
Chapter 12

Random Time Change

If x(t) is a Markov process with generator L, i.e. on some space of trajectories
with filtration (Ω,Ft, x(t), P ) this is captured by the requirement that for a
large class of test functions f ,

f(x(t)) − f(x(0)) −
∫ t

0

(Lf)(x(s))ds

is a martingale. If we speed up time and write y(t) = x(2t) then the generator
for the process y(t) is just 2L. This extends to random time changes of a certain
type. Let a(x) be a positive measurable function bounded above and below i.e.
0 < c ≤ a(x) ≤ C < ∞. Consider the stopping times {τ(t)} defined for t > 0
by

∫ τ(t)

0

ds

a(x(s))
= t; dτ ′(t) = a(y(t))dt (12.1)

These are bounded stopping times, and τt is strictly increasing. On the space of
functions Ω = D[[0,∞), X ] they define a map x(t) → y(t) = x(τ(t)). We denote
this map of Ω → Ω by Ta(·). It is easy to verify that Ta(·)Tb(·) = Tb(·)Ta(·) =
Tab(·). If in addition to (11.1) we also have

∫ σ(t)

0

ds

b(y(s))
= t; σ′(t) = b(z(t))dt

Then z(t) = y(σ(t)) = x(θ(t)), with θ(t) = τ(σ(t)), and we have

dθ(t) = τ ′(σ(t))σ′(t)dt = a(y(σ(t))b(z(t))dt = a(z(t))b(z(t))dt

proving Tab = TaTb = TbTa. In particular T−1
a = Ta−1 . The map Ta is one to

one and on to map between solutions of L and a(x)L. To see this we observe
that

f(x(τ(t)) − f(x(0)) −
∫ τ(t)

0

(Lf)(x(s))ds
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is a martingale with respect to (Ω,Fτ(t), P ). We can rewrite the above as

f(y(t)) − f(y(0)) −
∫ t

0

a(y(s))(Lf)(y(s))ds

is a martingale. If x(t) is a solution for L, then y(t) is a solution for a(x)L. In
particular in one dimension any process for [a(x), b(x)] with 0 < c ≤ a(x) ≤ C <

∞ can be obtained easily from Brownian motion. A random time change will
get us to [a(x), 0] from [1, 0] and a Girsanov transformation with the suitable
Radon Nikodym derivative will bring us to [a, b]. These are reversible steps and
therefore uniqueness for [a, b] follows from the uniqueness for [1, 0] which is the
characterization of Brownian motion.



Chapter 13

Local time

Formally the local time of Brownian motion is

l(t, y) =

∫ t

0

δ(x(s) − y)ds = lim
h→0

1

2h

∫ t

0

1[y−h,y+h](x(s))ds

Theorem 13.1. The limit l(t, y) exists, with probability 1 as a jointly continu-

ous function of t and y, and is uniquely defined by the property

∫

R

f(y)l(t, y)dy =

∫ t

0

f(x(s))ds

for any bounded measurable f .

Remark 13.1. If we define L(t, A) =
∫ t

0 1A(x(s))ds, i.e. the amount of time
spent by the Brownian path in the set A during [0, t], then L(t, ·, ω) is a random
measure on R with total mass t. The theorem says it is almost surely absolutely
continuos with a continuous density l(t, y). We will show that with probability
1, it is continuous in y for each t and continuous in t for each y. In fact with a
little more work one can prove that with probability 1, it is jointly continuous
in t and y.

Proof. If we try to apply Itô’s formula for f(x) = |x − a| we could say f ′(x) =
σ(x − a) and f ′′(x) = 2δ(x − a), where σ(x) = x

|x| = ±1 for x 6= 0. Therefore

|x(t) − a| − |a| =

∫ t

0

σ(x(s))dx(s) +

∫ t

0

δ(x(s) − a)ds

or

l(t, a) = |x(t) − a| − |a| −
∫ t

0

σ(x(s))dx(s)

If we define uh(x) as the solution of u′′(x) = 1
h
1[−h,h](x) with u(x) = u′(x) = 0,

it can be explicitly solved and we can verify that uh(x) → |x| and u′
h(x) →

σ(x).
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For each h > 0 we have

uh(x(t) − a) − uh(−a) −
∫ t

0

uh(x(s) − a)dx(s) =

∫ t

0

1

2h
1[a−h,a+h](x(s))ds

It is easy to check that limit exists on the left hand side and so it does on the
right hand side as well. If we multiply both sides by f(a) and integrate we get

F (x(t)) − F (x(0)) −
∫ t

0

F ′(x(s)ds =

∫

l(t, y)f(y)dy

and F ′′(x) = 2f(x). Comparing with Itô’s formula proves that with probability
1,

∫ t

0

f(x(s))ds =

∫

l(t, y)f(y)dy

The questions of continuity are easily established. Clearly the stochastic integral

∫ t

0

σ(x(s))dx(s)

is continuous almost surely. As for continuity in y for fixed t we estimate for
y < z

E[|
∫ t

0

[σ(x(s) − y) − σ(x(s) − z)]dx(s)|4]

≤ CE
[

[

∫ t

0

[σ(x(s) − y) − σ(x(s) − z)]2ds]2
]

= CE[|
∫ t

0

1[y,z](x(s))ds|2]

= 2C

∫

0≤s1≤s2≤t

∫ z

y

∫ z

y

1√
2πs1

e
−

x
2
1

2s1
1

√

2π(s2 − s1)
e
−

(x2−x1)2

2(s2−s1) dx1dx2ds1ds2

≤ C|y − z|2
∫

0≤s1≤s2≤t

1√
2πs1

1
√

2π(s2 − s1)
ds1ds2

≤ C(t)|y − z|2

which is enough to prove continuity in y for fixed t. One can estimate

E[l(t1, x1) − l(t2, x2)|6] ≤ C|x1 − x2|3 + C|t1 − t2|3

and this would do it. (Two dimensional version of Kolmogorov’s theorem).
The multidimensional version of Kolmogorov’s theorem says that a sufficient
condition for a process ξ(x) : x ∈ Rd to be almost surely continuos is the
estimate

E[|ξ(x) − ξ(y)|p] ≤ C|x − y|d+α

for some p > 0 and α > 0.


