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2.1 Continuous Parameter Martingales.

(Q, B, P) is a probability space and for ¢t € [0,7], B, C B is an increasing
family of sub-o fields, referred to as "filtration”. A martingale with respect to
(Q, By, P) is a family £(¢,w) with the following properties.

e For almost all w, £(t) is a right continuous function of ¢.

e For each t, £(t,w) is B; measurable. With right continuity it follows that
&(-,w) is "progressively measurable” i.e for each ¢ > 0, the function £(s, w)
as a map of [0,¢] x 2 — R is measurable with respect to B[0, t] x B; where
B0, t] is the Borel o—field of [0, ¢].

o {(t,w) € L1(P) and for t > s > 0, E[£(t)|Bs] = &(s,w) a.e.

Remark 2.1. According to a theorem of Doob, a continuous parameter martin-
gale, almost surely, has limits from the left and right at every ¢t. To demand
that it be right continuous, i.e. to define the value at ¢ as the limit from the
right is a matter of normalization.

Remark 2.2. By restricting the martingale £(¢,w) to a discrete subset {nh}
we will get a discrete parameter martingale. The usual estimates valid for
martingales are valid for them, uniformly in h. We can then let h — 0 and
deduce analogous results for continuous parameter martingales. For example
the following theorems are easily established in this manner.

Theorem 2.1. Let £(t) be a continuous parameter martingale on [0,T]. Then
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2.2 Stopping Times.

Given a filtration {B;} we can define a stopping time relative to the filtration.
A function 7 : Q — [0, 00] is called a stopping time if for every ¢ > 0 the set
{w : 7(w) < t} is B; measurable. Typical examples of stopping times are the
first time some thing happens, like the exit time from an open set. Given a
stopping time 7 there is a natural sub o-field B, associated with it, defined by

AeB, & An{r<tteB; WVt

It is easy to check that any stopping time 7 is measurable with respect to B;.
For any ¢, 7 A t is a stopping time as well, and B;,; is a new filtration. If £(t)
is a martingale with respect to {8} so is {(7 A t,w) with respect to Bras.

Doob’s optional stopping theorem for martingales extends to the continuous
case.



Theorem 2.2. If0 <13 <7 < C are two bounded stopping times, and £(t) is
a martingale with respect to (0, By, P) then almost surely

E[§(72)|Br] = &(m1)

This is proved by approximating the stopping times 7;,% = 1,2 by 7" =
% Then the optional stopping theorem can be applied to the discrete

martingale 5(%), conclude that E[{(73')|B-r] = {(71') and let n — oo to obtain
our theorem.

2.3 Strong Markov Property.

Brownian motion is a process with independent increments. It is therefore,
in particular, a Markov Process. That is to say, given the past history Bj,
[the o-field generates by {z(u) : 0 < u < s}], the conditional distribution of
z(t) = z(s) + [x(t) — z(s)] for t > s is the normal distribution with mean x(s)
and variance t — s. Since this only depends on z(s) the Markov property holds.
The strong Markov property extends this from constant times s to stopping
times.

We begin with (Q, By, 2(¢t), P), where B; is an increasing family of sub-ofields,
satisfying

e For each ¢, z(t,w) is B; measurable
e z(t) is almost surely a continuous function of ¢.

e For t > s > almost surely
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We will call such an z(t) a Brownian motion adapted to {5;}. Note that B; can
be larger than o{x(s) : 0 < s < t}.

Theorem 2.3. The strong Markov property holds for Brownian Motion. That
is, given any stopping time T that is almost surely finite,
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Equivalently the process x(t +7) — z(7) is another Brownian Motion adapted to
Brit, and is independent of B .

Proof. Tt is enough to show that if A € B, and f is a bounded continuous
function, , then
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where
1 _ w2

g(x):/f(y)\/ﬁe 2 dy

We will check it for 7 that takes only a countable set of values. 7 = t; for some
Jj. The set Aj = AN{r =t;} € B;,. Therefore from the Markov property

/Af(x(t + )P = ZJ: /Aj Fla(t + 7))dP = ZJ: /A]. (et +1,))dP
- Z /A latt)ap = /A o((r))dP

If we now approximate 7 by 7, = w and pass to the limit we are done. Note

that here we approximate 7 by 7,, > 7, so that A € B, C B,,. We have also
used the fact that g is continuous. O

Remark 2.3. Any Markov process that has almost surely right continuous paths
and E[f(x(t)|z(s)] = g(s,t,x(s)) where g(s,t, ) is continuous in z for each fixed
s < t, has the strong Markov property by the same argument.

2.4 Reflection Principle.
If x(t) is Brownian motion

P[Os<12[<)ta:(s) >0 =2P[x(t) > ¢

Let 7 be the stopping time 7 = inf{s : z(s) > ¢}. We are interested in P[r < t].
Note that z(7) = ¢. Therefore
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2.5 Brownian Motion as a Martingale

P is the Wiener measure on (2, B) where 2 = C[0,T] and B is the Borel o-field
on . In addition we denote by B; the o-field generated by z(s) for 0 < s < ¢.
It is easy to see that x(¢) is a martingale with respect to (Q, B:, P), i.e. for
each t > s in [0, 7]

EP[x(t)|Bs] = (s) ae. P (2.1)

and so is x(t)? — t. In other words

EP[x(t)? —t|F] =x(s)> —s ae P (2.2)



The proof is rather straight forward. We write z(t) = z(s) + Z where Z =
x(t) — x(s) is a random variable independent of the past history B, and is

distributed as a Gaussian random variable with mean 0 and variance t — s.
Therefore EF[Z|Bs] = 0 and EF[Z2%|Bs] =t — s a.e P. Conversely,

Theorem 2.4. Lévy’s theorem. If P is a measure on (C[0,T], B) such that
P[z(0) = 0] = 1 and the the functions x(t) and x*(t) —t are martingales with
respect to (C[0,T), B, P) then P is the Wiener measure.

