2.1 Continuous Parameter Martingales.

(Ω, \mathcal{B}, P) is a probability space and for $t \in[0, T], \mathcal{B}_{t} \subset \mathcal{B}$ is an increasing family of sub- σ fields, referred to as "filtration". A martingale with respect to $\left(\Omega, \mathcal{B}_{t}, P\right)$ is a family $\xi(t, \omega)$ with the following properties.

- For almost all $\omega, \xi(t)$ is a right continuous function of t.
- For each $t, \xi(t, \omega)$ is \mathcal{B}_{t} measurable. With right continuity it follows that $\xi(\cdot, \omega)$ is "progressively measurable" i.e for each $t>0$, the function $\xi(s, \omega)$ as a map of $[0, t] \times \Omega \rightarrow R$ is measurable with respect to $\mathcal{B}[0, t] \times \mathcal{B}_{t}$ where $\mathcal{B}[0, t]$ is the Borel σ-field of $[0, t]$.
- $\xi(t, \omega) \in L_{1}(P)$ and for $t>s \geq 0, E\left[\xi(t) \mid \mathcal{B}_{s}\right]=\xi(s, \omega)$ a.e.

Remark 2.1. According to a theorem of Doob, a continuous parameter martingale, almost surely, has limits from the left and right at every t. To demand that it be right continuous, i.e. to define the value at t as the limit from the right is a matter of normalization.
Remark 2.2. By restricting the martingale $\xi(t, \omega)$ to a discrete subset $\{n h\}$ we will get a discrete parameter martingale. The usual estimates valid for martingales are valid for them, uniformly in h. We can then let $h \rightarrow 0$ and deduce analogous results for continuous parameter martingales. For example the following theorems are easily established in this manner.

Theorem 2.1. Let $\xi(t)$ be a continuous parameter martingale on $[0, T]$. Then

$$
P\left[\sup _{t \in[0, T]}|\xi(t)| \geq \ell\right] \leq \frac{1}{\ell} \int_{\left[\sup _{t \in[0, T]}|\xi(t)| \geq \ell\right]}|\xi(T)| d P \leq \frac{1}{\ell} E[|\xi(T)|]
$$

Moreover for $p>1$,

$$
\left\|\sup _{t \in[0, T]}|\xi(t)|\right\|_{p} \leq \frac{p}{p-1}\|\xi(T)\|_{p}
$$

2.2 Stopping Times.

Given a filtration $\left\{\mathcal{B}_{t}\right\}$ we can define a stopping time relative to the filtration. A function $\tau: \Omega \rightarrow[0, \infty]$ is called a stopping time if for every $t \geq 0$ the set $\{\omega: \tau(\omega) \leq t\}$ is \mathcal{B}_{t} measurable. Typical examples of stopping times are the first time some thing happens, like the exit time from an open set. Given a stopping time τ there is a natural sub σ-field \mathcal{B}_{τ} associated with it, defined by

$$
A \in \mathcal{B}_{\tau} \Leftrightarrow A \cap\{\tau \leq t\} \in \mathcal{B}_{t} \quad \forall t
$$

It is easy to check that any stopping time τ is measurable with respect to \mathcal{B}_{τ}. For any $t, \tau \wedge t$ is a stopping time as well, and $\mathcal{B}_{\tau \wedge t}$ is a new filtration. If $\xi(t)$ is a martingale with respect to $\left\{\mathcal{B}_{t}\right\}$ so is $\xi(\tau \wedge t, \omega)$ with respect to $\mathcal{B}_{\tau \wedge t}$.

Doob's optional stopping theorem for martingales extends to the continuous case.

Theorem 2.2. If $0 \leq \tau_{1} \leq \tau_{2} \leq C$ are two bounded stopping times, and $\xi(t)$ is a martingale with respect to $\left(\Omega, \mathcal{B}_{t}, P\right)$ then almost surely

$$
E\left[\xi\left(\tau_{2}\right) \mid \mathcal{B}_{\tau_{1}}\right]=\xi\left(\tau_{1}\right)
$$

This is proved by approximating the stopping times $\tau_{i}, i=1,2$ by $\tau_{i}^{n}=$ $\frac{\left[n \tau_{i}\right]+1}{n}$. Then the optional stopping theorem can be applied to the discrete martingale $\xi\left(\frac{j}{n}\right)$, conclude that $E\left[\xi\left(\tau_{2}^{n}\right) \mid \mathcal{B}_{\tau_{1}^{n}}\right]=\xi\left(\tau_{1}^{n}\right)$ and let $n \rightarrow \infty$ to obtain our theorem.

