
Chapter 4

Weak convergence and

Compactness.

Let X be a complete separable metic space and B its Borel σ−field. We denote
by M(X) the space of probability measures on (X,B). A sequence µn ∈ M(X)
of probability measures converges weakly to a probability measure µ ∈ M(X)
(µn ⇒ µ) if for every bounded continuous function f : X → R we have

lim
n→∞

∫

X

f(x)dµn =

∫

X

f(x)dµ (4.1)

Theorem 4.1. The following are equivalent.

1. µn ⇒ µ

2. For every bounded uniformly continuous function f

lim
n→∞

∫

X

f(x)dµn =

∫

X

f(x)dµ

3. For every closed set C ⊂ X

lim sup
n→∞

µn(C) ≤ µ(C)

4. For every open set G ⊂ X

lim inf
n→∞

µn(G) ≥ µ(G)

5. For every continuity set A, i.e. A suc that µ(Ā) = µ(A) = µ(Ao), we have

lim
n→∞

µn(A) = µ(A)
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Proof. Clearly 1 ⇒ 2 . To show that 2 ⇒ 3, we consider fk(x) = [ 1
1+d(x,C) ]

k.

fk(x) is uniformly continuous and bounded by 1. fk(x) ≥ 1C(x) and fk(x) →
1C(x) as n → ∞. For every k

lim sup
n→∞

µn(C) ≤ lim
n→∞

∫

X

fk(x)dµn =

∫

X

fk(x)dµ

By letting k → ∞, we obtain

lim sup
n→∞

µn(C) ≤ µ(C)

We see that 3 ⇔ 4 by taking complements. For any set A, µ(Ac) = 1 − µ(A).
It is clear that 3 and 4 ⇒ 5. Because Ao is open and Ā is closed,

µ(Ao) ≤ lim inf µn(Ao) ≤ lim inf µn(A) ≤ lim sup µn(A) ≤ lim supµn(Ā) ≤ µ(Ā)

If µ(Ao) = µ(A) = µ(Ā), we have equality everywhere and that implies 5.
Finally to prove that 5 ⇒ 1, we take a bounded continuous function f and
approximate it uniformly by a simple function fk =

∑k

i=1 ai1Ai
(x). The natural

choice for Ai is Ai = {x : ai ≤ f(x) ≤ ai+1}. Since the sets {x : f(x) = a} are
disjoint all but a countable number of them are of measure 0, under µ. We can
pick {ai} avoiding this countable set. Then all our sets Ai will be continuity
sets and so for every k.

lim
n→∞

∫

X

fk(x)dµn =

∫

X

fk(x)dµ

Since fk approximates f uniformly it follows that

lim
n→∞

∫

X

f(x)dµn =

∫

X

f(x)dµ

which is 1.

In a complete separable metric space any probability measure P , is essen-
tially supported on a compact set. More precisely

Theorem 4.2. Given any probability measure µ on the Borel subsets B of a
complete separable metric space X and ǫ > 0, there exists a compact set Kǫ such
that µ(Kǫ) ≥ 1 − ǫ.

Proof. . Consider a countable dense subset D = {xj} of X and spheres {S(xj ,
1
k
)}

of radius 1
k

around points xj ∈ D. Clearly ∪jB(xj ,
1
k
) = X and by the countable

additivity of µ, for each k, we can find nk such that

µ[∪nk

j=1B(xj ,
1

k
)] ≥ 1 − ǫ

2k

The set E = ∩k ∪nk

j=1 B(xj ,
1
k
) is totally bounded and has the property µ(E) ≥

1 − ǫ. Since X is complete, the closure Ē of E is compact.
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Remark 4.1. The space M(X) of probability measures on X , with weak conver-
gence is a complete separable metric space. In other words, weak convergence
can be metrized. To do this we note that weak convergence is a topological
notion and is not altered if we change the metric to an equivalent one. But
the notion of uniform continuity depends on the metric. We can change the
metric so that the set of bounded uniformly continuous functions is separable.
We imbed X into Y , the countable product of unit intervals, which is compact.
Then X under the metric inherited from Y , will not be complete. But its com-
pletion, which is the closure X̄ of X in Y is a compact metric space. The space
of uniformly continuous functions on X is the same as the space of continuous
functions on X̄. Since X̄ is a compact metric space, C(X̄) is separable. Then
we can define

d(µ1, µ2) =

∞
∑

j=1

1

2k

1

1 + ‖fk‖
|
∫

fkdµ1 −
∫

fkdµ2|

where {fk} is a dense set of uniformly continuous functions on X . By Theorem
4.1 convergence in this metric is equivalent to weak convergence.