Proof. The proof is based on the observation that a Gaussian distribution is
determined by two moments. But that the distribution is Gaussian is a conse-
quence of the fact that the paths are almost surely continuous and not part of
our assumptions. The actual proof is carried out by establishing that for each
real number A
)\2

X(t) = exp [Az(t) — ?t] (2.3)
is a martingale with respect to (C[0,T], B, P). Once this is established it is
elementary to compute

EF[exp [Mz(t) — z(s))]|Bs] = exp [%(t — )]

which shows that we have a Gaussian Process with independent increments with
two matching moments. The proof of (2.3) is more or less the same as proving
the central limit theorem. In order to prove that X (¢) is a martingale, we can
assume with out loss of generality that s = 0 and show that
)\2
EP [exp [Ax(t) — Etﬂ =1 (2.4)

To this end let us define successively 79, = 0,
Th41,e = Min [inf {s 28> Thes |2(8) — x(The)| > 6}, t,The+ 6]

Then each 7 ¢ is a stopping time and eventually 75 . = ¢ by continuity of paths.
The continuity of paths also guarantees that |z(7g41,c) — 2(7k,c)| < €. We write

z(t) = Z[x(ﬂc-i-l,e) — 2(7,e)]

k>0

t= Z[TkJrl,e - Tk,e]

k>0

and

To establish (2.4) we calculate the quantity on the left hand side as

lim EF[exp [ Z Az (Ths1,e) — 2(Thye)] — )\—[Tk+1,e — Th,d)]]]

n—oo 2
0<k<n



2.5. BROWNIAN MOTION AS A MARTINGALE 5

and show that it is equal to 1. Let us consider the o-field 7}, = B, . and the
quantity
2

ar(w) = B [exp [Az(Tht1,e) — 2(7h,e)] = [% + CN€[Ths1.e = The] || Fi]

with the choice of the constant C'(A) to be chosen later. Clearly, if we use Taylor
expansion and the fact that x(t) as well as (t)? — ¢ are martingales

@) < EP[L+ eV [|2(Ths1.e) = 2(The) > + [That,e — Thiel*] = CON) e[t — Thoe) | Fr]

S EP [1 + C()\)E [lx(Tk‘i‘Lﬁ) - x(Tk,€)|2 + |77€+1,6 - Tk,e” - C()\)G[Tk-i-l,e - Tk,e”]:k]
<1

for some suitably chosen constant C(\) depending on A. By Fatou’s lemma

2

EF [exp [Ax(t) — [% +CNet]] <1

Since € > 0 is arbitrary we prove one half of (2.4). A similar estimate will yield

)\2

EF[exp [Ax(t) — [? — C(N)elt]] =1
which can be used to prove the other half provided we show the uniform integra-
bility of {exp[Az(7,)]}. This follows from the upper bound established above.
This completes the proof of the theorem. O

Remark 2.4. Theorem 2.4 fails for the process z(t) = N(t) — t where N(t) is
the standard Poisson Process with rate 1.

Remark 2.5. One can use the Martingale inequality in order to estimate the
probability P{supy<.<, |z(s)| > £}. For A > 0, by Doob’s inequality

A2 1
Pl s e A ——s| > Al <=
[ 3w exp [Aels) — 5] > 4] < o
and
A At
P[ sup z(s) Zﬁ] < P[ sup [z(s) — —S] >0 — —}
0<s<t 0<s<t 2 2
AZs 9
= P[ sup [Az(s) — =] > M — \?¢2]
0<s<t 2
2
< exp[—A\ + %]

Optimizing over A > 0, we obtain

2
P[ sup x(s) > (] < exp[—ﬂ—]
0<s<t 2t



and by symmetry
2

P[ sup |z(s)| > {] < 2exp[—=]
0<s<t 2t

The estimate is not too bad because by reflection principle

o0 $2
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Exercise 2.1. One can use the estimate above to prove the result of Paul Lévy

Supo<s.i<1 |2(s) — z(t)]
P[limsup eot=0 = \/5} =1

6—0 ./6log%

We had an exercise in the previous section that established the lower bound.
Let us concentrate on the upper bound. If we define

As(w) = sup |z(s) — z(t)]
I=gs

first check that it is sufficient to prove that for any p < 1, and a > v/2

Z P[Apn(w) > ay/np™log %] < oo (2.5)

To estimate Ayn(w) it is sufficient to estimate sup,c;, [z(t) — 2(t;)| for kep™"
overlapping intervals {I;} of the form [t;,t; + (1 4+ €)p™ ] with length (1 + €)p™.
For each € > 0, k. = ¢! is a constant such that any interval [s,t] of length no
larger than p" is completely contained in some I; with t; < s <t; +¢p™. Then

Apr(w) <sup [ sup |z(t) —a(t;)| +  sup  |a(s) —(t))]]
7 tel; t;<s<tj+epm

Therefore, for any a = a1 + as,

1
P |:Apn (w) > ay/np™log — ]
V p
1
<P [sup sup |z(t) — z(t;)| > a14/np" log —]
J tel; P
1
+P {sup sup  |z(s) — z(t;)| > azq/np"log —]
J ty<s<t;+epr V p

a2 np" log %] +exp) adnp” log %]]

<2k,p" -
S R T

Since a > \/5, we can pick a; > V2 and as > 0. For € > 0 sufficiently small
(2.5) is easily verified.



