Chapter 5

Stochastic Integrals and
Ito’s formula.

We will call an Itd process a progressively measurable almost surely continuous
process z(t,w) with values in R?, defined on some (€2, F;, P) that is related
to progressively measurable bounded functions [a(s,w), b(s,w)] in the following
manner.

exp[(0, z(t,w) — z(0,w) —/0 b(s,w)ds) — %/0 (0, a(s,w)0)ds]

is a martingale with respect to (2, 7, P) for all # € R?. A canonical example is
Brownian motion that corresponds to b(s,w) =0 and a(s,w) =1 or a(s,w) =1
in higher dimensions.We will abbreviate it by x(-) € Z(a,b). Such processes are
not of bounded variation unless ¢ = 0. In fact they have nontrivial quadratic
variation.

Lemma 5.1. If z(-) is a one dimensional process and x(-) € Z(a,b) then

n . S T
n1LIEOZ|x(%T)_x(M)|2 :/0 as, w)ds

n

in probability and in L1 (P).

Proof. If y(t) = =(t) — z(0) — fot b(s,w)ds, then y(-) € Z(a,0) and the differ-
ence between z(-) and y(-) is a continuous function of bounded variation. it is
therefore sufficient to show that

. - J1 G-=1T,, /
1 — - 7 =
nun JE 1 |y( - ) y( - )| ; a(s,w)ds
If we denote by

JT

2= 25y — y(U= T2 [ ats.
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then E[Z;] = 0 and for i # j, E[Z;Z;] = 0. It is therefore sufficient to show
c(T)

n2

E(|z;") <

This follows easily from the Gaussian bound

CA2(t5—ty)
P

E[e)\(y(tz)*y(tl))] <e

provided a(s,w) < C. We see that E[(y(t2) — y(t1))?] < C(ta — t1)2.
(]

This means that integrals of the form fot e(s,w)dx(s,w) have to be carefully
defined. Since the difference between z(-) and y(-) is of bounded variation

it suffices to concentrate on fo s,w)dz(s,w). We develop these integrals in
several steps, each one formulated as a lemme.

Lemma 5.2. Let S be the space of functions e(s,w) that are uniformly bounded
piecewise constant progressively measurable functions of s. In other words there
are intervals [t;_1,t;) in which e(s,w) is equal to e(tj_1,w) which is Fy,_, mea-
surable. We define for tp_1 <t <ty

t k—1
£(t) = / s0)dy(s) = 3 ety 1, @) (t5) ~(t; 1) +elti 1, )yt ~y(te1)]
Jj=1

The following facts are easy to check.

1. &(t) is almost surely continuous, progressively measurable. Moreover &(-) €
Z(e(s,w)a(s,w),0).

2. The space S is linear and the map e — £ is a linear map.

3.

4. In particular if e1,e2 € S, and fori=1,2

&i(t) = / i(s,w)dy(s)

then

E[ sup [&1(s,w) — §Q(S,w)|2] < 4E[/O le(s,w) — eg(s,w)|2a(s,w)ds]

0<s<t

Proof. Tt is easy to see that, because for A € R,

Elexo\u(®) ~ y(s)] - 5 [ aluw)dull 7] =1



it follows that if A is replaced by A(w) that is bounded and Fy measurable then

Blexpl\s.)(0) ~ ) - 2525 [ afuwraall z) <1

We can take \(s,w) = Aels,w). This proves 1. 2 is obvious and 3 is just Doob’s
inequality. 4 is a restatement of 3 for the difference. O

Lemma 5.3. Given a bounded progressively measurable function e(s,w) it can
be approximated by a sequence e, € S, such that {e,} are uniformly bounded
and

n—oo

T
lim E[/O len(s,w) — e(s,w)|?ds] =0

As a consequence the sequence &,(t) = fot en(s,w)dy(s) has a limit £(t,w) in the
sense

lim E[ sup [€q(s) = &(s)[*] =0

n—oo 0<s<t
It follows that £(t,w) is almost surely continuous and &(-) € Z(e*(s,w)a(s,w)).
Proof. 1t is enough to prove the approximation property. Since

)\2

Y (t) = exp[A&n(t) — 5 /05 ei(s,w)a(s,w)ds]

are martingales and eZa has uniform bound C, it follows that

C\T

]

sup sup Elexp[A\&, (1)]] < exp|
0<t<T n

providing uniform integrability. We note that

lim E[ sup |§n(s) - 5m(8)|2] =0

n,m—oo OSSSt

Now it is easy to show that &,(-) has a uniform limit in probability and pass to
the limit. To prove the approximation property we approximate first e(s,w) by

1 S
en(s,w) = —/ e(u,w)du
h Js—myvo
It is a standard result in real variables that ||ep(-) —en(-)||2 — 0 as h — 0 and ey,
is contunuos in s. Note that we only look back and not ahead, thus preserving
progressive measurability. We can now approximate ey (s,w) by eh([’;—s], w) that

are again progressively measurable, but simple as well, so they are in S. (|

Lemma 5.4. If e(s,w) is progressively measurable and satisfies

T
E[/O e?(s,w)a(s,w)ds] < oo
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we can define on [0,T],

as a square integrable martingale and

5(15)2—/0 e?(s,w)a(s,w)ds

will be a martingale.

