⊂ Pn is a hypersurface, then we define the degree of X to be the
degree of the corresponding reduced scheme. That is, we let d = deg(X)
be the minimal degree among all forms defining X . This implies that an
intersection Λ∩X with a linear subspace Λ ⊂ Pn not contained in X may
have lower degree than X .

• Our calculations involve numerous constants. To avoid introducing the
constants explicitly, we use the following notation.

Suppose that f1 and f2 are functions such that fi(B) ≥ 0 for all B ≥ 1.
We write

f1(B) �p1,...,pk
f2(B),

if there exists a positive constant C, depending only on the parameters
p1, . . . , pk, such that f1(B) ≤ Cf2(B) for all B ≥ 1. We write

f1(B) �p1,...,pk
f2(B),

if f1(B) �p1,...,pk
f2(B) and f2(B) �p1,...,pk

f1(B).

• The Grassmannian G(k, n) of k-dimensional linear subspaces of Pn is as-
sumed to be embedded into projective space by the Plücker embedding.
In particular, we identify G(n− 1, n) with the dual projective space Pn∗.
The height of a rational linear subspace Λ ⊂ Pn is by definition the height
of its Plücker coordinates. According to [6, Chapter I, Corollary 5I], we
have

H(Λ) �n det(Λ),

where
Λ =

{
x ∈ Zn+1 : [x] ∈ Λ

}
∪ {0}

is the lattice associated to Λ and det(Λ) is the volume of a fundamental
domain of Λ.
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2.1 Results from the Geometry of Numbers

The following result is well-known [4, Lemma 1(iii)]. It is one of the principal
results from the subject known as the Geometry of Numbers, and it is one of
the key tools in the proof of Theorem 1.

Lemma 2.1. Let Λ ⊂ Zn be a lattice of dimension m. Then Λ has a basis

b1, . . . ,bm such that if one writes x ∈ Λ as x =
∑

j λjbj , then

λj �n |x| / |bj | .

Moreover one has

det(Λ) �n

m∏

j=1

|bj | .

The following result is a consequence of [6, Chapter I, Corollary 5J].

Lemma 2.2. Suppose that a1, . . . , ak are linearly independent n-dimensional

vectors with integer components and let

Λ = {x ∈ Zn : a1.x = · · · = ak.x = 0} .

Then Λ ⊂ Zn is a lattice of dimension n− k and

det(Λ) �n

k∏

j=1

|aj | .

2.2 Bad linear sections

The homogeneous ideal of a hypersurface X ⊂ Pn of degree d is generated by
a single homogeneous polynomial F (Z0, . . . , Zn) of degree d. This means that
hypersurfaces in Pn of degree d are parametrised by points in P(Q[Z0, . . . , Zn]d),
where Q[Z0, . . . , Zn]d is the vector space of homogeneous polynomials of degree d
in n+1 variables. Let V (F ) denote the hypersurface in Pn given by the zero locus
of F ∈ Q[Z0, . . . , Zn]d. The set of pairs (Λ, F ) ∈ G(k, n) × P(Q[Z0, . . . , Zn]d)
for which Λ ∩ V (F ) is an irreducible variety of dimension k − 1 and degree d is
an open subset of G(k, n) × P(Q[Z0, . . . , Zn]d). We denote the complement of
this open subset by Φn,d,k.

The following result is well-known but the proof is so short that we reproduce
it here.

Lemma 2.3. Let X ⊂ Pn be an irreducible hypersurface of degree d and di-

mension at least two. Then the set of hyperplanes Γ for which the linear section

Γ∩X is reducible or of degree less than d is a proper closed subset of Pn∗. Fur-

thermore, this closed subset is cut out by hypersurfaces of degrees bounded solely

in terms of n and d. The number of required hypersurfaces is also bounded in

terms of n and d.
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Proof. By choosing a basis of Q[Z0, . . . , Zn]d, we may identify P(Q[Z0, . . . , Zn]d)
with PN for some N . Suppose that the ideal of Φn,d,n−1 ⊂ Pn∗×PN is generated
by bihomogeneous polynomials

Gi(Z0, . . . , Zn;W0, . . . ,WN ) for i = 1, 2, . . . ,m. (2.1)

The set of hyperplanes Γ for which Γ ∩ X is reducible or of degree less than
d is then the common zero locus of the polynomials (2.1), where W0, . . . ,WN

are the coefficients of any homogeneous polynomial generating the ideal of X .
Since a general hyperplane section Γ ∩ X is irreducible [3, Proposition 18.10],
all of the polynomials (2.1) cannot vanish identically on Pn∗.

