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2.1 Continuous Parameter Martingales.

(Ω,B, P ) is a probability space and for t ∈ [0, T ], Bt ⊂ B is an increasing
family of sub-σ fields, referred to as ”filtration”. A martingale with respect to
(Ω,Bt, P ) is a family ξ(t, ω) with the following properties.

• For almost all ω, ξ(t) is a right continuous function of t.

• For each t, ξ(t, ω) is Bt measurable. With right continuity it follows that
ξ(·, ω) is ”progressively measurable” i.e for each t > 0, the function ξ(s, ω)
as a map of [0, t]×Ω → R is measurable with respect to B[0, t]×Bt where
B[0, t] is the Borel σ−field of [0, t].

• ξ(t, ω) ∈ L1(P ) and for t > s ≥ 0, E[ξ(t)|Bs] = ξ(s, ω) a.e.

Remark 2.1. According to a theorem of Doob, a continuous parameter martin-
gale, almost surely, has limits from the left and right at every t. To demand
that it be right continuous, i.e. to define the value at t as the limit from the
right is a matter of normalization.

Remark 2.2. By restricting the martingale ξ(t, ω) to a discrete subset {nh}
we will get a discrete parameter martingale. The usual estimates valid for
martingales are valid for them, uniformly in h. We can then let h → 0 and
deduce analogous results for continuous parameter martingales. For example
the following theorems are easily established in this manner.

Theorem 2.1. Let ξ(t) be a continuous parameter martingale on [0, T ]. Then

P [ sup
t∈[0,T ]

|ξ(t)| ≥ ℓ] ≤ 1

ℓ

∫

[supt∈[0,T ] |ξ(t)|≥ℓ]

|ξ(T )|dP ≤ 1

ℓ
E[|ξ(T )|]

Moreover for p > 1,

‖ sup
t∈[0,T ]

|ξ(t)|‖p ≤ p

p − 1
‖ξ(T )‖p

2.2 Stopping Times.

Given a filtration {Bt} we can define a stopping time relative to the filtration.
A function τ : Ω → [0,∞] is called a stopping time if for every t ≥ 0 the set
{ω : τ(ω) ≤ t} is Bt measurable. Typical examples of stopping times are the
first time some thing happens, like the exit time from an open set. Given a
stopping time τ there is a natural sub σ-field Bτ associated with it, defined by

A ∈ Bτ ⇔ A ∩ {τ ≤ t} ∈ Bt ∀t

It is easy to check that any stopping time τ is measurable with respect to Bτ .
For any t, τ ∧ t is a stopping time as well, and Bτ∧t is a new filtration. If ξ(t)
is a martingale with respect to {Bt} so is ξ(τ ∧ t, ω) with respect to Bτ∧t.

Doob’s optional stopping theorem for martingales extends to the continuous
case.
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Theorem 2.2. If 0 ≤ τ1 ≤ τ2 ≤ C are two bounded stopping times, and ξ(t) is

a martingale with respect to (Ω,Bt, P ) then almost surely

E[ξ(τ2)|Bτ1 ] = ξ(τ1)

This is proved by approximating the stopping times τi, i = 1, 2 by τn
i =

[nτi]+1
n

. Then the optional stopping theorem can be applied to the discrete

martingale ξ( j
n
), conclude that E[ξ(τn

2 )|Bτn
1
] = ξ(τn

1 ) and let n → ∞ to obtain
our theorem.

2.3 Strong Markov Property.

Brownian motion is a process with independent increments. It is therefore,
in particular, a Markov Process. That is to say, given the past history Bs,
[the σ-field generates by {x(u) : 0 ≤ u ≤ s}], the conditional distribution of
x(t) = x(s) + [x(t) − x(s)] for t > s is the normal distribution with mean x(s)
and variance t− s. Since this only depends on x(s) the Markov property holds.
The strong Markov property extends this from constant times s to stopping
times.

We begin with (Ω,Bt, x(t), P ), where Bt is an increasing family of sub-σfields,
satisfying

• For each t, x(t, ω) is Bt measurable

• x(t) is almost surely a continuous function of t.

• For t > s > almost surely

P [x(t) ∈ A|Bs] =

∫

A

1
√

2π(t − s)
e
−

(y−x(s))2

2(t−s) dy

We will call such an x(t) a Brownian motion adapted to {Bt}. Note that Bt can
be larger than σ{x(s) : 0 ≤ s ≤ t}.

Theorem 2.3. The strong Markov property holds for Brownian Motion. That

is, given any stopping time τ that is almost surely finite,

P [x(t + τ) ∈ A|Bτ ] =

∫

A

1√
2πt

e−
(y−x(τ))2

2t dy

Equivalently the process x(t + τ)− x(τ) is another Brownian Motion adapted to

Bτ+t, and is independent of Bτ .