2.3 Strong Markov Property.

Brownian motion is a process with independent increments. It is therefore, in particular, a Markov Process. That is to say, given the past history \mathcal{B}_{s}, [the σ-field generates by $\{x(u): 0 \leq u \leq s\}$], the conditional distribution of $x(t)=x(s)+[x(t)-x(s)]$ for $t>s$ is the normal distribution with mean $x(s)$ and variance $t-s$. Since this only depends on $x(s)$ the Markov property holds. The strong Markov property extends this from constant times s to stopping times.

We begin with $\left(\Omega, \mathcal{B}_{t}, x(t), P\right)$, where \mathcal{B}_{t} is an increasing family of sub- σ fields, satisfying

- For each $t, x(t, \omega)$ is \mathcal{B}_{t} measurable
- $x(t)$ is almost surely a continuous function of t.
- For $t>s>$ almost surely

$$
P\left[x(t) \in A \mid \mathcal{B}_{s}\right]=\int_{A} \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{(y-x(s))^{2}}{2(t-s)}} d y
$$

We will call such an $x(t)$ a Brownian motion adapted to $\left\{\mathcal{B}_{t}\right\}$. Note that \mathcal{B}_{t} can be larger than $\sigma\{x(s): 0 \leq s \leq t\}$.

Theorem 2.3. The strong Markov property holds for Brownian Motion. That is, given any stopping time τ that is almost surely finite,

$$
P\left[x(t+\tau) \in A \mid \mathcal{B}_{\tau}\right]=\int_{A} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(y-x(\tau))^{2}}{2 t}} d y
$$

Equivalently the process $x(t+\tau)-x(\tau)$ is another Brownian Motion adapted to $\mathcal{B}_{\tau+t}$, and is independent of \mathcal{B}_{τ}.

Proof. It is enough to show that if $A \in \mathcal{B}_{\tau}$ and f is a bounded continuous function, , then

$$
\int_{A} f(x(t+\tau)) d P=\int_{A} g(x(\tau)) d P
$$

where

$$
g(x)=\int f(y) \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

We will check it for τ that takes only a countable set of values. $\tau=t_{j}$ for some j. The set $A_{j}=A \cap\left\{\tau=t_{j}\right\} \in \mathcal{B}_{t_{j}}$. Therefore from the Markov property

$$
\begin{aligned}
\int_{A} f(x(t+\tau)) d P & =\sum_{j} \int_{A_{j}} f(x(t+\tau)) d P=\sum_{j} \int_{A_{j}} f\left(x\left(t+t_{j}\right)\right) d P \\
& =\sum_{j} \int_{A_{j}} g\left(x\left(t_{j}\right)\right) d P=\int_{A} g(x(\tau)) d P
\end{aligned}
$$

If we now approximate τ by $\tau_{n}=\frac{[n \tau]+1}{n}$ and pass to the limit we are done. Note that here we approximate τ by $\tau_{n} \geq \tau$, so that $A \in \mathcal{B}_{\tau} \subset \mathcal{B}_{\tau_{n}}$. We have also used the fact that g is continuous.

Remark 2.3. Any Markov process that has almost surely right continuous paths and $E[f(x(t) \mid x(s)]=g(s, t, x(s))$ where $g(s, t, x)$ is continuous in x for each fixed $s<t$, has the strong Markov property by the same argument.

2.4 Reflection Principle.

If $x(t)$ is Brownian motion

$$
P\left[\sup _{0 \leq s \leq t} x(s) \geq \ell\right]=2 P[x(t) \geq \ell]
$$

Let τ be the stopping time $\tau=\inf \{s: x(s) \geq \ell\}$. We are interested in $P[\tau \leq t]$. Note that $x(\tau)=\ell$. Therefore

$$
\begin{aligned}
P[x(t) \geq \ell] & =P[x(t) \geq \ell \& \tau \leq t]=P[\tau \leq t] \int_{\ell}^{\infty} \frac{1}{\sqrt{2 \pi(t-\tau)}} e^{-\frac{(y-\ell)^{2}}{2(t-\tau)}} d y \\
& =\frac{1}{2} P[\tau \leq t]
\end{aligned}
$$