Lemma 2.4. Let X ⊂ P4 be an irreducible hypersurface of degree d and let

V ⊂ P4∗ be the set of hyperplanes Γ with the following property. There is a

point p ∈ Γ ∩ X such that for every two-plane Λ ⊂ Γ either Λ is contained in

X or Λ ∩X contains an irreducible component of degree less than d. Then we

have the following.

(a) V is a closed subset of P4∗, and if V 6= P4∗, then V is cut out by hy-

persurfaces of degrees bounded in terms of d. The number of required

hypersurfaces is also bounded in terms of d.

(b) If Y = Γ ∩ X is an irreducible surface for some hyperplane Γ ∈ V , then

Y is a cone over a plane curve.

(c) V = P4∗ if and only if X is a cone over a plane curve with respect to a

vertex line.

Proof. As in the proof of Lemma 2.3, we identify P(Q[Z0, . . . , Z4]d) with PN .
Let Ψ ⊂ P4∗ × P4 × PN × G(2, 4) be the set of four-tuples (Γ, p, F,Λ) such that
F (p) = 0, p ∈ Λ, Λ ⊂ Γ, and (Λ, F ) ∈ Φ4,d,2. Let π be the projection map from
Ψ to P4∗ × P4 × PN . Then Ψ is a projective variety and the function

λ(q) = dim(π−1(q))

is an upper-semicontinuous function on the image π(Ψ) [3, Corollary 11.13]. In
particular,

Ω = {(Γ, p, F ) ∈ π(Ψ) : λ(Γ, p, F ) ≥ 2}

is a subvariety of P4∗ × P4 × PN . Now the set of two-planes Λ ⊂ P4 for which
p ∈ Λ and Λ ⊂ Γ for some (Γ, p) ∈ P4∗×P4 is a two-dimensional linear subspace
of G(2, 4). The fibre π−1(Γ, p, F ) is contained in this linear subspace. Hence,
Ω is the set of triples (Γ, p, F ) such that F (p) = 0 and such that Λ ⊂ V (F )
or Λ ∩ V (F ) contains an irreducible component of degree less than d for every
two-plane Λ ⊂ Γ containing p. Let Σ be the projection of Ω on P4∗ × PN , and
let

Gi(Z0, . . . , Zn;W0, . . . ,WN ) for i = 1, 2, . . . ,m, (2.2)

be bihomogeneous polynomials generating the ideal of Σ. If W0, . . . ,WN are the
coefficients of some homogeneous polynomial generating the ideal of X , then V
is the common zero locus of the polynomials (2.2). This proves (a).
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Next we consider (b). Let Y = Γ ∩X be an irreducible hyperplane section
and assume that p is a point of Y such that Λ ∩ X contains an irreducible
component of degree less than d for every two-plane Λ ⊂ Γ containing p. Let
π : Ỹ → Y be the blow-up of Y at p. There is, then, a unique map ψ : Ỹ → P2

which extends the projection map Y 99K P2 from p to some two-plane P2 ⊂ Γ.
If ψ is surjective, then ψ−1(L) is irreducible of degree d for a general line L ⊂ P2

[2, Theorem 1.1]. This contradicts the assumption that π(ψ−1(L)) is reducible
for every line L ⊂ P2. Hence, the map ψ is not surjective, so Y is cone over a
plane curve with vertex p.

To prove (c) we assume that V = P4∗ and consider the incidence correspon-
dence Ω ⊂ P4∗ × X consisting of all pairs (Γ, p) such that Λ ⊂ X or Λ ∩ X
contains an irreducible component of degree less than d for every two-plane
Λ ⊂ Γ containing p. It follows from the proof of (a) that Ω is a closed subset of
P4∗ ×X . Since V is the projection of Ω ⊂ P4∗ ×X on the first factor, we have
that the dimension of Ω is at least four. According to (b), we can then find a
point p ∈ X and a family of hyperplanes {Γλ} through p such that Γλ ∩X are
all cones with the common vertex p. It follows that X is a cone with vertex p
over Γ∩X for any hyperplane Γ ⊂ P4 which does not contain p. Let Γ ⊂ P4 be
such that Γ ∩X is a cone over a plane curve C ⊂ X with vertex q ∈ X . Then
X is a cone over C with two different vertices p and q. This proves the first
implication of (c). The other one is immediate.