The next theorem due to Prokhorov gives a necessary and sufficient condition
for a subset A ⊂ M(X) to be conditionally compact in the weak topology, i.e.
every sequence from A has a weakly convergent subsequence.

Theorem 4.3. A ⊂ M(X) is conditionally compact in the weak topology if and
only if for any ǫ > 0, there is a compact set Kǫ (independent of µ) such that

µ(Kǫ) ≥ 1 − ǫ

for all µ ∈ A.

Proof. Necessity. In the proof of Theorem 4.2 a crucial step was the limit

lim
n→∞

µ(∪n
j=1S(xj ,

1

k
)) = 1

∪n
j=1S(xj ,

1
k
) is an open set and A is contained in a compact set. By Theorem

4.1, µ(G) is lower semicontinuous as a function of µ in the weak topology. Dini’s
theorem ensures that the convergence above is uniform for all µ ∈ A and that
completes the proof of necessity. The construction of Kǫ as in Theorem4.2 works
simultaneously for all µ ∈ A.

Sufficiency. We first note that if X is compact, then M(X) is compact.
C(X) is separable and given any sequence µn from M(X), we can definitely
choose, by diagonalization, a subsequence such that

Λ(f) = lim
n→∞

∫

f(x)dµn

exists for f in a a countable dense subset and therefore for all f ∈ C(X). We
appeal to the Riesz representation theorem to find a µ ∈ M(X) such that

Λ(f) =

∫

f(x)dµ
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Actually if M(X) is taken as the set of all finite measures instead of just proba-
bility measures, only some minor changes need to be made. One has to be sure
that µn(X) → µ(X) and this has to be added, if it not already implied, in any
of the equivalent formulations of 4.1 (for instance in 3 and 4). In particular if X

is compact and µn(X) is bounded there is a subsequence that converges weakly
to a measure µ.

If X is not compact, but we have a collection A ⊂ M(X), satisfying
the uniform tightness condition, we restrict µn to Kk to get µn,k satisfying
1 ≥ µn,k(Kk) ≥ 1 − 1

k
. By the diagonalization procedure, we can assume that

along a subsequence (that we continue to denote by µn), for every k,

lim
n→∞

µn,k = αk

exists. It is not difficult to see that for k > l

αk ≥ αl

and it follows that limk→∞ αk = α exists and µn → α.

While one can use Garsia-Rodemich-Rumsey estimates to establish tightness
there are some other methods are equally useful. There are stochastic processes
that admit jumps like Poisson processes, and the space on which to put these
measures is the space D[0, 1] of functions x(t) on [0, T ] that have left and right
limits at every point, x(t + 0) = x(t) and x(T − 0) = x(T ). A sequence xn(t) of
such functions converges (in Skorohod J-1 topology) to x(t) in D[0, 1] if there
are one to one continuous maps λn(t) of [0, 1] onto itself such that

sup
0≤t≤T

|λn(t) − t| + sup
0≤t≤T

|xn(λn(t)) − x(t)| → 0

If x(t) and y(t) are close in this topology then their jumps do not have to align
perfectly, but to every jump of significant size in one there be a corresponding
jump of nearly the same size at a nearby location in the other. There is a
version of Ascoli-Arzela theorem here. For a set D of functions in D[0, 1] to be
conditionally compact it is necessary and sufficient that their jumps if any be
uniformly bounded and for any δ > 0, there be a uniform bound on the number
of jumps of size greater than δ. More over these jumps should stay away by a
uniform distance from each other. Two jumps of significant size are not allowed
to come together and combine. If we denote by ∆f (a, b) the oscillation of the
function f in the open interval (a, b), i.e.

∆f (a, b) = sup
a<c<d<b

|f(c) − f(d)|

then

∆∗
f (a, b) = min

a<c<b
max{∆f (a, c), ∆f (c, b)}
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It is almost the oscillation in (a, b) except that we discount one jump at some
point c in between. The modulus continuity of f in D[0, 1] is defines as

ω̄f (h) = max{ sup
0≤a<b≤1

|a−b|≤h

∆∗
f (a, b), sup

0≤a≤h

|f(0) − f(a)|, sup
1−h≤a≤1

|f(1) − f(a)|}

The Ascoli-Arzela theorem in this context requires ω̄f (h) to go to 0 uniformly
and the functions f to be uniformly bounded. (which will follow from the
behavior of the modulus of continuity if the functions are bounded at 0 and the
jumps are uniformly bounded.)

