Chapter 5

Stochastic Integrals and Itô's formula.

We will call an Itô process a progressively measurable almost surely continuous process $x(t,\omega)$ with values in \mathbb{R}^d , defined on some $(\Omega, \mathcal{F}_t, P)$ that is related to progressively measurable bounded functions $[a(s,\omega), b(s,\omega)]$ in the following manner.

$$\exp[\langle \theta, x(t,\omega) - x(0,\omega) - \int_0^t b(s,\omega) ds \rangle - \frac{1}{2} \int_0^t \langle \theta, a(s,\omega) \theta \rangle ds]$$

is a martingale with respect to $(\Omega, \mathcal{F}_t, P)$ for all $\theta \in \mathbb{R}^d$. A canonical example is Brownian motion that corresponds to $b(s, \omega) \equiv 0$ and $a(s, \omega) \equiv 1$ or $a(s, \omega) \equiv I$ in higher dimensions. We will abbreviate it by $x(\cdot) \in \mathcal{I}(a, b)$. Such processes are not of bounded variation unless $a \equiv 0$. In fact they have nontrivial quadratic variation.

Lemma 5.1. If $x(\cdot)$ is a one dimensional process and $x(\cdot) \in \mathcal{I}(a, b)$ then

$$\lim_{n \to \infty} \sum_{j=1}^{n} |x(\frac{jT}{n}) - x(\frac{(j-1)T}{n})|^2 = \int_0^T a(s,\omega) ds$$

in probability and in $L_1(P)$.

Proof. If $y(t) = x(t) - x(0) - \int_0^t b(s, \omega) ds$, then $y(\cdot) \in \mathcal{I}(a, 0)$ and the difference between $x(\cdot)$ and $y(\cdot)$ is a continuous function of bounded variation. it is therefore sufficient to show that

$$\lim_{n \to \infty} \sum_{j=1}^{n} |y(\frac{jT}{n}) - y(\frac{(j-1)T}{n})|^2 = \int_0^T a(s,\omega) ds$$

If we denote by

$$Z_{j} = |y(\frac{jT}{n}) - y(\frac{(j-1)T}{n})|^{2} - \int_{\frac{(j-1)T}{n}}^{\frac{jT}{n}} a(s,\omega)ds$$

then $E[Z_j] = 0$ and for $i \neq j$, $E[Z_i Z_j] = 0$. It is therefore sufficient to show

$$E[|Z_j|^2] \le \frac{C(T)}{n^2}.$$

This follows easily from the Gaussian bound

$$E[e^{\lambda(y(t_2)-y(t_1))}] \le e^{\frac{C\lambda^2(t_2-t_1)}{2}}$$

provided $a(s,\omega) \le C$. We see that $E[(y(t_2) - y(t_1))^4] \le C(t_2 - t_1)^2$.

This means that integrals of the form $\int_0^t e(s,\omega)dx(s,\omega)$ have to be carefully defined. Since the difference between $x(\cdot)$ and $y(\cdot)$ is of bounded variation it suffices to concentrate on $\int_0^t e(s,\omega)dx(s,\omega)$. We develop these integrals in several steps, each one formulated as a lemme.

Lemma 5.2. Let S be the space of functions $e(s, \omega)$ that are uniformly bounded piecewise constant progressively measurable functions of s. In other words there are intervals $[t_{j-1}, t_j)$ in which $e(s, \omega)$ is equal to $e(t_{j-1}, \omega)$ which is $\mathcal{F}_{t_{j-1}}$ measurable. We define for $t_{k-1} \leq t \leq t_k$

$$\xi(t) = \int_0^t e(s,\omega)dy(s) = \sum_{j=1}^{k-1} e(t_{j-1},\omega)[y(t_j) - y(t_{j-1})] + e(t_{k-1},\omega)[y(t) - y(t_{k-1})]$$

The following facts are easy to check.

- 1. $\xi(t)$ is almost surely continuous, progressively measurable. Moreover $\xi(\cdot) \in \mathcal{I}(e^2(s,\omega)a(s,\omega),0)$.
- 2. The space S is linear and the map $e \rightarrow \xi$ is a linear map.

3.

$$E[\sup_{0 \le s \le t} |\xi(s,\omega)|^2] \le 4E[\int_0^t |e(s,\omega)|^2 a(s,\omega) ds]$$

4. In particular if $e_1, e_2 \in S$, and for i = 1, 2

$$\xi_i(t) = \int_0^t e_i(s,\omega) dy(s)$$

then

$$E[\sup_{0 \le s \le t} |\xi_1(s,\omega) - \xi_2(s,\omega)|^2] \le 4E[\int_0^t |e_1(s,\omega) - e_2(s,\omega)|^2 a(s,\omega)ds]$$

Proof. It is easy to see that, because for $\lambda \in R$,

$$E[\exp[\lambda[y(t) - y(s)] - \frac{\lambda^2}{2} \int_s^t a(u, \omega) du] |\mathcal{F}_s] = 1$$

it follows that if λ is replaced by $\lambda(\omega)$ that is bounded and \mathcal{F}_s measurable then

$$E[\exp[\lambda(s,\omega)[y(t) - y(s)] - \frac{\lambda(s,\omega)^2}{2} \int_s^t a(u,\omega)du] |\mathcal{F}_s] = 1$$

We can take $\lambda(s, \omega) = \lambda e^{(s, \omega)}$. This proves 1. 2 is obvious and 3 is just Doob's inequality. 4 is a restatement of 3 for the difference.