2.3 Linear subspaces of hypersurfaces

In this section we state some elementary results about linear subspaces contained
in a hypersurface X ⊂ Pn. Let Fk(X) ⊂ G(k, n) denote the Fano variety of k-
planes contained in the variety X ⊂ Pn. It can be shown that the number
of irreducible components and the dimensions of the irreducible components of
Fk(X) can be bounded in terms of d.

Lemma 2.5. Let X ⊂ Pn be an irreducible hypersurface and assume that X is

not a hyperplane. Then the dimension of Fn−2(X) is at most one and Fn−2(X)
contains no lines.

Proof. Suppose that Y is an irreducible component of Fn−2(X) of dimension at
least one. Then the variety

⋃
Λ∈Y Λ has dimension at least n−1 and is therefore

equal to X . In particular, every point on X belongs to an (n − 2)-plane Λ in
Y . Consider the incidence correspondence

Ψ = {(p,Λ) ∈ X × Y : p ∈ Λ} .

The fibre of Ψ over an (n − 2)-plane Λ is irreducible of dimension n − 2. The
variety Ψ is therefore irreducible of dimension dim(Y )+n−2 [3, Theorem 11.14].
Now if an (n − 2)-plane Λ ⊂ X contains the point p, then Λ must lie in the
projective tangent space Tp(X) of X at p. For a non-singular point p ∈ X , the
dimension of X ∩ Tp(X) is n− 2, so the fibre of Ψ over a general point of X is
finite. The dimension of Ψ is thus at most n− 1. Hence, the dimension of Y is
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at most one. To finish the proof we note that
⋃

Λ∈Y Λ is a hyperplane when Y
is a line. Since X is irreducible, Fn−2(X) cannot contain any lines.

The following lemma is a modification of Example 19.11 on page 244 in [3].

Lemma 2.6. Let X ⊂ Pn be the surface swept out by the lines parametrised

by an irreducible curve C ⊂ G(1, n). Then the degree of X does not exceed the

degree of C.

Proof. The degree of X is by definition the cardinality of the intersection Λ∩X
for a general (n−2)-plane Λ ⊂ Pn. Assume that Λ∩X contains deg(X) points.
Now every point of Λ ∩ X belongs to a line L ∈ C that meets Λ. The locus
of lines L ∈ G(1, n) that meet Λ is a hyperplane section Γ ∩ G(1, n). If C is
contained in Γ, then every line L ∈ C meet Λ. That is, we have a regular map
C → Λ given by L 7→ L ∩ Λ. But C is irreducible so the image of this map is
irreducible. Hence, Λ ∩ X contains only one point so that the degree of X is
one. If C is not contained in Γ, then there are at most deg(C) points in Γ ∩ C.
Hence, Λ ∩X contains at most deg(C) points.

Lemma 2.7. Let X ⊂ P4 be an irreducible hypersurface of degree d, and let

C(p,X) be union of lines on X passing through p ∈ X. Then the number of

irreducible components and the degrees of the irreducible components of C(p,X)
can be bounded in terms of d.

Proof. Let Pij , for 0 ≤ i < j ≤ 4, be the Plücker coordinates on G(1, 4), and
assume that p = [1, 0, 0, 0, 0]. The lines in P4 that pass through p are then
parametrised by the points in the three-dimensional plane Λ ⊂ G(1, 4) which is
defined by

Pij = 0 for 0 < i < j ≤ 4.

The map φ : C(p,X) \ p→ Λ, sending a point q to the line through p and q, is
given by

[Z0, Z1, Z2, Z3, Z4] 7→ [Z1, Z2, Z3, Z4, 0, 0, . . . ].

The map φ can thus be identified with the projection π of C(p,X) \ p to the
hyperplane Z0 = 0 in Pn. Under this identification, the image of π is equal to
Λ ∩ F1(X). Since the number of irreducible components and the degrees of the
irreducible components of F1(X) are bounded in terms of d, the same is true
for Λ ∩ F1(X) and C(p,X).

