Chapter 5

Stochastic Integrals and Itô's formula.

We will call an Itô process a progressively measurable almost surely continuous process $x(t, \omega)$ with values in R^{d}, defined on some $\left(\Omega, \mathcal{F}_{t}, P\right)$ that is related to progressively measurable bounded functions $[a(s, \omega), b(s, \omega)]$ in the following manner.

$$
\exp \left[\left\langle\theta, x(t, \omega)-x(0, \omega)-\int_{0}^{t} b(s, \omega) d s\right\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a(s, \omega) \theta\rangle d s\right]
$$

is a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$ for all $\theta \in R^{d}$. A canonical example is Brownian motion that corresponds to $b(s, \omega) \equiv 0$ and $a(s, \omega) \equiv 1$ or $a(s, \omega) \equiv I$ in higher dimensions. We will abbreviate it by $x(\cdot) \in \mathcal{I}(a, b)$. Such processes are not of bounded variation unless $a \equiv 0$. In fact they have nontrivial quadratic variation.

Lemma 5.1. If $x(\cdot)$ is a one dimensional process and $x(\cdot) \in \mathcal{I}(a, b)$ then

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left|x\left(\frac{j T}{n}\right)-x\left(\frac{(j-1) T}{n}\right)\right|^{2}=\int_{0}^{T} a(s, \omega) d s
$$

in probability and in $L_{1}(P)$.
Proof. If $y(t)=x(t)-x(0)-\int_{0}^{t} b(s, \omega) d s$, then $y(\cdot) \in \mathcal{I}(a, 0)$ and the difference between $x(\cdot)$ and $y(\cdot)$ is a continuous function of bounded variation. it is therefore sufficient to show that

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left|y\left(\frac{j T}{n}\right)-y\left(\frac{(j-1) T}{n}\right)\right|^{2}=\int_{0}^{T} a(s, \omega) d s
$$

If we denote by

$$
Z_{j}=\left|y\left(\frac{j T}{n}\right)-y\left(\frac{(j-1) T}{n}\right)\right|^{2}-\int_{\frac{(j-1) T}{n}}^{\frac{j T}{n}} a(s, \omega) d s
$$

then $E\left[Z_{j}\right]=0$ and for $i \neq j, E\left[Z_{i} Z_{j}\right]=0$. It is therefore sufficient to show

$$
E\left[\left|Z_{j}\right|^{2}\right] \leq \frac{C(T)}{n^{2}}
$$

This follows easily from the Gaussian bound

$$
E\left[e^{\lambda\left(y\left(t_{2}\right)-y\left(t_{1}\right)\right)}\right] \leq e^{\frac{C \lambda^{2}\left(t_{2}-t_{1}\right)}{2}}
$$

provided $a(s, \omega) \leq C$. We see that $E\left[\left(y\left(t_{2}\right)-y\left(t_{1}\right)\right)^{4}\right] \leq C\left(t_{2}-t_{1}\right)^{2}$.

This means that integrals of the form $\int_{0}^{t} e(s, \omega) d x(s, \omega)$ have to be carefully defined. Since the difference between $x(\cdot)$ and $y(\cdot)$ is of bounded variation it suffices to concentrate on $\int_{0}^{t} e(s, \omega) d x(s, \omega)$. We develop these integrals in several steps, each one formulated as a lemme.
Lemma 5.2. Let \mathcal{S} be the space of functions $e(s, \omega)$ that are uniformly bounded piecewise constant progressively measurable functions of s. In other words there are intervals $\left[t_{j-1}, t_{j}\right)$ in which $e(s, \omega)$ is equal to $e\left(t_{j-1}, \omega\right)$ which is $\mathcal{F}_{t_{j-1}}$ measurable. We define for $t_{k-1} \leq t \leq t_{k}$
$\xi(t)=\int_{0}^{t} e(s, \omega) d y(s)=\sum_{j=1}^{k-1} e\left(t_{j-1}, \omega\right)\left[y\left(t_{j}\right)-y\left(t_{j-1}\right)\right]+e\left(t_{k-1}, \omega\right)\left[y(t)-y\left(t_{k-1}\right)\right]$
The following facts are easy to check.