Lemma 5.3. Given a bounded progressively measurable function $e(s, \omega)$ it can be approximated by a sequence $e_n \in S$, such that $\{e_n\}$ are uniformly bounded and

$$\lim_{n \to \infty} E[\int_0^1 |e_n(s,\omega) - e(s,\omega)|^2 ds] = 0$$

As a consequence the sequence $\xi_n(t) = \int_0^t e_n(s,\omega) dy(s)$ has a limit $\xi(t,\omega)$ in the sense

$$\lim_{n \to \infty} E[\sup_{0 \le s \le t} |\xi_n(s) - \xi(s)|^2] = 0$$

It follows that $\xi(t,\omega)$ is almost surely continuous and $\xi(\cdot) \in \mathcal{I}(e^2(s,\omega)a(s,\omega))$.

Proof. It is enough to prove the approximation property. Since

$$Y_{\lambda}(t) = \exp[\lambda \xi_n(t) - \frac{\lambda^2}{2} \int_0^s e_n^2(s,\omega) a(s,\omega) ds]$$

are martingales and $e_n^2 a$ has uniform bound C, it follows that

$$\sup_{0 \le t \le T} \sup_{n} E[\exp[\lambda \xi_n(t)]] \le \exp[\frac{C\lambda^2 T}{2}]$$

providing uniform integrability. We note that

$$\lim_{n,m \to \infty} E[\sup_{0 \le s \le t} |\xi_n(s) - \xi_m(s)|^2] = 0$$

Now it is easy to show that $\xi_n(\cdot)$ has a uniform limit in probability and pass to the limit. To prove the approximation property we approximate first $e(s, \omega)$ by

$$e_h(s,\omega) = \frac{1}{h} \int_{(s-h)\vee 0}^s e(u,\omega) du$$

It is a standard result in real variables that $||e_h(\cdot) - e_h(\cdot)||_2 \to 0$ as $h \to 0$ and e_h is contunuos in s. Note that we only look back and not ahead, thus preserving progressive measurability. We can now approximate $e_h(s, \omega)$ by $e_h(\frac{[ns]}{n}, \omega)$ that are again progressively measurable, but simple as well, so they are in S.

Lemma 5.4. If $e(s, \omega)$ is progressively measurable and satisfies

$$E[\int_0^T e^2(s,\omega)a(s,\omega)ds] < \infty$$

we can define on [0, T],

$$\xi(t) = \int_0^t e(s,\omega) dy(s)$$

as a square integrable martingale and

$$\xi(t)^2 - \int_0^t e^2(s,\omega)a(s,\omega)ds$$

will be a martingale.

Proof. The proof is elementary. Just approximate e by truncated functions

$$e_n(s,\omega) = e(s,\omega)\mathbf{1}_{\{|e(s,\omega)| \le n\}}(\omega)$$

and pass to the limit. Again

$$\lim_{n,m \to \infty} E[\sup_{0 \le s \le t} |\xi_n(s) - \xi_m(s)|^2] = 0$$

		т

Remark 5.1. If $x(\cdot)\in\mathcal{I}(a,b)$ we can let $y(t)=x(t)-\int_0^t b(s,\omega)ds$ and define

$$\xi(t) = \int_0^t e(s,\omega)dx(s) = \int_0^t e(s,\omega)dy(s) + \int_0^t e(s,\omega)b(s,\omega)ds$$

 \mathbf{If}

$$E[\int_0^t b^2(s,\omega)e^2(s,\omega)ds] < \infty$$

then we can check ξ is well defined. In fact we can define for bounded progressively measurable e,c,

$$\xi(t) = \int e(s,\omega)dx(s) + \int c(s,\omega)ds$$

It is easy to check that

$$\xi(\cdot) \in \mathcal{I}(e^2(s,\omega)a(s,\omega), e(s,\omega)b(s,\omega) + c(s,\omega))$$

Recall that if $X \simeq N[\mu, \sigma^2]$ and Y = aX + b then $Y \simeq N[a\mu + b, a^2\sigma^2]$.

