
Chapter 17

Reflection in higher

dimensions

In one dimension there is only one direction to come back from the boundary. In
higher dimensions one can come in at angle which is not necessarily the normal.
If we consider for simplicity Brownian motion is the half space x ≥ 0 in the
plane, when the process is at the boundary it can be reflected in the normal
direction (1, 0) or at an angle, still pointing into the region (1, a). In terms of
PDE, the boundary condition at x = 0 will be ux + auy = 0. If a = 0 then the
two components are independent and the process is (x(t), y(t)) where x(t) is the
reflected one dimensional Brownian Motion and y(t) is an ordinary Brownian
motion independent of it. a 6= 0, then y(t) gets a push when x(t) at 0. The push
is aA(t) where A(t) is the local time at 0. So we have explicit representation of
the process as

x(t) = β1(t) + A(t)

y(t) = β2(t) + aA(t)

We can even let a depend on y so that the boundary condition is ux+a(y)uy = 0.
So long as a(y) is bounded the direction always points inside the domain. One
can try to solve the equation

dy(t) = β2(t) +

∫ t

0

a(y(s))dA(s)

If a(y) is Lipschitz one can solve this by iteration and get a unique solution.
Even if the process in the interior is Brownian motion with a covariance different
from I, i.e. the components are dependent one can always make a linear trans-
formation and reduce the problem to the independent case. If we have variable
coefficient, for instance continuous coefficients, then perturbation techniques in
PDE can be used to show that the process exists and is unique, if the boundary
is smooth and the boundary condition is of the form 〈J,∇u〉 = 0, where J is
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normalized so that 〈J, n〉 = 1, n being the inward normal. There is some trade
off between smoothness of a and the smoothness of J . The reflected processes
in the region G with boundary δG can be characterized by the condition

f(x(t)) − f(x(0)) −

∫ t

0

(Lf)(x(s))ds

is a sub-martingale provided 〈J,∇u〉 ≥ 0 on δG. L is the generator
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2

d∑
i,j=1

ai,j(x)
∂

∂xi∂xj

+

d∑
j=1

bj(x)
∂

∂xj

in the interior G. One can replace the normal n by ∇φ where φ is a smooth
function, with φ > 0 in G, φ = 0 on G and ‖∇φ‖ > 0 on δG. There are
corresponding versions that are slowed down on the boundary and spend positive
time there, as well as versions that are explicitly time dependent.

An example.

We will illustrate the ideas by looking at an example coming from queuing
theory. Consider two arrival streams for two servers that form two queues.
The Poisson arrival rates for them are λ1(N) and λ2(N) respectively, where N

is a large parameter signifying heavy traffic. The corresponding service times
are (µ1(N))−1 and (µ2(N))−1. The system is operating near capacity so that
λi(N) = λiN

2 and µi(N) = λiN
2 + αiN . Behavior of the system will depend

on the protocol. Let us suppose that when one queue is empty that server will
help out the server of the second queue and the service rate for the nonempty
queue is now double the normal rate. We have a Markov chain in continuous
time. State space is Z+×Z+, i.e the two queue lengths i, j ≥ 0. The transitions
are

(i, j) → (i + 1, j) with rate λ1(N)

(i, j) → (i, j + 1) with rate λ2(N)

for all i, j.

(i, j) → (i − 1, j) with rate µ1(N)

(i, j) → (i, j − 1) with rate µ2(N)

if i, j > 0. If either i or j equlas 0

(i, 0) → (i − 1, 0) with rate 2µ1(N)

(0, j) → (0, j − 1) with rate 2µ2(N)

If we measure the queue lengths as x1 = i
N

and x2 = j
N

, the generator at
x1 > 0, x2 > 0 is
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(ANf)(x1, x2) = λ1(N)[f(x1 +
1

N
, x2) − f(x1, x2)]

+ λ2(N)[f(x1, x2 +
1

N
) − f(x1, x2)]

+ µ1(N)[f(x1 −
1

N
, x2) − f(x1, x2)]

+ µ2(N)[f(x1, x2) − f(x1, x2 −
1

N
)]

On the other hand if x1 = 0, x2 > 0

(ANf)(0, x2) = λ1(N)[f(
1

N
, x2) − f(0, x2)] + λ2(N)[f(0, x2 +

1

N
) − f(0, x2)]

