Chapter 13

The two dimensional case

If we have a diffusion in 2 — d with bounded b and a which has its eigenvalues
uniformly bounded between A; and Ao, by Girsanov transformation we can get
rid of b and by random time change normalize so that Tra = 2. Then if we
want to solve

Au—Lu=f

i.e invert AI — £ we treat it as perturbation of I — %A. We need to show that
with £ = 3a;;(x)D;iD; and E = L — A,
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is well defined in some function space. We will show that it maps Lo — Hs. This
will be done in two steps. [\ — $A]™! maps Ly — H, for each positive A and
|E[A — £A]7Y| < p < 1 uniformly for all A > 0. The first step is accomplished
by Fourier transform. The operation is multiplication by ex(£) = (A + $[¢?) 7%
For positive A and i = 1,2, ex(£),&ex(§) are bounded while £€;ex(§) has a
bound independent of A. For the second step, we notice that if a + b = 2 and
ab — h? > ¢ > 0, then
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The perturbation argument will now work and the rest of the existence and
uniqueness argument proceeds like the one dimensional case.



