
Chapter 5

Stochastic Integrals and

Itô’s formula.

We will call an Itô process a progressively measurable almost surely continuous
process x(t, ω) with values in Rd, defined on some (Ω,Ft, P ) that is related
to progressively measurable bounded functions [a(s, ω), b(s, ω)] in the following
manner.

exp[〈θ, x(t, ω) − x(0, ω) −
∫ t

0

b(s, ω)ds〉 − 1

2

∫ t

0

〈θ, a(s, ω)θ〉ds]

is a martingale with respect to (Ω,Ft, P ) for all θ ∈ Rd. A canonical example is
Brownian motion that corresponds to b(s, ω) ≡ 0 and a(s, ω) ≡ 1 or a(s, ω) ≡ I

in higher dimensions.We will abbreviate it by x(·) ∈ I(a, b). Such processes are
not of bounded variation unless a ≡ 0. In fact they have nontrivial quadratic
variation.

Lemma 5.1. If x(·) is a one dimensional process and x(·) ∈ I(a, b) then

lim
n→∞

n
∑

j=1

|x(
jT

n
) − x(

(j − 1)T

n
)|2 =

∫ T

0

a(s, ω)ds

in probability and in L1(P ).

Proof. If y(t) = x(t) − x(0) −
∫ t

0 b(s, ω)ds, then y(·) ∈ I(a, 0) and the differ-
ence between x(·) and y(·) is a continuous function of bounded variation. it is
therefore sufficient to show that

lim
n→∞

n
∑

j=1

|y(
jT

n
) − y(

(j − 1)T

n
)|2 =

∫ T

0

a(s, ω)ds

If we denote by

Zj = |y(
jT

n
) − y(

(j − 1)T

n
)|2 −

∫
jT
n

(j−1)T
n

a(s, ω)ds

1
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then E[Zj ] = 0 and for i 6= j, E[ZiZj] = 0. It is therefore sufficient to show

E[|Zj|2] ≤
C(T )

n2
.

This follows easily from the Gaussian bound

E[eλ(y(t2)−y(t1))] ≤ e
Cλ2(t2−t1)

2

provided a(s, ω) ≤ C. We see that E[(y(t2) − y(t1))
4] ≤ C(t2 − t1)

2.

This means that integrals of the form
∫ t

0
e(s, ω)dx(s, ω) have to be carefully

defined. Since the difference between x(·) and y(·) is of bounded variation

it suffices to concentrate on
∫ t

0
e(s, ω)dx(s, ω). We develop these integrals in

several steps, each one formulated as a lemme.

Lemma 5.2. Let S be the space of functions e(s, ω) that are uniformly bounded

piecewise constant progressively measurable functions of s. In other words there

are intervals [tj−1, tj) in which e(s, ω) is equal to e(tj−1, ω) which is Ftj−1 mea-

surable. We define for tk−1 ≤ t ≤ tk

ξ(t) =

∫ t

0

e(s, ω)dy(s) =

k−1
∑

j=1

e(tj−1, ω)[y(tj)−y(tj−1)]+e(tk−1, ω)[y(t)−y(tk−1)]

The following facts are easy to check.

1. ξ(t) is almost surely continuous, progressively measurable. Moreover ξ(·) ∈
I(e2(s, ω)a(s, ω), 0).

2. The space S is linear and the map e → ξ is a linear map.

3.

E[ sup
0≤s≤t

|ξ(s, ω)|2] ≤ 4E[

∫ t

0

|e(s, ω)|2a(s, ω)ds]

4. In particular if e1, e2 ∈ S, and for i = 1, 2

ξi(t) =

∫ t

0

ei(s, ω)dy(s)

then

E[ sup
0≤s≤t

|ξ1(s, ω) − ξ2(s, ω)|2] ≤ 4E[

∫ t

0

|e1(s, ω) − e2(s, ω)|2a(s, ω)ds]

Proof. It is easy to see that, because for λ ∈ R,

E[exp[λ[y(t) − y(s)] − λ2

2

∫ t

s

a(u, ω)du]|Fs] = 1
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it follows that if λ is replaced by λ(ω) that is bounded and Fs measurable then

E[exp[λ(s, ω)[y(t) − y(s)] − λ(s, ω)2

2

∫ t

s

a(u, ω)du]|Fs] = 1

We can take λ(s, ω) = λe(s, ω). This proves 1. 2 is obvious and 3 is just Doob’s
inequality. 4 is a restatement of 3 for the difference.