2.5 Brownian Motion as a Martingale

P is the Wiener measure on (Ω, \mathcal{B}) where $\Omega=C[0, T]$ and \mathcal{B} is the Borel σ-field on Ω. In addition we denote by \mathcal{B}_{t} the σ-field generated by $x(s)$ for $0 \leq s \leq t$. It is easy to see that $x(t)$ is a martingale with respect to $\left(\Omega, \mathcal{B}_{t}, P\right)$, i.e. for each $t>s$ in $[0, T]$

$$
\begin{equation*}
E^{P}\left[x(t) \mid \mathcal{B}_{s}\right]=x(s) \quad \text { a.e. } \quad P \tag{2.1}
\end{equation*}
$$

and so is $x(t)^{2}-t$. In other words

$$
\begin{equation*}
E^{P}\left[x(t)^{2}-t \mid \mathcal{F}_{s}\right]=x(s)^{2}-s \quad \text { a.e. } \quad P \tag{2.2}
\end{equation*}
$$

The proof is rather straight forward. We write $x(t)=x(s)+Z$ where $Z=$ $x(t)-x(s)$ is a random variable independent of the past history \mathcal{B}_{s} and is distributed as a Gaussian random variable with mean 0 and variance $t-s$. Therefore $E^{P}\left[Z \mid \mathcal{B}_{s}\right]=0$ and $E^{P}\left[Z^{2} \mid \mathcal{B}_{s}\right]=t-s$ a.e P. Conversely,

Theorem 2.4. Lévy's theorem. If P is a measure on $(C[0, T], \mathcal{B})$ such that $P[x(0)=0]=1$ and the the functions $x(t)$ and $x^{2}(t)-t$ are martingales with respect to $\left(C[0, T], \mathcal{B}_{t}, P\right)$ then P is the Wiener measure.

Proof. The proof is based on the observation that a Gaussian distribution is determined by two moments. But that the distribution is Gaussian is a consequence of the fact that the paths are almost surely continuous and not part of our assumptions. The actual proof is carried out by establishing that for each real number λ

$$
\begin{equation*}
X_{\lambda}(t)=\exp \left[\lambda x(t)-\frac{\lambda^{2}}{2} t\right] \tag{2.3}
\end{equation*}
$$

is a martingale with respect to $\left(C[0, T], \mathcal{B}_{t}, P\right)$. Once this is established it is elementary to compute

$$
E^{P}\left[\exp [\lambda(x(t)-x(s))] \mid \mathcal{B}_{s}\right]=\exp \left[\frac{\lambda^{2}}{2}(t-s)\right]
$$

which shows that we have a Gaussian Process with independent increments with two matching moments. The proof of (2.3) is more or less the same as proving the central limit theorem. In order to prove that $X_{\lambda}(t)$ is a martingale, we can assume with out loss of generality that $s=0$ and show that

$$
\begin{equation*}
E^{P}\left[\exp \left[\lambda x(t)-\frac{\lambda^{2}}{2} t\right]\right]=1 \tag{2.4}
\end{equation*}
$$

To this end let us define successively $\tau_{0, \epsilon}=0$,

$$
\tau_{k+1, \epsilon}=\min \left[\inf \left\{s: s \geq \tau_{k, \epsilon},\left|x(s)-x\left(\tau_{k, \epsilon}\right)\right| \geq \epsilon\right\}, t, \tau_{k, \epsilon}+\epsilon\right]
$$

Then each $\tau_{k, \epsilon}$ is a stopping time and eventually $\tau_{k, \epsilon}=t$ by continuity of paths. The continuity of paths also guarantees that $\left|x\left(\tau_{k+1, \epsilon}\right)-x\left(\tau_{k, \epsilon}\right)\right| \leq \epsilon$. We write

$$
x(t)=\sum_{k \geq 0}\left[x\left(\tau_{k+1, \epsilon}\right)-x\left(\tau_{k, \epsilon}\right)\right]
$$