Proof. It is enough to show that if A ∈ Bτ and f is a bounded continuous
function, , then

∫

A

f(x(t + τ))dP =

∫

A

g(x(τ))dP
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where

g(x) =

∫

f(y)
1√
2πt

e−
(y−x)2

2t dy

We will check it for τ that takes only a countable set of values. τ = tj for some
j. The set Aj = A ∩ {τ = tj} ∈ Btj

. Therefore from the Markov property

∫

A

f(x(t + τ))dP =
∑

j

∫

Aj

f(x(t + τ))dP =
∑

j

∫

Aj

f(x(t + tj))dP

=
∑

j

∫

Aj

g(x(tj))dP =

∫

A

g(x(τ))dP

If we now approximate τ by τn = [nτ ]+1
n

and pass to the limit we are done. Note
that here we approximate τ by τn ≥ τ , so that A ∈ Bτ ⊂ Bτn

. We have also
used the fact that g is continuous.

Remark 2.3. Any Markov process that has almost surely right continuous paths
and E[f(x(t)|x(s)] = g(s, t, x(s)) where g(s, t, x) is continuous in x for each fixed
s < t, has the strong Markov property by the same argument.

2.4 Reflection Principle.

If x(t) is Brownian motion

P [ sup
0≤s≤t

x(s) ≥ ℓ] = 2P [x(t) ≥ ℓ]

Let τ be the stopping time τ = inf{s : x(s) ≥ ℓ}. We are interested in P [τ ≤ t].
Note that x(τ) = ℓ. Therefore

P [x(t) ≥ ℓ] = P [x(t) ≥ ℓ & τ ≤ t] = P [τ ≤ t]

∫ ∞

ℓ

1
√

2π(t − τ)
e
− (y−ℓ)2

2(t−τ) dy

=
1

2
P [τ ≤ t]

2.5 Brownian Motion as a Martingale

P is the Wiener measure on (Ω, B) where Ω = C[0, T ] and B is the Borel σ-field
on Ω. In addition we denote by Bt the σ-field generated by x(s) for 0 ≤ s ≤ t.
It is easy to see that x(t) is a martingale with respect to (Ω, Bt, P ), i.e. for
each t > s in [0, T ]

EP [x(t)|Bs] = x(s) a.e. P (2.1)

and so is x(t)2 − t. In other words

EP [x(t)2 − t |Fs] = x(s)2 − s a.e. P (2.2)
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The proof is rather straight forward. We write x(t) = x(s) + Z where Z =
x(t) − x(s) is a random variable independent of the past history Bs and is
distributed as a Gaussian random variable with mean 0 and variance t − s.
Therefore EP [Z|Bs] = 0 and EP [Z2|Bs] = t − s a.e P . Conversely,

Theorem 2.4. Lévy’s theorem. If P is a measure on (C[0, T ], B) such that

P [x(0) = 0] = 1 and the the functions x(t) and x2(t) − t are martingales with

respect to (C[0, T ], Bt, P ) then P is the Wiener measure.

Proof. The proof is based on the observation that a Gaussian distribution is
determined by two moments. But that the distribution is Gaussian is a conse-
quence of the fact that the paths are almost surely continuous and not part of
our assumptions. The actual proof is carried out by establishing that for each
real number λ

Xλ(t) = exp
[

λx(t) − λ2

2
t
]

(2.3)

is a martingale with respect to (C[0, T ], Bt, P ). Once this is established it is
elementary to compute

EP
[

exp
[

λ(x(t) − x(s))
]

|Bs

]

= exp
[λ2

2
(t − s)

]

which shows that we have a Gaussian Process with independent increments with
two matching moments. The proof of (2.3) is more or less the same as proving
the central limit theorem. In order to prove that Xλ(t) is a martingale, we can
assume with out loss of generality that s = 0 and show that

EP
[

exp
[

λx(t) − λ2

2
t
]]

= 1 (2.4)

To this end let us define successively τ0,ǫ = 0,

τk+1,ǫ = min
[

inf
{

s : s ≥ τk,ǫ, |x(s) − x(τk,ǫ)| ≥ ǫ
}

, t , τk,ǫ + ǫ
]

Then each τk,ǫ is a stopping time and eventually τk,ǫ = t by continuity of paths.
The continuity of paths also guarantees that |x(τk+1,ǫ)− x(τk,ǫ)| ≤ ǫ. We write

x(t) =
∑

k≥0

[x(τk+1,ǫ) − x(τk,ǫ)]

and

t =
∑

k≥0

[τk+1,ǫ − τk,ǫ]

To establish (2.4) we calculate the quantity on the left hand side as

lim
n→∞

EP
[

exp
[

∑

0≤k≤n

[

λ[x(τk+1,ǫ) − x(τk,ǫ)] −
λ2

2
[τk+1,ǫ − τk,ǫ]