Remark 5.2. We can have $x(t) \in \mathbb{R}^d$ and $x(\cdot) \in \mathcal{I}(a, b)$, where $a = a(s, \omega)$ is a symmetric positive semidefinite matrix valued bounded progressively measurable function and $b = b(s, \omega)$ is an \mathbb{R}^d valued, bounded and progressively measurable. We can the define

$$\xi(t) = \int_0^t e(s,\omega) \cdot dx(s) + \int c(s,\omega) ds$$

where $e(s, \omega)$ is a progressively measurable bounded $k \times d$ matrix and c is R^k valued, bounded and progressively measurable. The integral is defined by each component. For $1 \le i \le k$,

$$\xi_i(t) = \sum_j \int_0^t e_{i,j}(s,\omega) \cdot dx_j(s) + \int c_i(s,\omega) ds$$

The one verifies easily that

$$\xi(\cdot) \in \mathcal{I}(eae^*, eb + c)$$

Theorem 5.5. Itô's formula. Consider a smooth function f(t, x) on $[0, T] \times \mathbb{R}^d$. Let x(t) with values in \mathbb{R}^d belong to $\mathcal{I}(a, b)$. Then almost surely

$$f(t, x(t)) = f(0, x(0)) + \int_0^t f_s(s, x(s))ds + \int_0^t (\nabla_x f)(s, x(s)) \cdot dx(s) + \frac{1}{2} \int_0^t \sum_{i=1}^t a_{i,i}(s, \omega) (D_{x_i, x_j} f)(s, x(s))ds$$

Proof. Consider the d+1 dimensional process Z(t) = (f(t, x(t)), x(t)). If $\sigma \in R$ and $\lambda \in d$, then if we consider $g(t, x) = \sigma f(t, x) + \langle \lambda, x \rangle$ we know that

$$\exp[g(t, x(t)) - g(0, x(0)) - \int_0^t e^{-g} [\partial_s e^g + L_{s,\omega} e^g](s, x(s)) ds]$$

is a martingale. A computation yields

$$e^{-g}[\partial_s e^g + L_{s,\omega} e^g] = \partial_s g + L_{s,\omega} g + \frac{1}{2} \langle \nabla g, a \nabla g \rangle$$

= $\sigma \partial_s f + \sigma L_{s,\omega} f + \langle \lambda, b(s,\omega) \rangle$
+ $\frac{1}{2} \langle (\sigma \nabla f + \lambda), a(s,\omega) (\sigma \nabla f + \lambda) \rangle$

Implies that $Z(t) \in \mathcal{I}(\tilde{a}, \tilde{b})$, where

$$\tilde{a} = \begin{pmatrix} \langle \nabla f, a \nabla f \rangle & (a \nabla f)^{tr} \\ (a \nabla f) & a \end{pmatrix}$$

and

$$\tilde{b} = (\partial_s f + L_{s,\omega} f, b)$$

Now we can compute that $w(\cdot) \in \mathcal{I}(A, B)$ where

$$w(t) = \int_0^t 1 \cdot df(s, x(s)) - \int_0^t (\partial_s f)(s, x(s)) ds - \int_0^t (\nabla_s f)(s, x(s)) \cdot dx(s) - \frac{1}{2} \int_0^t \sum_{i,j} a_{i,j}(s, \omega) (D_{x_i x_j} f)(s, x(s)) ds$$

If we can calculate and show that A = 0 and B = 0, this would imply that $w(t) \equiv 0$ and that proves the theorem.

$$A = (1, -\nabla f) \begin{pmatrix} \langle \nabla f, a \nabla f \rangle & (a \nabla f)^{tr} \\ (a \nabla f) & a \end{pmatrix} \begin{pmatrix} 1 \\ -\nabla f \end{pmatrix} = 0$$
$$B = \partial_s f + L_{s,\omega} f - b \cdot \nabla f - \partial_s f - \frac{1}{2} \sum_{i,j} a_{i,j}(s,\omega) (D_{x_i x_j} f) = 0$$

Remark 5.3. If $x(\cdot) \in \mathcal{I}(a, b)$ and $y(t) = \int_0^t \sigma(s, \omega) \cdot dx(s) + \int_0^t c(s, \omega) ds$ we saw that

$$y(\cdot) \in \mathcal{I}(\tilde{a}, \tilde{b})$$

where

$$\tilde{a} = \sigma a \sigma^*, \tilde{b} = \sigma b + c$$

This is like linear change of variables of a Gaussian vector. $dx \simeq N[a dt, b dt]$ and $\sigma dx + c \simeq N[\sigma a \sigma^* dt, (\sigma b + c) dt]$. We can develop stochastic integrals of $y(\cdot)$ and if $dz = \sigma' dy + c' dt$ then $dz = \sigma' [\sigma dx + c dt] + c' dt = \sigma' \sigma dx + (\sigma' c + c') dt$. If σ is a invertible then $dy = \sigma dx + c dt$ can be inverted as $dx = \sigma^{-1} dy - \sigma^{-1} c dt$. Finally one can remember Itô's formula by the rules

$$df(t, x(t)) = f_t dt + \sum_i f_{x_i} dx_i + \frac{1}{2} \sum_{i,j} f_{x_i, x_j} dx_i dx_j$$

If $x(\cdot) \in \mathcal{I}(a, b)$ then $dx_i dx_j = a_{i,j} dt$. $(dt)^2 = dt dx_i = 0$. Because the typical paths have half a derivative (more or less) $dx \simeq \sqrt{dt}$. $dx_i dx_j$ is of the order of dt and dx dt, $(dt)^2$ are negligible.