2.4 Estimates for counting functions

It this section we list those known estimates for counting functions that we use
in the proof of Theorem 1.

(E1) Let Λ be a k-dimensional linear subspace of Pn. If Λ contains k+1 linearly
independent rational points of height at most B, then Λ is defined over Q

and

N(Λ, B) �n
Bk+1

H(Λ)
.
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To see this, let b1, . . . ,bk be a basis of the lattice

Λ =
{
x ∈ Zn+1 : [x] ∈ Λ

}
∪ {0}

with the properties stated in Lemma 2.1. Since Λ contains k + 1 linearly
independent rational points of height at most B, we must have |bi| �n B.
Hence,

N(Λ, B) �n
Bk+1

|b0| · · · |bk|
�n

Bk+1

H(Λ)
.

(E2) If X ⊂ Pn is an irreducible variety of degree d and dimension r, then

N(X,B) �n,d B
r+1.

This is proved for hypersurfaces in [4, Theorem 1]. The general result
follows by a standard projection argument (see for example the proof of
Lemma 1 in [1]).

(E3) If X ⊂ Pn is an irreducible variety of degree d ≥ 2 and dimension r, then

N(X,B) �n,d,ε B
r+1/d+ε,

for every ε > 0 [5].

(E4) If X ⊂ Pn is an irreducible curve of degree d, then

N(X,B) �n,d,ε B
2/d+ε,

for every ε > 0. This estimate is proved for plane curves in [4, Theorem 3].
As in (E2), the general estimate follows by a projection argument.

(E5) Let Λ ⊂ Pn be a two-plane which is defined over the rational numbers. If
X ⊂ Λ is a non-singular curve of degree d ≥ 2, then

N(X,B) �n,d,ε 1 +
B2/d+ε

H(Λ)2/3d
,

for every ε > 0. This follows from Theorem 3 and Lemma 1(iii) of [4].

(E6) If X ⊂ Pn is an irreducible surface of degree d ≥ 2, then

N(X,B) �n,d,ε B
2+ε,

for every ε > 0 [1, Lemma 1].

(E7) If X ⊂ Pn is a quadratic hypersurface of rank at least three, then

N(X,B) �n,ε B
n−1+ε,

for every ε > 0 [4, Theorem 2]
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3 Proof of Theorem 1

The idea of the proof is simple. We cover the set

{
p ∈ P4(Q) : H(p) ≤ B

}

by a finite collection I of linear subspaces Λ ⊂ P4, and put

Σ =
⋃

Λ∈I

(Λ ∩X).

We then have

N(X,B) = N(Σ, B) and dim(X) > dim(Σ).

We may thus apply the sharp estimates (E4) and (E6) from Section 2.4. To
determine a suitable set I , we apply the results from Section 2.1.

Let p = [Z0, . . . , Z4] be a point of P4 such that Z0, . . . , Z4 are relatively
prime integers. According to [4, Lemma 1(i)], the set

Λ1 =
{
(x0, . . . , x4) ∈ Z5 : Z0x0 + · · · + Z4x4 = 0

}

is a lattice of dimension four and

det(Λ1) =
√
Z2

0 + · · · + Z2
4 � H(p).

Lemma 2.1 states that there exists a basis b1,b2,b3,b4 of Λ1 such that

|b1| |b2| |b3| |b4| � det(Λ1).

Without loss of generality we may assume that

|b1| |b2| � det(Λ1)
1/2.

Let
Λ2 =

{
x ∈ Z5 : b1.x = b2.x = 0

}

and apply Lemma 2.1 again to find a basis x1,x2,x3 of the lattice Λ2 such that

|x1| |x2| |x3| � det(Λ2) � |b1| |b2| . (3.1)

The last inequality of (3.1) follows from Lemma 2.2. Finally let

Λ3 =
{
a ∈ Z5 : a.x1 = a.x2 = a.x3 = 0

}

and apply Lemma 2.1 to find a basis a1, a2 of Λ3 such that

|a1| |a2| � det(Λ3) � |x1| |x2| |x3| .

Then (Z0, . . . , Z4) ∈ Λ2,

Λ2 =
{
x ∈ Z5 : a1.x = a2.x = 0

}
,
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and,
|a1| |a2| � det(Λ2) � H(p)1/2.