+ 2µ2(N)[f(0, x2) − f(x1, x2 −
1

N
)]

and a similar expression if x1 > 0, x2 = 0. As N → ∞, if x1, x2 > 0,

(ANf)(x1, x2) → −α1f1 − α2f2 + λ1f11 + λ2f22

If x1 = 0
1

N
(ANf)(0, x2) → λ1f1(0, x2) − λ2f2(0, x2)

and a similar condition when x2 = 0. It is therefore worth considering the
following problem in the domain G = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}. The operator
in the interior is

L =
1

2

2∑
i,j=1

ai,j

∂2

∂xi∂xj

+
2∑

j=1

bj

∂

∂xj

The boundary conditions are ∂
∂x1

+ γ1
∂

∂x2

= 0 on x1 = 0 and ∂
∂x2

+ γ2
∂

∂x1

= 0
on x2 = 0. We can do a linear change of variables and reduce the generator in
the interior to be ∆. But the domain will change from a quadrant to a wedge
0 ≤ θ ≤ α. Locally we have no problem unless the path gets to the origin
(0, 0) which is a singular point on the boundary. Whether the point is reached
or not will only depend on the angle α of the wedge and the two directions of
reflection along the two sides of the wedge. Girsanov’s theorem shows that b1, b2

will not affect the qualitative behavior. Let us take them to be 0. We need to
determine when the origin will be reached with positive probability. Consider a
homogeneous function of order α.

H(x1, x2) = rκh(θ)

defined on the first quadrant. We want this to be a solution of

∆H = 0,

with the boundary conditions being satisfied. This will lead to an ODE for h(θ)
on [0, α] with boundary conditions at the ends. κ is determined by the condition
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that h be positive. If κ > 0, origin will be reached and if κ < 0 it will not be.
κ = 0 corresponds to a solution with a logarithmic singularity and again (0, 0)
will not be reached. The equation

∆rκh(θ) = h(θ)∆rκ + rκ∆h(θ) + 2∇rκ · ∇h(θ) = 0

reduces to the following ODE for h(θ) on 0 ≤ θ ≤ α.

k2h(θ) + h′′(θ) = 0 (17.1)

with boundary conditions specified by the two angles α1 and α2, that can vary
between −π

2 and π
2 , that the directions of reflection make with the respective

inward normals. Derivatives in the direction π
2 + α1 along θ = 0 and in the

direction α− π
2 + α2 along θ = α must be equal to 0. There will be exactly one

value of k for which we will have a solution that is positive on [0, α]. Accessibility
will depend on the sign of k. One can show that, even when accessible, there is
only one solution if we insist that the total amount of time the process spends
at 0, i.e. the Lebesgue measure of {t : x(t) = 0} is almost surely 0.

Test for accessibility of 0. We need to compute the gradients in the specified
directions along the corresponding rays in polar coordinates. Gradient in the
direction φ at the point (x, y) is

cosφ
∂

∂x
+ sin φ

∂

∂y
= cosφ[

x

r

∂

∂r
−

y

r2

∂

∂θ
] + sinφ[

y

r

∂

∂r
+

x

r2

∂

∂θ
]

Along the line θ = 0 it reduces to cosφ ∂
∂r

+ sin φ
r

∂
∂θ

whereas along the line

θ = α we end up with cos(φ−α) ∂
∂r

+ sin(φ−α)
r

∂
∂θ

. When applied to the function
rk[A cos kθ + B sinkθ], which is the general solution of (??) the boundary con-
dition at θ = 0 (with φ = π

2 + α1), for the function h(θ) = A cos kθ + B sin kθ

leads to
−A sinα1 + B cosα1 = 0

Similarly the boundary condition at θ = α (with φ = α − π
2 + α2) is

−A sin(kα + α2) + B cos(kα + α2) = 0

For these two equations to have a nontrivial solution we need

cosα1 sin(kα + α2) − sinα1 cos(kα + α2) = sin(kα + α2 − α1) = 0

For some ineteger r,

k =
α1 − α2 + rπ

α

The solution is h(θ) = cos(kθ − α1). Have to pick r so that h does not vanish
in [0, α]. Only r = 0 will work, forcing k = α1−α2

α
.