Given a function f in D[0, 1], let us define successively

τ1 = {inf t : |f(t) − f(0)| ≥ ǫ}
· · · · · ·
τj = {inf t ≥ τj−1 : |f(t) − f(τj−1)| ≥ ǫ}

until τj fails to exist, i.e supτj−1≤t≤1 |x(t) − x(τj−1)| < ǫ. Then the modulus of
continuity can be estimated. If h = min{τ1, τ2 − τ1, . . . , τj−1 − τj−2}, then it is
not difficult to see that, because any interval of length less than h can contain
at most one of the points τ1, . . . , τj−1,

ω̄f (h) ≤ ǫ

We now develop some tools to estimate the modulus of continuity.

Lemma 4.4. Let {Sj : 1 ≤ j ≤ N} be a collection of random variables such
that P [S0 = 0] = 1, Sj is adapted to the filtration Fj and

sup
0≤j≤k≤N

esssupωP [|Sk − Sj | ≥ ǫ|Fj ] ≤ p(ǫ) < 1

Then

P [ sup
0≤j≤N

|Sj| ≥ 2ǫ] ≤ p(ǫ)

1 − p(ǫ)

Proof.

P [ sup
0≤j≤N

|Sj | ≥ 2ǫ, |SN | ≤ ǫ] =

N−1
∑

k=1

P [ sup
0≤j≤k−1

|Sj | < 2ǫ, |Sk| ≥ 2ǫ, |SN | ≤ ǫ]

≤
N−1
∑

k=1

P [ sup
0≤j≤k−1

|Sj | < 2ǫ, |Sk| ≥ 2ǫ, |SN − Sk| ≥ ǫ]

≤ p(ǫ)

N−1
∑

k=1

P [ sup
0≤j≤k−1

|Sj | < 2ǫ, |Sk| ≥ 2ǫ]

= p(ǫ)P [ sup
0≤j≤N

|Sj | ≥ 2ǫ]
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P [ sup
0≤j≤N

|Sj | ≥ 2ǫ, |SN | > ǫ] ≤ p(ǫ)

Adding the two bounds

P [ sup
0≤j≤N

|Sj | ≥ 2ǫ] ≤ p(ǫ) + p(ǫ)P [ sup
0≤j≤N

|Sj | ≥ 2ǫ]

which proves the lemma.

This lemma will allow us to estimate P [τj −τj−1 ≤ h|Fτj−1
] and can be used

as input for the next lemma.

Lemma 4.5. Let esssupωP [τj − τj−1 ≤ h|Fτj−1
] ≤ φǫ(h). Then

P [ω̄f (h) ≤ ǫ] ≤ inf
j,s

[j φǫ(h) + e
[

φǫ(s) + e−s[1 − φǫ(s)]
]j

]

Proof. Clearly for any s > 0,

P [ω̄f (h) ≥ ǫ] ≤ P [min{τ1, τ2 − τ1, . . . , τj−1 − τj−2} ≤ h] + P [τj ≤ 1]

≤ (j − 1)φ(h) + eE[e−τj ]

≤ (j − 1)φǫ(h) + e
[

φǫ(s) + e−s[1 − φǫ(s)]
]j

Remark 4.2. If a sequence in D[0, 1] converges to a limit that is a continuous
function, then the limit is uniform. If the size of the largest jump goes to zero,
then the convergence is to a limit in C[0, 1].

Example 4.1. Consider i.i.d. random variable {Xi} with mean zero and variance
1. Let Sn = X1 +X2 + · · ·+Xn and Xn(t) = 1√

n
S[nt]. By central limit theorem

the finite dimensional distributions of Xn(t) converge to the finite dimensional
distributions of X(t) the Brownian motion. The process Xn(t) can be realized
in D[0, 1] and we want to show weak convergence of the processes Pn, in D[0, 1].
First we note that for k ≥ j,

Pn[|x(
k

n
) − x(

j

n
)| ≥ ǫ|B j

n
] ≤ k − j

nǫ2

and as n → ∞,

P [ max
1≤j≤n

|Xj| ≥ ǫ
√

n] ≤ nP [|X | ≥ ǫ
√

n] → 0