This shows that there exists a rational two-plane Λ ⊂ P4 containing p such that
H(Λ) � H(p)1/2. It also shows that Λ = Γ1 ∩Γ2 for some rational hyperplanes
Γ1, Γ2 in P4 such that H(Γ1)H(Γ2) � H(Λ).

Let A be a positive constant and let I ⊂ P4∗(Q)×P4∗(Q) be the set of pairs
(Γ1,Γ2) of hyperplanes such that

(i) Γ1 6= Γ2,

(ii) H(Γ1)H(Γ2) ≤ AH(Γ1 ∩ Γ2), where Γ1 ∩ Γ2 is considered as an element
of G(2, 4),

(iii) H(Γ1) ≤ AB1/4, and

(iv) H(Γ2) ≤ AB1/2/H(Γ1).

Provided that A is large enough, we have

{
p ∈ P4(Q) : H(p) ≤ B

}
⊂

⋃

(Γ1,Γ2)∈I

(Γ1 ∩ Γ2).

From the discussion above it follows that we may choose A independently of B.
This defines I and Σ.

The next step of the proof is to use the estimates from Section 2.4 to estimate
N(Σ, B). The set I can be partitioned into three subsets:

I1 is the set of (Γ1,Γ2) ∈ I such that Γ1 ∩X contains an irreducible compo-
nent of degree less than d.

I2 is the set of (Γ1,Γ2) ∈ I such that Γ1 ∩ X is irreducible of degree d but
Γ1 ∩ Γ2 ∩X contains an irreducible component of degree less than d.

I3 is the set of (Γ1,Γ2) ∈ I such that Γ1 ∩ Γ2 ∩X is an irreducible curve of
degree d.

Let
Σi =

⋃

(Γ1,Γ2)∈Ii

(Γ1 ∩ Γ2 ∩X) for i = 1, 2, 3.

Then
N(Σ, B) ≤ N(Σ1, B) +N(Σ2, B) +N(Σ3, B).

3.1 Estimate of N(Σ1, B)

Let J be the set of rational hyperplanes Γ ⊂ P4 such that H(Γ) ≤ AB1/4 and
such that Γ ∩ X is reducible or of degree less than d = deg(X). Consider an
irreducible component Y ⊂ Γ∩X for some Γ ∈ J . If Y is not a two-plane, then

N(Y,B) �d,ε B
2+ε
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according to (E6). If Y is a two-plane such that all points of height at most B
on P4(Q) ∩ Y lie on a line, then

N(Y,B) � B2

according to (E2). Hence,

N(Σ1, B) �d,ε B
2+ε |J | +N ′(X,B), (3.2)

where N ′(X,B) is the number of rational points on P4 of height at most B lying
on the union of all two-planes in X that contain three non-collinear rational
points on P4 of height at most B. By Lemma 2.3 and (E2), the cardinality of J
is Od(B) so the first term of (3.2) is Od,ε(B

3+ε). By the following lemma, the
second term is also Od,ε(B

3+ε).

Lemma 3.1. Let N ′(X,B) be the number of rational points on P4 of height at

most B lying on the union of all two-planes in X that contain three non-collinear

rational points on P4 of height at most B. Then,

N ′(X,B) �d,ε B
3+ε.

Moreover, if X is a cone with respect to two different rational vertex points of

height at most B, then

N(X,B) �d,ε B
3+ε.

Proof. If a two-plane Λ ⊂ X contains three non-collinear rational points on P4

of height at most B, then H(Λ) ≤ A′B3 for some constant A′. Furthermore,
Λ contains O(B3/H(Λ)) rational points of height at most B according to (E1).
Hence,

N ′(X,B) ≤
∑

Λ∈F2(X)(Q)

H(Λ)≤A′B3

B3

H(Λ)
,

where F2(X) ⊂ G(2, 4) is the Fano variety of two-planes in X . By Lemma 2.5,
the dimension of F2(X) is at most one and F2(X) contains no lines. The number
of Λ ∈ F2(X)(Q) with H(Λ) � T for some T ≥ 1 is thus Od,ε(T

1+ε) according
to (E2). Hence,

∑

Λ∈F2(X)(Q)
T<H(Λ)≤2T

B3

H(Λ)
�d,ε

B3

T
T 1+ε � B3+ε,

when T � B3. By summing over dyadic intervals, we get

N ′(X,B) �d,ε B
3+ε.