and

$$
t=\sum_{k \geq 0}\left[\tau_{k+1, \epsilon}-\tau_{k, \epsilon}\right]
$$

To establish (2.4) we calculate the quantity on the left hand side as

$$
\lim _{n \rightarrow \infty} E^{P}\left[\exp \left[\sum_{0 \leq k \leq n}\left[\lambda\left[x\left(\tau_{k+1, \epsilon}\right)-x\left(\tau_{k, \epsilon}\right)\right]-\frac{\lambda^{2}}{2}\left[\tau_{k+1, \epsilon}-\tau_{k, \epsilon}\right]\right]\right]\right]
$$

and show that it is equal to 1 . Let us consider the σ-field $\mathcal{F}_{k}=\mathcal{B}_{\tau_{k, \epsilon}}$ and the quantity

$$
q_{k}(\omega)=E^{P}\left[\left.\exp \left[\lambda\left[x\left(\tau_{k+1, \epsilon}\right)-x\left(\tau_{k, \epsilon}\right)\right]-\left[\frac{\lambda^{2}}{2}+C(\lambda) \epsilon\right]\left[\tau_{k+1, \epsilon}-\tau_{k, \epsilon}\right]\right] \right\rvert\, \mathcal{F}_{k}\right]
$$

with the choice of the constant $C(\lambda)$ to be chosen later. Clearly, if we use Taylor expansion and the fact that $x(t)$ as well as $x(t)^{2}-t$ are martingales

$$
\begin{aligned}
q_{k}(\omega) & \leq E^{P}\left[1+c(\lambda)\left[\left|x\left(\tau_{k+1, \epsilon}\right)-x\left(\tau_{k, \epsilon}\right)\right|^{3}+\left|\tau_{k+1, \epsilon}-\tau_{k, \epsilon}\right|^{2}\right]-C(\lambda) \epsilon\left[\tau_{k+1, \epsilon}-\tau_{k, \epsilon}\right] \mid \mathcal{F}_{k}\right] \\
& \leq E^{P}\left[1+c(\lambda) \epsilon\left[\left|x\left(\tau_{k+1, \epsilon}\right)-x\left(\tau_{k, \epsilon}\right)\right|^{2}+\left|\tau_{k+1, \epsilon}-\tau_{k, \epsilon}\right|\right]-C(\lambda) \epsilon\left[\tau_{k+1, \epsilon}-\tau_{k, \epsilon}\right] \mid \mathcal{F}_{k}\right] \\
& \leq 1
\end{aligned}
$$

for some suitably chosen constant $C(\lambda)$ depending on λ. By Fatou's lemma

$$
E^{P}\left[\exp \left[\lambda x(t)-\left[\frac{\lambda^{2}}{2}+C(\lambda) \epsilon\right] t\right]\right] \leq 1
$$

Since $\epsilon>0$ is arbitrary we prove one half of (2.4). A similar estimate will yield

$$
E^{P}\left[\exp \left[\lambda x(t)-\left[\frac{\lambda^{2}}{2}-C(\lambda) \epsilon\right] t\right]\right] \geq 1
$$

which can be used to prove the other half provided we show the uniform integrability of $\left\{\exp \left[\lambda x\left(\tau_{n}\right)\right]\right\}$. This follows from the upper bound established above. This completes the proof of the theorem.

Remark 2.4. Theorem 2.4 fails for the process $x(t)=N(t)-t$ where $N(t)$ is the standard Poisson Process with rate 1.
Remark 2.5. One can use the Martingale inequality in order to estimate the probability $P\left\{\sup _{0 \leq s \leq t}|x(s)| \geq \ell\right\}$. For $\lambda>0$, by Doob's inequality

$$
P\left[\sup _{0 \leq s \leq t} \exp \left[\lambda x(s)-\frac{\lambda^{2}}{2} s\right] \geq A\right] \leq \frac{1}{A}
$$

and

$$
\begin{aligned}
P\left[\sup _{0 \leq s \leq t} x(s) \geq \ell\right] & \leq P\left[\sup _{0 \leq s \leq t}\left[x(s)-\frac{\lambda s}{2}\right] \geq \ell-\frac{\lambda t}{2}\right] \\
& =P\left[\sup _{0 \leq s \leq t}\left[\lambda x(s)-\frac{\lambda^{2} s}{2}\right] \geq \lambda \ell-\lambda^{2} t 2\right] \\
& \leq \exp \left[-\lambda \ell+\frac{\lambda^{2} t}{2}\right]
\end{aligned}
$$