1. $\xi(t)$ is almost surely continuous, progressively measurable. Moreover $\xi(\cdot) \in$ $\mathcal{I}\left(e^{2}(s, \omega) a(s, \omega), 0\right)$.
2. The space \mathcal{S} is linear and the map $e \rightarrow \xi$ is a linear map.
3.

$$
E\left[\sup _{0 \leq s \leq t}|\xi(s, \omega)|^{2}\right] \leq 4 E\left[\int_{0}^{t}|e(s, \omega)|^{2} a(s, \omega) d s\right]
$$

4. In particular if $e_{1}, e_{2} \in \mathcal{S}$, and for $i=1,2$

$$
\xi_{i}(t)=\int_{0}^{t} e_{i}(s, \omega) d y(s)
$$

then

$$
E\left[\sup _{0 \leq s \leq t}\left|\xi_{1}(s, \omega)-\xi_{2}(s, \omega)\right|^{2}\right] \leq 4 E\left[\int_{0}^{t}\left|e_{1}(s, \omega)-e_{2}(s, \omega)\right|^{2} a(s, \omega) d s\right]
$$

Proof. It is easy to see that, because for $\lambda \in R$,

$$
E\left[\left.\exp \left[\lambda[y(t)-y(s)]-\frac{\lambda^{2}}{2} \int_{s}^{t} a(u, \omega) d u\right] \right\rvert\, \mathcal{F}_{s}\right]=1
$$

it follows that if λ is replaced by $\lambda(\omega)$ that is bounded and \mathcal{F}_{s} measurable then

$$
E\left[\left.\exp \left[\lambda(s, \omega)[y(t)-y(s)]-\frac{\lambda(s, \omega)^{2}}{2} \int_{s}^{t} a(u, \omega) d u\right] \right\rvert\, \mathcal{F}_{s}\right]=1
$$

We can take $\lambda(s, \omega)=\lambda e(s, \omega)$. This proves 1. 2 is obvious and 3 is just Doob's inequality. 4 is a restatement of 3 for the difference.

Lemma 5.3. Given a bounded progressively measurable function $e(s, \omega)$ it can be approximated by a sequence $e_{n} \in \mathcal{S}$, such that $\left\{e_{n}\right\}$ are uniformly bounded and

$$
\lim _{n \rightarrow \infty} E\left[\int_{0}^{T}\left|e_{n}(s, \omega)-e(s, \omega)\right|^{2} d s\right]=0
$$

As a consequence the sequence $\xi_{n}(t)=\int_{0}^{t} e_{n}(s, \omega) d y(s)$ has a limit $\xi(t, \omega)$ in the sense

$$
\lim _{n \rightarrow \infty} E\left[\sup _{0 \leq s \leq t}\left|\xi_{n}(s)-\xi(s)\right|^{2}\right]=0
$$

It follows that $\xi(t, \omega)$ is almost surely continuous and $\xi(\cdot) \in \mathcal{I}\left(e^{2}(s, \omega) a(s, \omega)\right)$.
Proof. It is enough to prove the approximation property. Since

$$
Y_{\lambda}(t)=\exp \left[\lambda \xi_{n}(t)-\frac{\lambda^{2}}{2} \int_{0}^{s} e_{n}^{2}(s, \omega) a(s, \omega) d s\right]
$$

are martingales and $e_{n}^{2} a$ has uniform bound C, it follows that

$$
\sup _{0 \leq t \leq T} \sup _{n} E\left[\exp \left[\lambda \xi_{n}(t)\right]\right] \leq \exp \left[\frac{C \lambda^{2} T}{2}\right]
$$

providing uniform integrability. We note that

$$
\lim _{n, m \rightarrow \infty} E\left[\sup _{0 \leq s \leq t}\left|\xi_{n}(s)-\xi_{m}(s)\right|^{2}\right]=0
$$

Now it is easy to show that $\xi_{n}(\cdot)$ has a uniform limit in probability and pass to the limit. To prove the approximation property we approximate first $e(s, \omega)$ by

$$
e_{h}(s, \omega)=\frac{1}{h} \int_{(s-h) \vee 0}^{s} e(u, \omega) d u
$$

It is a standard result in real variables that $\left\|e_{h}(\cdot)-e_{h}(\cdot)\right\|_{2} \rightarrow 0$ as $h \rightarrow 0$ and e_{h} is contunuos in s. Note that we only look back and not ahead, thus preserving progressive measurability. We can now approximate $e_{h}(s, \omega)$ by $e_{h}\left(\frac{[n s]}{n}, \omega\right)$ that are again progressively measurable, but simple as well, so they are in \mathcal{S}.