To prove the second statement, let p and q be two different rational points on
P4 of height at most B which are vertex points of X . If every point of P4(Q)∩X
of height at most B belongs to the line L containing p and q, then

N(X,B) � B2
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according to (E2). If there is some point of P4(Q) ∩ X of height at most B
that does not belong to the line L, then every point of P4(Q) ∩X belongs to a
two-plane in X that contains three non-collinear rational points on P4 of height
at most B. In that case

N(X,B) = N ′(X,B) �d,ε B
3+ε,

by what we just proved.

3.2 Estimate of N(Σ2, B)

Consider an irreducible component Y ⊂ Γ1 ∩ Γ2 ∩X for some (Γ1,Γ2) ∈ I2. If
the degree of Y is at least three, then

N(Y,B) �d,ε B
2/3+ε

according to (E4). If the degree of Y is two, then

N(Y,B) �ε 1 +
B1+ε

H(Γ1 ∩ Γ2)1/3

according to (E5). If Y is a line such that Y contains at most one rational point
of height at most B, then N(Y,B) ≤ 1. Hence,

N(Σ2, B) �d,ε B
2/3+ε |I2|

+
∑

(Γ1,Γ2)∈I2

B1+ε

H(Γ1 ∩ Γ2)1/3

+ |I2| +N(Z,B),

(3.3)

where Z ⊂ X is the union of all lines L ⊂ Σ2 that contain two different rational
points of height at most B. Note that if X is a cone over a plane curve, then
Γ1 ∩ Γ2 ∩X is a union of lines for every pair (Γ1,Γ2) ∈ I2. Thus, the first two
terms of (3.3) do not appear in this case.

Lemma 3.2. We have

# {(Γ1,Γ2) ∈ I2 : H(Γi) ≤ Ti} �d,ε T
5
1 T

10/3+ε
2 + T 5−η

1 T 4
2 ,

where η = 1 unless X is a cone over a plane curve in which case η = 0.

Proof. Let f : Γ1 → P3 be an isomorphism for some hyperplane Γ1 ⊂ P4 such
that Γ1 ∩X is irreducible. Let

g : P4∗ \ {Γ1} → P3∗

be the projection map induced by f−1. By Lemma 2.3, the set of two-planes
Λ ⊂ P3 for which Λ ∩ f−1(X) contains an irreducible component of degree less
than d = deg(X) is a proper closed subset V ⊂ P3∗. The set of hyperplanes

11



Γ2 ∈ P4∗ \{Γ1} for which Γ1∩Γ2∩X is reducible is thus contained in the proper
closed subset W = g−1(V ) of P4∗. There are two cases to consider.

If V does not contain any two-planes, then W does not contain any hyper-
planes. Hence, the number of (Γ1,Γ2) ∈ I2 with Γ1 fixed and H(Γ2) ≤ T2 is

Od,ε(T
10/3+ε
2 ) by (E3) and (E7). Note that W is cut out by Od(1) hypersurfaces

of degrees Od(1) since V is. The number of Γ1 ∈ P4∗(Q) of height at most T1 is
O(T 5

1 ). Hence, the number of pairs (Γ1,Γ2) ∈ I2 such that V does not contain

any two-planes and H(Γi) ≤ Ti is Od,ε(T
5
1 T

10/3+ε
2 ).

If V contains a two-plane, then W contains a hyperplane. The best estimate
for the number of (Γ1,Γ2) ∈ I2 with Γ1 fixed and H(Γ2) ≤ T2 is therefore
Od(T

4
2 ). This is the trivial estimate (E2). Lemma 2.4 states that the set of Γ1

for which V contains a two-plane is contained in a hypersurface in P4∗ of degree
Od(1), provided that X is not a cone over a plane curve. In this case there
are Od(T

4
1 ) such Γ1 ∈ P4∗(Q) of height at most T1, again according to (E2).

In the general case we have O(T 5
1 ) hyperplanes. Hence, the number of pairs

(Γ1,Γ2) ∈ I2 such that V contains a two-plane and H(Γi) ≤ Ti is Od(T
5−η
1 T 4

2 ),
where η = 1 unless X is a cone over a plane curve in which case η = 0.