Lemma 5.3. Given a bounded progressively measurable function e(s, ω) it can

be approximated by a sequence en ∈ S, such that {en} are uniformly bounded

and

lim
n→∞

E[

∫ T

0

|en(s, ω) − e(s, ω)|2ds] = 0

As a consequence the sequence ξn(t) =
∫ t

0
en(s, ω)dy(s) has a limit ξ(t, ω) in the

sense

lim
n→∞

E[ sup
0≤s≤t

|ξn(s) − ξ(s)|2] = 0

It follows that ξ(t, ω) is almost surely continuous and ξ(·) ∈ I(e2(s, ω)a(s, ω)).

Proof. It is enough to prove the approximation property. Since

Yλ(t) = exp[λξn(t) − λ2

2

∫ s

0

e2
n(s, ω)a(s, ω)ds]

are martingales and e2
na has uniform bound C, it follows that

sup
0≤t≤T

sup
n

E[exp[λξn(t)]] ≤ exp[
Cλ2T

2
]

providing uniform integrability. We note that

lim
n,m→∞

E[ sup
0≤s≤t

|ξn(s) − ξm(s)|2] = 0

Now it is easy to show that ξn(·) has a uniform limit in probability and pass to
the limit. To prove the approximation property we approximate first e(s, ω) by

eh(s, ω) =
1

h

∫ s

(s−h)∨0

e(u, ω)du

It is a standard result in real variables that ‖eh(·)−eh(·)‖2 → 0 as h → 0 and eh

is contunuos in s. Note that we only look back and not ahead, thus preserving

progressive measurability. We can now approximate eh(s, ω) by eh( [ns]
n

, ω) that
are again progressively measurable, but simple as well, so they are in S.

Lemma 5.4. If e(s, ω) is progressively measurable and satisfies

E[

∫ T

0

e2(s, ω)a(s, ω)ds] < ∞
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we can define on [0, T ],

ξ(t) =

∫ t

0

e(s, ω)dy(s)

as a square integrable martingale and

ξ(t)2 −
∫ t

0

e2(s, ω)a(s, ω)ds

will be a martingale.

Proof. The proof is elementary. Just approximate e by truncated functions

en(s, ω) = e(s, ω)1{|e(s,ω)|≤n}(ω)

and pass to the limit. Again

lim
n,m→∞

E[ sup
0≤s≤t

|ξn(s) − ξm(s)|2] = 0

Remark 5.1. If x(·) ∈ I(a, b) we can let y(t) = x(t) −
∫ t

0
b(s, ω)ds and define

ξ(t) =

∫ t

0

e(s, ω)dx(s) =

∫ t

0

e(s, ω)dy(s) +

∫ t

0

e(s, ω)b(s, ω)ds

If

E[

∫ t

0

b2(s, ω)e2(s, ω)ds] < ∞

then we can check ξ is well defined. In fact we can define for bounded progres-
sively measurable e, c,

ξ(t) =

∫

e(s, ω)dx(s) +

∫

c(s, ω)ds

It is easy to check that

ξ(·) ∈ I(e2(s, ω)a(s, ω), e(s, ω)b(s, ω) + c(s, ω))

Recall that if X ≃ N [µ, σ2] and Y = aX + b then Y ≃ N [aµ + b, a2σ2].