Lemma 5.4. If $e(s, \omega)$ is progressively measurable and satisfies

$$
E\left[\int_{0}^{T} e^{2}(s, \omega) a(s, \omega) d s\right]<\infty
$$

we can define on $[0, T]$,

$$
\xi(t)=\int_{0}^{t} e(s, \omega) d y(s)
$$

as a square integrable martingale and

$$
\xi(t)^{2}-\int_{0}^{t} e^{2}(s, \omega) a(s, \omega) d s
$$

will be a martingale.
Proof. The proof is elementary. Just approximate e by truncated functions

$$
e_{n}(s, \omega)=e(s, \omega) \mathbf{1}_{\{|e(s, \omega)| \leq n\}}(\omega)
$$

and pass to the limit. Again

$$
\lim _{n, m \rightarrow \infty} E\left[\sup _{0 \leq s \leq t}\left|\xi_{n}(s)-\xi_{m}(s)\right|^{2}\right]=0
$$

Remark 5.1. If $x(\cdot) \in \mathcal{I}(a, b)$ we can let $y(t)=x(t)-\int_{0}^{t} b(s, \omega) d s$ and define

$$
\xi(t)=\int_{0}^{t} e(s, \omega) d x(s)=\int_{0}^{t} e(s, \omega) d y(s)+\int_{0}^{t} e(s, \omega) b(s, \omega) d s
$$

If

$$
E\left[\int_{0}^{t} b^{2}(s, \omega) e^{2}(s, \omega) d s\right]<\infty
$$

then we can check ξ is well defined. In fact we can define for bounded progressively measurable e, c,

$$
\xi(t)=\int e(s, \omega) d x(s)+\int c(s, \omega) d s
$$

It is easy to check that

$$
\xi(\cdot) \in \mathcal{I}\left(e^{2}(s, \omega) a(s, \omega), e(s, \omega) b(s, \omega)+c(s, \omega)\right)
$$

Recall that if $X \simeq N\left[\mu, \sigma^{2}\right]$ and $Y=a X+b$ then $Y \simeq N\left[a \mu+b, a^{2} \sigma^{2}\right]$.
Remark 5.2. We can have $x(t) \in R^{d}$ and $x(\cdot) \in \mathcal{I}(a, b)$, where $a=a(s, \omega)$ is a symmetric positive semidefinite matrix valued bounded progressively measurable function and $b=b(s, \omega)$ is an R^{d} valued, bounded and progressively measurable. We can the define

$$
\xi(t)=\int_{0}^{t} e(s, \omega) \cdot d x(s)+\int c(s, \omega) d s
$$

where $e(s, \omega)$ is a progressively measurable bounded $k \times d$ matrix and c is R^{k} valued, bounded and progressively measurable. The integral is defined by each component. For $1 \leq i \leq k$,

$$
\xi_{i}(t)=\sum_{j} \int_{0}^{t} e_{i, j}(s, \omega) \cdot d x_{j}(s)+\int c_{i}(s, \omega) d s
$$

The one verifies easily that

$$
\xi(\cdot) \in \mathcal{I}\left(e a e^{*}, e b+c\right)
$$

Theorem 5.5. Itô's formula. Consider a smooth function $f(t, x)$ on $[0, T] \times$ R^{d}. Let $x(t)$ with values in R^{d} belong to $\mathcal{I}(a, b)$. Then almost surely

$$
\begin{aligned}
f(t, x(t))=f(0, x(0)) & +\int_{0}^{t} f_{s}(s, x(s)) d s+\int_{0}^{t}\left(\nabla_{x} f\right)(s, x(s)) \cdot d x(s) \\
& +\frac{1}{2} \int_{0}^{t} \sum a_{i, j}(s, \omega)\left(D_{x_{i}, x_{j}} f\right)(s, x(s)) d s
\end{aligned}
$$