We can use Lemma 3.2 to estimate the cardinality of I2. The number of
(Γ1,Γ2) ∈ I2 with T < H(Γ1) ≤ 2T for some T � B1/4 is

�d,ε

(
B1/2

T

)10/3+ε

T 5 +

(
B1/2

T

)5−η

T 4 �

{
B25/12+ε if η = 1,

B5/2+ε if η = 0.

By summing over dyadic intervals we get

|I2| �d,ε

{
B25/12+ε if η = 1,

B5/2+ε if η = 0.

Consequently, the first term of (3.3) is Od,ε(B
3+ε).

In order to estimate the second term of (3.3) we divide the ranges of both
Γ1 and Γ2 into dyadic intervals. If T1 � B1/4 and T1T2 � B1/2, then

∑

(Γ1,Γ2)∈I2
Ti<H(Γi)≤2Ti

B1+ε

H(Γ1 ∩ Γ2)1/3
�d,ε

B1+ε

(T1T2)1/3

(
T 5

1 T
10/3+ε
2 + T 4

1 T
4
2

)

� B35/12+ε.

Hence, the second term of (3.3) is Od,ε(B
3+ε).

We have already seen that |I2| = Od,ε(B
3+ε), so it remains to estimate

the very last term in (3.3). Let Z1(T ) be the union of all lines L ⊂ Z with
H(L) > T , for some T > 0, and let Z2(T ) be the union of all lines L ⊂ Z with
H(L) ≤ T . Then,

N(Z,B) ≤ N(Z1(T ), B) +N(Z2(T ), B), (3.4)

for every T > 0.

12



Lemma 3.3. If T ≤ B2, then

N(Z1(T ), B) �d,ε B
13/4T 2/d−1+ε.

Proof. Let J ⊂ P4∗(Q) be the projection of I2 ⊂ P4∗(Q) × P4∗(Q) on the
first factor. If Γ1 ∈ J , then Γ1 ∩ X is an irreducible surface of degree d. By
Lemma 2.5, the dimension of F1(Γ1 ∩X) is at most one, and by Lemma 2.6,
every one-dimensional irreducible component of F1(Γ1 ∩X) has degree at least
d. There are thus Od,ε(R

2/d+ε) rational lines L ⊂ Γ1 ∩X of height at most R
according to (E4). If the line L is contained in Z, then L contains two different
rational points on P4 of height at most B. Hence,

∑

L∈F1(Γ1∩X)(Q)
L⊂Z

R<H(L)≤2R

N(L,B) �d,ε
B2

R
R2/d+ε � B2R2/d−1+ε

according to (E1). The cardinality of J is O(B5/4), so

∑

L⊂Z
R<H(L)≤2R

N(L,B) �d,ε B
13/4R2/d−1+ε. (3.5)

By summing over dyadic intervals, we get

N(Z1(T ), B) �d,ε B
13/4T 2/d−1+ε.

Note that we only have to sum over O(logB) dyadic intervals since H(L) � B2

for every line L that contains two rational points of height at most B.

Lemma 3.4. If T ≤ B2, then

N(Z2(T ), B) �d,ε B
3+ε +B2+εT (3+1/d)/2+ε.

Proof. Every rational line in P4 contains a rational point p such that

H(p) � A′′H(L)1/2

for some positive constant A′′. This is a consequence of Lemma 2.1 and 2.2.
Hence,

Z2(T ) ⊂
⋃

p∈X(Q)
H(p)≤A′′T

(Z ∩ C(p,X)),

where C(p,X) is the cone of lines in X with vertex p.
Suppose that C(p,X) = X for some rational point p ∈ X and let J ⊂ P4∗(Q)

be the projection of I2 ⊂ P4∗(Q) × P4∗(Q) on the first factor. There are O(B)
hyperplanes Γ1 ∈ J passing through p, and there are Od,ε(R

2/d+ε) rational lines
of height at most R on the irreducible surface Γ1 ∩X for any Γ1 ∈ J (see the
proof of Lemma 3.3). We are only interested in lines that contain two different
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points of height at most B, and on such lines there are O(B2/R) rational points
on P4 of height at most B if R ≤ B2. Hence,

∑

L⊂Z∩C(p,X)
R<H(p)≤2R

N(L,B) �d,ε B
3R2/d−1+ε.