Remark 5.2. We can have x(t) ∈ Rd and x(·) ∈ I(a, b), where a = a(s, ω)
is a symmetric positive semidefinite matrix valued bounded progressively mea-
surable function and b = b(s, ω) is an Rd valued, bounded and progressively
measurable. We can the define

ξ(t) =

∫ t

0

e(s, ω) · dx(s) +

∫

c(s, ω)ds
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where e(s, ω) is a progressively measurable bounded k × d matrix and c is Rk

valued, bounded and progressively measurable. The integral is defined by each
component. For 1 ≤ i ≤ k,

ξi(t) =
∑

j

∫ t

0

ei,j(s, ω) · dxj(s) +

∫

ci(s, ω)ds

The one verifies easily that

ξ(·) ∈ I(eae∗, eb + c)

Theorem 5.5. Itô’s formula. Consider a smooth function f(t, x) on [0, T ]×
Rd. Let x(t) with values in Rd belong to I(a, b). Then almost surely

f(t, x(t)) = f(0, x(0)) +

∫ t

0

fs(s, x(s))ds +

∫ t

0

(∇xf)(s, x(s)) · dx(s)

+
1

2

∫ t

0

∑

ai,j(s, ω)(Dxi,xj
f)(s, x(s))ds

Proof. Consider the d+1 dimensional process Z(t) = (f(t, x(t)), x(t)). If σ ∈ R

and λ ∈ d, then if we consider g(t, x) = σf(t, x) + 〈λ, x〉 we know that

exp[g(t, x(t)) − g(0, x(0)) −
∫ t

0

e−g[∂se
g + Ls,ωeg](s, x(s))ds]

is a martingale. A computation yields

e−g[∂se
g + Ls,ωeg] = ∂sg + Ls,ωg +

1

2
〈∇g, a∇g〉

= σ∂sf + σLs,ωf + 〈λ, b(s, ω)〉

+
1

2
〈(σ∇f + λ), a(s, ω)(σ∇f + λ)〉

Implies that Z(t) ∈ I(ã, b̃), where

ã =

(

〈∇f, a∇f〉 (a∇f)tr

(a∇f) a

)

and
b̃ = (∂sf + Ls,ωf, b)

Now we can compute that w(·) ∈ I(A, B) where

w(t) =

∫ t

0

1 · df(s, x(s)) −
∫ t

0

(∂sf)(s, x(s))ds −
∫ t

0

(∇sf)(s, x(s)) · dx(s)

− 1

2

∫ t

0

∑

i.j

ai,j(s, ω)(Dxixj
f)(s, x(s))ds
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If we can calculate and show that A = 0 and B = 0, this would imply that
w(t) ≡ 0 and that proves the theorem.

A = (1,−∇f)

(

〈∇f, a∇f〉 (a∇f)tr

(a∇f) a

) (

1
−∇f

)

= 0

B = ∂sf + Ls,ωf − b · ∇f − ∂sf − 1

2

∑

i.j

ai,j(s, ω)(Dxixj
f) = 0

Remark 5.3. If x(·) ∈ I(a, b) and y(t) =
∫ t

0
σ(s, ω) · dx(s) +

∫ t

0
c(s, ω)ds we saw

that
y(·) ∈ I(ã, b̃)

where
ã = σaσ∗, b̃ = σb + c

This is like linear change of variables of a Gaussian vector. dx ≃ N [a dt, b dt]
and σdx + c ≃ N [σaσ∗ dt, (σb + c) dt]. We can develop stochastic integrals of
y(·) and if dz = σ′dy+c′dt then dz = σ′ [σdx+cdt]+c′dt = σ′σdx+(σ′c+c′)dt.
If σ is a invertible then dy = σdx+ cdt can be inverted as dx = σ−1dy−σ−1cdt.
Finally one can remember Itô’s formula by the rules

df(t, x(t)) = ftdt +
∑

i

fxi
dxi +

1

2

∑

i,j

fxi,xj
dxidxj

If x(·) ∈ I(a, b) then dxidxj = ai,jdt. (dt)2 = dtdxi = 0. Because the typical

paths have half a derivative (more or less) dx ≃
√

dt. dxidxj is of the order of
dt and dxdt, (dt)2 are negligible.