Proof. Consider the $d+1$ dimensional process $Z(t)=(f(t, x(t)), x(t))$. If $\sigma \in R$ and $\lambda \in d$, then if we consider $g(t, x)=\sigma f(t, x)+\langle\lambda, x\rangle$ we know that

$$
\exp \left[g(t, x(t))-g(0, x(0))-\int_{0}^{t} e^{-g}\left[\partial_{s} e^{g}+L_{s, \omega} e^{g}\right](s, x(s)) d s\right]
$$

is a martingale. A computation yields

$$
\begin{aligned}
e^{-g}\left[\partial_{s} e^{g}+L_{s, \omega} e^{g}\right]= & \partial_{s} g+L_{s, \omega} g+\frac{1}{2}\langle\nabla g, a \nabla g\rangle \\
= & \sigma \partial_{s} f+\sigma L_{s, \omega} f+\langle\lambda, b(s, \omega)\rangle \\
& \quad+\frac{1}{2}\langle(\sigma \nabla f+\lambda), a(s, \omega)(\sigma \nabla f+\lambda)\rangle
\end{aligned}
$$

Implies that $Z(t) \in \mathcal{I}(\tilde{a}, \tilde{b})$, where

$$
\tilde{a}=\left(\begin{array}{cc}
\langle\nabla f, a \nabla f\rangle & (a \nabla f)^{t r} \\
(a \nabla f) & a
\end{array}\right)
$$

and

$$
\tilde{b}=\left(\partial_{s} f+L_{s, \omega} f, b\right)
$$

Now we can compute that $w(\cdot) \in \mathcal{I}(A, B)$ where

$$
\begin{aligned}
w(t)=\int_{0}^{t} 1 \cdot d f(s, x(s)) & -\int_{0}^{t}\left(\partial_{s} f\right)(s, x(s)) d s-\int_{0}^{t}\left(\nabla_{s} f\right)(s, x(s)) \cdot d x(s) \\
& -\frac{1}{2} \int_{0}^{t} \sum_{i . j} a_{i, j}(s, \omega)\left(D_{x_{i} x_{j}} f\right)(s, x(s)) d s
\end{aligned}
$$

If we can calculate and show that $A=0$ and $B=0$, this would imply that $w(t) \equiv 0$ and that proves the theorem.

$$
\begin{gathered}
A=(1,-\nabla f)\left(\begin{array}{cc}
\langle\nabla f, a \nabla f\rangle & (a \nabla f)^{t r} \\
(a \nabla f) & a
\end{array}\right)\binom{1}{-\nabla f}=0 \\
B=\partial_{s} f+L_{s, \omega} f-b \cdot \nabla f-\partial_{s} f-\frac{1}{2} \sum_{i . j} a_{i, j}(s, \omega)\left(D_{x_{i} x_{j}} f\right)=0
\end{gathered}
$$

Remark 5.3. If $x(\cdot) \in \mathcal{I}(a, b)$ and $y(t)=\int_{0}^{t} \sigma(s, \omega) \cdot d x(s)+\int_{0}^{t} c(s, \omega) d s$ we saw that

$$
y(\cdot) \in \mathcal{I}(\tilde{a}, \tilde{b})
$$

where

$$
\tilde{a}=\sigma a \sigma^{*}, \tilde{b}=\sigma b+c
$$

This is like linear change of variables of a Gaussian vector. $d x \simeq N[a d t, b d t]$ and $\sigma d x+c \simeq N\left[\sigma a \sigma^{*} d t,(\sigma b+c) d t\right]$. We can develop stochastic integrals of $y(\cdot)$ and if $d z=\sigma^{\prime} d y+c^{\prime} d t$ then $d z=\sigma^{\prime}[\sigma d x+c d t]+c^{\prime} d t=\sigma^{\prime} \sigma d x+\left(\sigma^{\prime} c+c^{\prime}\right) d t$. If σ is a invertible then $d y=\sigma d x+c d t$ can be inverted as $d x=\sigma^{-1} d y-\sigma^{-1} c d t$. Finally one can remember Itô's formula by the rules

$$
d f(t, x(t))=f_{t} d t+\sum_{i} f_{x_{i}} d x_{i}+\frac{1}{2} \sum_{i, j} f_{x_{i}, x_{j}} d x_{i} d x_{j}
$$

If $x(\cdot) \in \mathcal{I}(a, b)$ then $d x_{i} d x_{j}=a_{i, j} d t .(d t)^{2}=d t d x_{i}=0$. Because the typical paths have half a derivative (more or less) $d x \simeq \sqrt{d t} . d x_{i} d x_{j}$ is of the order of $d t$ and $d x d t,(d t)^{2}$ are negligible.