By summing over dyadic intervals, we get

N(Z ∩ C(p,X), B) �d,ε B
3+ε.

If there are two different rational points p and q on P4 of height at most T 1/2 ≤ B
such that

X = C(p,X) = C(q,X),

then
N(Z2(T ), B) ≤ N(X,B) �d,ε B

3+ε

according to Lemma 3.1. Hence, the contribution to N(Z2(T ), B) from the
points p with C(p,X) = X is Od,ε(B

3+ε).
Now assume that C(p,X) 6= X for some rational point p ∈ X and consider

an irreducible component Y ⊂ C(p,X). If Y is not a two-plane, then

N(Y,B) �d,ε B
2+ε

according to (E2) or (E6). Note that the degree of Y is bounded in terms of d
according to Lemma 2.7. If Y is a two-plane such that all points of height at
most B on P4(Q) ∩ Y lie on a line, then

N(Y,B) � B2

according to (E2). Hence,

∑

p∈X(Q)

H(p)≤A′′T 1/2

C(p,X)6=X

N(C(p,X), B) �d,ε B
2+εN(X,T 1/2) +N ′(X,B), (3.6)

where N ′(X,B) is the cardinality defined in Lemma 3.1. The first term in (3.6)
is Od,ε(B

2+εT (3+1/d)/2+ε) according to (E3), and the second term is Od,ε(B
3+ε)

according to Lemma 3.1. Hence,

N(Z2(T ), B) �d,ε B
3+ε +B2+εT (3+1/d)/2+ε,

provided that T � B2.

If we put T = B
5d

10d−6 in (3.4) and apply Lemma 3.3 and 3.4, then we get

N(Z,B) �d,ε B
3+ε +B

11

4
+ 7

10d−6
+ε.
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3.3 Estimate of N(Σ3, B)

Consider those pairs (Γ1,Γ2) ∈ I3 with T < H(Γ1) ≤ 2T for some T � B1/4.
For each such pair we use Lemma 2.1 to find a basis b0,b1,b2 of the lattice

{
x ∈ Z5 : [x] ∈ Γ1 ∩ Γ2

}
∪ {0}.

With out loss of generality, we may assume that

|b0| ≤ |b1| ≤ |b2| .

Let φ : Γ1 ∩ Γ2 → P2 be the map

[λ0b0 + λ1b1 + λ2b2] 7→ [λ0, λ1, λ2].

Then H(φ(p)) � H(p)/ |b0| for a rational point p ∈ Γ1 ∩ Γ2, so

N(Γ1 ∩ Γ2 ∩X,B) �d,ε

(
B

|b0|

)2/d+ε

according to (E4). Now consider all bases b0,b1,b2 which satisfy Ci < |bi| ≤
2Ci for some positive numbers Ci with C0 � C1 � C2. The set of Γ ∈ P4∗ which
contains the point [b0] is a hyperplane Λ in P4∗, and the number of Γ ∈ Λ(Q)
with H(Γ) ≤ R is O(R4/ |b0|), provided that R � |b0| [4, Lemma 1(v)]. Hence,
the number of pairs (Γ1,Γ2) ∈ I3 with T < H(Γ1) ≤ 2T , Ci < |bi| ≤ 2Ci, and
b0 fixed is

�

(
((C0C1C2)/T )4

C0

) (
T 4

C0

)
= C2

0C
4
1C

4
2 .

The number of b0 with |b0| � C0 is O(C5
0 ). Hence,

∑

(Γ1,Γ2)∈I3
T<H(Γ1)≤2T
Ci<|bi|≤2Ci

N(Γ1 ∩ Γ2 ∩X,B) �d,ε C
7−2/d
0 C4

1C
4
2B

2/d+ε

� (C0C1C2)
5−2/3dB2/d+ε

� B5/2+5/3d+ε.

By summing over dyadic intervals we get

N(Σ3, B) �d,ε B
5/2+5/3d+ε.

3.4 Conclusion

We have shown that if X ⊂ P4 is an irreducible hypersurface of degree d ≥ 3,
then

N(X,B) �d,ε B
3+ε +B

11

4
+ 7

10d−6
+ε +B

5

2
+ 5

3d +ε,

for every ε > 0. It is straightforward to see that this estimate implies Theorem 1.
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