Proof. The proof is elementary. Just approximate e by truncated functions
en(s,w) = e(s,w)l{‘e(s)w)‘gn}(w)

and pass to the limit. Again

lim E[ sup [€4(s) — &m(s)[*] = 0

n,m—oo OSSSt

O

Remark 5.1. If z(-) € Z(a,b) we can let y(t) = x(t) — fot b(s,w)ds and define

{(t)—/o e(s,w)d:c(s)—/o e(s,w)dy(s)—l—/o e(s,w)b(s,w)ds
If .
E[/O b2 (s,w)e*(s,w)ds] < oo

then we can check £ is well defined. In fact we can define for bounded progres-
sively measurable e, ¢,

&) = /e(s,w)dw(s) +/c(s,w)ds
It is easy to check that
£(-) € I(e(s,w)a(s,w), e(s,w)b(s,w) + c(s,w))

Recall that if X ~ N[u,0?] and Y = aX + b then Y ~ N[au + b, a%0?).

Remark 5.2. We can have z(t) € R? and x(-) € Z(a,b), where a = a(s,w)
is a symmetric positive semidefinite matrix valued bounded progressively mea-
surable function and b = b(s,w) is an R? valued, bounded and progressively
measurable. We can the define



where e(s,w) is a progressively measurable bounded k x d matrix and c is R*
valued, bounded and progressively measurable. The integral is defined by each
component. For 1 < < k,

&it) = Z/Ot €ij(s,w) - drj(s) +/Ci(57w)d5

The one verifies easily that
&(-) € I(eae™, eb+ c)

Theorem 5.5. It6’s formula. Consider a smooth function f(t,z) on [0,T] x
R2. Let x(t) with values in R® belong to I(a,b). Then almost surely

t
0

ft2(0) = £0.20) + [ As.alods + [ (Tof)(sva(s) - dalo)
43 [ S sw)(Du, Dl a()ds

Proof. Consider the d+ 1 dimensional process Z(t) = (f (¢, z(t)),x(t)). Ifc € R
and A € d, then if we consider g(¢,x) = o f(t,z) + (A, z) we know that

t
explg(t,x(t)) — ¢g(0,2(0)) — / e I[0se? + Ls ,e](s, x(s))ds]
0
is a martingale. A computation yields

1
e ?[0se” + Lowe’] = 059 + Lowg + 5(Vg,aVg)
=00sf +oLsuf + (A b(s,w))

+ %«aw + ), a(s,w)(@V f +A)

Implies that Z(t) € Z(a,b), where

. (<V(£$Xf> (aVaf)”)

and R
b= (0sf+ Lgf, b)
Now we can compute that w(-) € Z(A, B) where

t

w(t) :/O 1.df(s,x(s))—/0 (3sf)(s,x(5))ds—/0 (Vof)(s,2(s)) - dz(s)
B %/0 Z“i,j(saw)(ijf)(s,x(s))ds
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If we can calculate and show that A = 0 and B = 0, this would imply that
w(t) = 0 and that proves the theorem.

A=(1,-V/) (<v(£§le> (avaf)tr) (—éf> =0

B=0uf + Lowf =6V =0,f = 33 1(5,9) (Dase, /) = 0

O

Remark 5.3. If z(-) € Z(a,b) and y(t) = fot o(s,w) - dx(s) + fg c(s,w)ds we saw
that

y(-) € Z(a,b)
where ~
a=ocac*,b=ocb+c

This is like linear change of variables of a Gaussian vector. dx ~ Nladt,bdt]
and odx + ¢ ~ N[oac* dt,(cb + c¢)dt]. We can develop stochastic integrals of
y(+) and if dz = o’dy + 'dt then dz = ¢’ [odz + cdt] + ' dt = o’odx + (o' c+')dt.
If o is a invertible then dy = odx + cdt can be inverted as dz = o~ tdy — o~ tedt.
Finally one can remember It6’s formula by the rules

1
df (t, 2(t)) = fudt + Z frdi + 5 ZJ foia;duide;

If 2(-) € Z(a,b) then dz;dz; = a; jdt. (dt)> = dtdz; = 0. Because the typical
paths have half a derivative (more or less) dz ~ v/dt. dz;dx; is of the order of
dt and dxdt, (dt)? are negligible.