Optimizing over $\lambda>0$, we obtain

$$
P\left[\sup _{0 \leq s \leq t} x(s) \geq \ell\right] \leq \exp \left[-\frac{\ell^{2}}{2 t}\right]
$$

and by symmetry

$$
P\left[\sup _{0 \leq s \leq t}|x(s)| \geq \ell\right] \leq 2 \exp \left[-\frac{\ell^{2}}{2 t}\right]
$$

The estimate is not too bad because by reflection principle

$$
P\left[\sup _{0 \leq s \leq t} x(s) \geq \ell\right]=2 P[x(t) \geq \ell]=\sqrt{\frac{2}{\pi t}} \int_{\ell}^{\infty} \exp \left[-\frac{x^{2}}{2 t}\right] d x
$$

Exercise 2.1. One can use the estimate above to prove the result of Paul Lévy

$$
P\left[\lim _{\delta \rightarrow 0} \frac{\sup _{\substack{0 \leq s, t \leq 1 \\ \mid=-t \leq \delta}}|x(s)-x(t)|}{\sqrt{\delta \log \frac{1}{\delta}}}=\sqrt{2}\right]=1
$$

We had an exercise in the previous section that established the lower bound. Let us concentrate on the upper bound. If we define

$$
\Delta_{\delta}(\omega)=\sup _{\substack{0 \leq s, t \leq 1 \\|s-t| \leq \delta}}|x(s)-x(t)|
$$

first check that it is sufficient to prove that for any $\rho<1$, and $a>\sqrt{2}$

$$
\begin{equation*}
\sum_{n} P\left[\Delta_{\rho^{n}}(\omega) \geq a \sqrt{n \rho^{n} \log \frac{1}{\rho}}\right]<\infty \tag{2.5}
\end{equation*}
$$

To estimate $\Delta_{\rho^{n}}(\omega)$ it is sufficient to estimate $\sup _{t \in I_{j}}\left|x(t)-x\left(t_{j}\right)\right|$ for $k_{\epsilon} \rho^{-n}$ overlapping intervals $\left\{I_{j}\right\}$ of the form $\left[t_{j}, t_{j}+(1+\epsilon) \rho^{n}\right]$ with length $(1+\epsilon) \rho^{n}$. For each $\epsilon>0, k_{\epsilon}=\epsilon^{-1}$ is a constant such that any interval $[s, t]$ of length no larger than ρ^{n} is completely contained in some I_{j} with $t_{j} \leq s \leq t_{j}+\epsilon \rho^{n}$. Then

$$
\Delta_{\rho^{n}}(\omega) \leq \sup _{j}\left[\sup _{t \in I_{j}}\left|x(t)-x\left(t_{j}\right)\right|+\sup _{t_{j} \leq s \leq t_{j}+\epsilon \rho^{n}}\left|x(s)-x\left(t_{j}\right)\right|\right]
$$

Therefore, for any $a=a_{1}+a_{2}$,

$$
\begin{aligned}
P\left[\Delta_{\rho^{n}}(\omega) \geq\right. & \left.a \sqrt{n \rho^{n} \log \frac{1}{\rho}}\right] \\
\leq & P\left[\sup _{j} \sup _{t \in I_{j}}\left|x(t)-x\left(t_{j}\right)\right| \geq a_{1} \sqrt{n \rho^{n} \log \frac{1}{\rho}}\right] \\
& +P\left[\sup _{j} \sup _{t_{j} \leq s \leq t_{j}+\epsilon \rho^{n}}\left|x(s)-x\left(t_{j}\right)\right| \geq a_{2} \sqrt{n \rho^{n} \log \frac{1}{\rho}}\right] \\
\leq & 2 k_{\epsilon} \rho^{-n}\left[\exp \left[-\frac{a_{1}^{2} n \rho^{n} \log \frac{1}{\rho}}{2(1+\epsilon) \rho^{n}}\right]+\exp \left[-\frac{a_{2}^{2} n \rho^{n} \log \frac{1}{\rho}}{2 \epsilon \rho^{n}}\right]\right]
\end{aligned}
$$

Since $a>\sqrt{2}$, we can pick $a_{1}>\sqrt{2}$ and $a_{2}>0$. For $\epsilon>0$ sufficiently small (2.5) is easily verified.