]]]
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and show that it is equal to 1. Let us consider the σ-field Fk = Bτk,ǫ
and the

quantity

qk(ω) = EP
[

exp
[

λ[x(τk+1,ǫ) − x(τk,ǫ)] − [
λ2

2
+ C(λ)ǫ][τk+1,ǫ − τk,ǫ]

]∣

∣Fk

]

with the choice of the constant C(λ) to be chosen later. Clearly, if we use Taylor
expansion and the fact that x(t) as well as x(t)2 − t are martingales

qk(ω) ≤ EP
[

1 + c(λ)
[

|x(τk+1,ǫ) − x(τk,ǫ)|3 + |τk+1,ǫ − τk,ǫ|2
]

− C(λ)ǫ[τk+1,ǫ − τk,ǫ]

∣

∣

∣

∣

Fk

]

≤ EP
[

1 + c(λ)ǫ
[

|x(τk+1,ǫ) − x(τk,ǫ)|2 + |τk+1,ǫ − τk,ǫ|
]

− C(λ)ǫ[τk+1,ǫ − τk,ǫ]
∣

∣Fk

]

≤ 1

for some suitably chosen constant C(λ) depending on λ. By Fatou’s lemma

EP
[

exp
[

λx(t) − [
λ2

2
+ C(λ)ǫ]t

]]

≤ 1

Since ǫ > 0 is arbitrary we prove one half of (2.4). A similar estimate will yield

EP
[

exp
[

λx(t) − [
λ2

2
− C(λ)ǫ]t

]]

≥ 1

which can be used to prove the other half provided we show the uniform integra-
bility of {exp[λx(τn)]}. This follows from the upper bound established above.
This completes the proof of the theorem.

Remark 2.4. Theorem 2.4 fails for the process x(t) = N(t) − t where N(t) is
the standard Poisson Process with rate 1.

Remark 2.5. One can use the Martingale inequality in order to estimate the
probability P{sup0≤s≤t |x(s)| ≥ ℓ}. For λ > 0, by Doob’s inequality

P
[

sup
0≤s≤t

exp
[

λx(s) − λ2

2
s
]

≥ A
]

≤ 1

A

and

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]

≤ P
[

sup
0≤s≤t

[x(s) − λs

2
] ≥ ℓ − λt

2

]

= P
[

sup
0≤s≤t

[λx(s) − λ2s

2
] ≥ λℓ − λ2t2

]

≤ exp[−λℓ +
λ2t

2
]

Optimizing over λ > 0, we obtain

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]

≤ exp[− ℓ2

2t
]
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and by symmetry

P
[

sup
0≤s≤t

|x(s)| ≥ ℓ
]

≤ 2 exp[− ℓ2

2t
]

The estimate is not too bad because by reflection principle

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]

= 2 P
[

x(t) ≥ ℓ
]

=

√

2

π t

∫ ∞

ℓ

exp[−x2

2 t
] dx

Exercise 2.1. One can use the estimate above to prove the result of Paul Lévy

P
[

lim sup
δ→0

sup 0≤s,t≤1
|s−t|≤δ

|x(s) − x(t)|
√

δ log 1
δ

=
√

2
]

= 1

We had an exercise in the previous section that established the lower bound.
Let us concentrate on the upper bound. If we define

∆δ(ω) = sup
0≤s,t≤1
|s−t|≤δ

|x(s) − x(t)|

first check that it is sufficient to prove that for any ρ < 1, and a >
√

2

∑

n

P
[

∆ρn(ω) ≥ a

√

nρn log
1

ρ

]

< ∞ (2.5)

To estimate ∆ρn(ω) it is sufficient to estimate supt∈Ij
|x(t) − x(tj)| for kǫρ

−n

overlapping intervals {Ij} of the form [tj , tj + (1 + ǫ)ρn ] with length (1 + ǫ)ρn.
For each ǫ > 0, kǫ = ǫ−1 is a constant such that any interval [s , t] of length no
larger than ρn is completely contained in some Ij with tj ≤ s ≤ tj + ǫρn. Then

∆ρn(ω) ≤ sup
j

[

sup
t∈Ij

|x(t) − x(tj)| + sup
tj≤s≤tj+ǫρn

|x(s) − x(tj)|
]

Therefore, for any a = a1 + a2,

P

[

∆ρn(ω) ≥ a

√

nρn log
1

ρ

]

≤ P

[

sup
j

sup
t∈Ij

|x(t) − x(tj)| ≥ a1

√

nρn log
1

ρ

]

+ P

[

sup
j

sup
tj≤s≤tj+ǫρn

|x(s) − x(tj)| ≥ a2

√

nρn log
1

ρ

]

≤ 2kǫρ
−n

[

exp[−
a2
1 nρn log 1

ρ

2(1 + ǫ)ρn
] + exp[−

a2
2 nρn log 1

ρ

2ǫρn
]

]

Since a >
√

2, we can pick a1 >
√

2 and a2 > 0. For ǫ > 0 sufficiently small
(2.5) is easily verified.


